diff --git a/Marlin/src/config/examples/delta/FLSUN/auto_calibrate/Configuration.h b/Marlin/src/config/examples/delta/FLSUN/auto_calibrate/Configuration.h index 8709803665..3261eceb86 100644 --- a/Marlin/src/config/examples/delta/FLSUN/auto_calibrate/Configuration.h +++ b/Marlin/src/config/examples/delta/FLSUN/auto_calibrate/Configuration.h @@ -497,7 +497,7 @@ // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 - // Enable and set these values based on results of 'G33 A1' + // Enable and set these values based on results of 'G33 A' //#define H_FACTOR 1.01 //#define R_FACTOR 2.61 //#define A_FACTOR 0.87 @@ -505,7 +505,7 @@ #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) - // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes + // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes #define DELTA_CALIBRATION_RADIUS 73.5 // mm // Set the steprate for papertest probing #define PROBE_MANUALLY_STEP 0.025 diff --git a/Marlin/src/config/examples/delta/FLSUN/kossel_mini/Configuration.h b/Marlin/src/config/examples/delta/FLSUN/kossel_mini/Configuration.h index 4bc281ca71..2684c46c17 100644 --- a/Marlin/src/config/examples/delta/FLSUN/kossel_mini/Configuration.h +++ b/Marlin/src/config/examples/delta/FLSUN/kossel_mini/Configuration.h @@ -497,7 +497,7 @@ // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 - // Enable and set these values based on results of 'G33 A1' + // Enable and set these values based on results of 'G33 A' //#define H_FACTOR 1.01 //#define R_FACTOR 2.61 //#define A_FACTOR 0.87 @@ -505,7 +505,7 @@ #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) - // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes + // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes #define DELTA_CALIBRATION_RADIUS 73.5 // mm // Set the steprate for papertest probing #define PROBE_MANUALLY_STEP 0.025 diff --git a/Marlin/src/config/examples/delta/generic/Configuration.h b/Marlin/src/config/examples/delta/generic/Configuration.h index 589f269133..751c4d95eb 100644 --- a/Marlin/src/config/examples/delta/generic/Configuration.h +++ b/Marlin/src/config/examples/delta/generic/Configuration.h @@ -487,7 +487,7 @@ // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 - // Enable and set these values based on results of 'G33 A1' + // Enable and set these values based on results of 'G33 A' //#define H_FACTOR 1.01 //#define R_FACTOR 2.61 //#define A_FACTOR 0.87 @@ -495,7 +495,7 @@ #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) - // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes + // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes #define DELTA_CALIBRATION_RADIUS 121.5 // mm // Set the steprate for papertest probing #define PROBE_MANUALLY_STEP 0.025 diff --git a/Marlin/src/config/examples/delta/kossel_mini/Configuration.h b/Marlin/src/config/examples/delta/kossel_mini/Configuration.h index 4925e632a8..8dc1e7edfa 100644 --- a/Marlin/src/config/examples/delta/kossel_mini/Configuration.h +++ b/Marlin/src/config/examples/delta/kossel_mini/Configuration.h @@ -487,7 +487,7 @@ // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 - // Enable and set these values based on results of 'G33 A1' + // Enable and set these values based on results of 'G33 A' //#define H_FACTOR 1.01 //#define R_FACTOR 2.61 //#define A_FACTOR 0.87 @@ -495,7 +495,7 @@ #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) - // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes + // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes #define DELTA_CALIBRATION_RADIUS 78.0 // mm // Set the steprate for papertest probing #define PROBE_MANUALLY_STEP 0.025 diff --git a/Marlin/src/config/examples/delta/kossel_pro/Configuration.h b/Marlin/src/config/examples/delta/kossel_pro/Configuration.h index a7d1441880..61bf8ccb3a 100644 --- a/Marlin/src/config/examples/delta/kossel_pro/Configuration.h +++ b/Marlin/src/config/examples/delta/kossel_pro/Configuration.h @@ -473,7 +473,7 @@ // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 - // Enable and set these values based on results of 'G33 A1' + // Enable and set these values based on results of 'G33 A' //#define H_FACTOR 1.01 //#define R_FACTOR 2.61 //#define A_FACTOR 0.87 @@ -481,7 +481,7 @@ #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) - // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes + // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes #define DELTA_CALIBRATION_RADIUS 110.0 // mm // Set the steprate for papertest probing #define PROBE_MANUALLY_STEP 0.025 diff --git a/Marlin/src/config/examples/delta/kossel_xl/Configuration.h b/Marlin/src/config/examples/delta/kossel_xl/Configuration.h index 4ff579dcb7..abfbb8aa57 100644 --- a/Marlin/src/config/examples/delta/kossel_xl/Configuration.h +++ b/Marlin/src/config/examples/delta/kossel_xl/Configuration.h @@ -491,7 +491,7 @@ // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 - // Enable and set these values based on results of 'G33 A1' + // Enable and set these values based on results of 'G33 A' //#define H_FACTOR 1.01 //#define R_FACTOR 2.61 //#define A_FACTOR 0.87 @@ -499,7 +499,7 @@ #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) - // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes + // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes #define DELTA_CALIBRATION_RADIUS 121.5 // mm // Set the steprate for papertest probing #define PROBE_MANUALLY_STEP 0.025 diff --git a/Marlin/src/gcode/calibrate/G33.cpp b/Marlin/src/gcode/calibrate/G33.cpp index bd7fbe38b7..3bf01a78eb 100644 --- a/Marlin/src/gcode/calibrate/G33.cpp +++ b/Marlin/src/gcode/calibrate/G33.cpp @@ -37,6 +37,26 @@ #include "../../feature/bedlevel/bedlevel.h" #endif +constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points + _4P_STEP = _7P_STEP * 2, // 4-point step + NPP = _7P_STEP * 6; // number of calibration points on the radius +enum CalEnum { // the 7 main calibration points - add definitions if needed + CEN = 0, + __A = 1, + _AB = __A + _7P_STEP, + __B = _AB + _7P_STEP, + _BC = __B + _7P_STEP, + __C = _BC + _7P_STEP, + _CA = __C + _7P_STEP, +}; + +#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N) +#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VARCEN+0.9999; VAR-=N) +#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1) +#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP) +#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP) + static void print_signed_float(const char * const prefix, const float &f) { SERIAL_PROTOCOLPGM(" "); serialprintPGM(prefix); @@ -69,13 +89,13 @@ static void print_G33_settings(const bool end_stops, const bool tower_angles) { SERIAL_EOL(); } -static void print_G33_results(const float z_at_pt[13], const bool tower_points, const bool opposite_points) { +static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) { SERIAL_PROTOCOLPGM(". "); - print_signed_float(PSTR("c"), z_at_pt[0]); + print_signed_float(PSTR("c"), z_at_pt[CEN]); if (tower_points) { - print_signed_float(PSTR(" x"), z_at_pt[1]); - print_signed_float(PSTR(" y"), z_at_pt[5]); - print_signed_float(PSTR(" z"), z_at_pt[9]); + print_signed_float(PSTR(" x"), z_at_pt[__A]); + print_signed_float(PSTR(" y"), z_at_pt[__B]); + print_signed_float(PSTR(" z"), z_at_pt[__C]); } if (tower_points && opposite_points) { SERIAL_EOL(); @@ -83,9 +103,9 @@ static void print_G33_results(const float z_at_pt[13], const bool tower_points, SERIAL_PROTOCOL_SP(13); } if (opposite_points) { - print_signed_float(PSTR("yz"), z_at_pt[7]); - print_signed_float(PSTR("zx"), z_at_pt[11]); - print_signed_float(PSTR("xy"), z_at_pt[3]); + print_signed_float(PSTR("yz"), z_at_pt[_BC]); + print_signed_float(PSTR("zx"), z_at_pt[_CA]); + print_signed_float(PSTR("xy"), z_at_pt[_AB]); } SERIAL_EOL(); } @@ -112,85 +132,111 @@ static void G33_cleanup( #endif } -static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, const bool towers_set, const bool stow_after_each) { +static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) { const bool _0p_calibration = probe_points == 0, _1p_calibration = probe_points == 1, _4p_calibration = probe_points == 2, _4p_opposite_points = _4p_calibration && !towers_set, _7p_calibration = probe_points >= 3 || probe_points == 0, - _7p_half_circle = probe_points == 3, - _7p_double_circle = probe_points == 5, - _7p_triple_circle = probe_points == 6, - _7p_quadruple_circle = probe_points == 7, + _7p_no_intermediates = probe_points == 3, + _7p_1_intermediates = probe_points == 4, + _7p_2_intermediates = probe_points == 5, + _7p_4_intermediates = probe_points == 6, + _7p_6_intermediates = probe_points == 7, + _7p_8_intermediates = probe_points == 8, + _7p_11_intermediates = probe_points == 9, + _7p_14_intermediates = probe_points == 10, _7p_intermed_points = probe_points >= 4, - _7p_multi_circle = probe_points >= 5; + _7p_6_centre = probe_points >= 5 && probe_points <= 7, + _7p_9_centre = probe_points >= 8; #if DISABLED(PROBE_MANUALLY) const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER), dy = (Y_PROBE_OFFSET_FROM_EXTRUDER); #endif - for (uint8_t i = 0; i <= 12; i++) z_at_pt[i] = 0.0; + LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0; if (!_0p_calibration) { - if (!_7p_half_circle && !_7p_triple_circle) { // probe the center + if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center #if ENABLED(PROBE_MANUALLY) - z_at_pt[0] += lcd_probe_pt(0, 0); + z_at_pt[CEN] += lcd_probe_pt(0, 0); #else - z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); + z_at_pt[CEN] += probe_pt(dx, dy, stow_after_each, 1, false); #endif } if (_7p_calibration) { // probe extra center points - for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { - const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; + const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C, + steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP; + I_LOOP_CAL_PT(axis, start, steps) { + const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), + r = delta_calibration_radius * 0.1; #if ENABLED(PROBE_MANUALLY) - z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r); + z_at_pt[CEN] += lcd_probe_pt(cos(a) * r, sin(a) * r); #else - z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); + z_at_pt[CEN] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); #endif } - z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); + z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points); } if (!_1p_calibration) { // probe the radius + const CalEnum start = _4p_opposite_points ? _AB : __A; + const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100 + _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81 + _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64 + _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49 + _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36 + _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25 + _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16 + _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9 + _4P_STEP; // .5r * 6 + 1c = 4 bool zig_zag = true; - const uint8_t start = _4p_opposite_points ? 3 : 1, - step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; - for (uint8_t axis = start; axis <= 12; axis += step) { - const float zigadd = (zig_zag ? 0.5 : 0.0), - offset_circles = _7p_quadruple_circle ? zigadd + 1.0 : - _7p_triple_circle ? zigadd + 0.5 : - _7p_double_circle ? zigadd : 0; - for (float circles = -offset_circles ; circles <= offset_circles; circles++) { - const float a = RADIANS(180 + 30 * axis), - r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); + F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) { + const int8_t offset = _7p_9_centre ? 1 : 0; + for (int8_t circle = -offset; circle <= offset; circle++) { + const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), + r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)), + interpol = fmod(axis, 1); #if ENABLED(PROBE_MANUALLY) - z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r); + float z_temp = lcd_probe_pt(cos(a) * r, sin(a) * r); #else - z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); + float z_temp = probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); #endif + // split probe point to neighbouring calibration points + z_at_pt[round(axis - interpol + NPP - 1) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90))); + z_at_pt[round(axis - interpol) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90))); } zig_zag = !zig_zag; - z_at_pt[axis] /= (2 * offset_circles + 1); } + if (_7p_intermed_points) + LOOP_CAL_RAD(axis) { +/* + // average intermediate points to towers and opposites - only required with _7P_STEP >= 2 + for (int8_t i = 1; i < _7P_STEP; i++) { + const float interpol = i * (1.0 / _7P_STEP); + z_at_pt[axis] += (z_at_pt[(axis + NPP - i - 1) % NPP + 1] + + z_at_pt[axis + i]) * sq(cos(RADIANS(interpol * 90))); + } +*/ + z_at_pt[axis] /= _7P_STEP / steps; + } } - if (_7p_intermed_points) // average intermediates to tower and opposites - for (uint8_t axis = 1; axis <= 12; axis += 2) - z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; - float S1 = z_at_pt[0], - S2 = sq(z_at_pt[0]); + float S1 = z_at_pt[CEN], + S2 = sq(z_at_pt[CEN]); int16_t N = 1; - if (!_1p_calibration) // std dev from zero plane - for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis <= 12; axis += (_4p_calibration ? 4 : 2)) { + if (!_1p_calibration) { // std dev from zero plane + LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) { S1 += z_at_pt[axis]; S2 += sq(z_at_pt[axis]); N++; } - return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001; + return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001; + } } return 0.00001; @@ -199,8 +245,8 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons #if DISABLED(PROBE_MANUALLY) static void G33_auto_tune() { - float z_at_pt[13] = { 0.0 }, - z_at_pt_base[13] = { 0.0 }, + float z_at_pt[NPP + 1] = { 0.0 }, + z_at_pt_base[NPP + 1] = { 0.0 }, z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8; #define ZP(N,I) ((N) * z_at_pt[I]) @@ -227,18 +273,18 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons SERIAL_EOL(); probe_G33_points(z_at_pt, 3, true, false); - for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i]; + LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; print_G33_results(z_at_pt, true, true); delta_endstop_adj[axis] += 1.0; switch (axis) { case A_AXIS : - h_fac += 4.0 / (Z03(0) +Z01(1) +Z32(11) +Z32(3)); // Offset by X-tower end-stop + h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop break; case B_AXIS : - h_fac += 4.0 / (Z03(0) +Z01(5) +Z32(7) +Z32(3)); // Offset by Y-tower end-stop + h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop break; case C_AXIS : - h_fac += 4.0 / (Z03(0) +Z01(9) +Z32(7) +Z32(11) ); // Offset by Z-tower end-stop + h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop break; } } @@ -257,11 +303,11 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+"); SERIAL_EOL(); probe_G33_points(z_at_pt, 3, true, false); - for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i]; + LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; print_G33_results(z_at_pt, true, true); delta_radius -= 1.0 * zig_zag; recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); - r_fac -= zig_zag * 6.0 / (Z03(1) + Z03(5) + Z03(9) + Z03(7) + Z03(11) + Z03(3)); // Offset by delta radius + r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius } r_fac /= 2.0; r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini @@ -284,7 +330,7 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons SERIAL_EOL(); probe_G33_points(z_at_pt, 3, true, false); - for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i]; + LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; print_G33_results(z_at_pt, true, true); delta_tower_angle_trim[axis] -= 1.0; @@ -296,13 +342,13 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); switch (axis) { case A_AXIS : - a_fac += 4.0 / ( Z06(5) -Z06(9) +Z06(11) -Z06(3)); // Offset by alpha tower angle + a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle break; case B_AXIS : - a_fac += 4.0 / (-Z06(1) +Z06(9) -Z06(7) +Z06(3)); // Offset by beta tower angle + a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle break; case C_AXIS : - a_fac += 4.0 / (Z06(1) -Z06(5) +Z06(7) -Z06(11) ); // Offset by gamma tower angle + a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle break; } } @@ -333,7 +379,7 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons * P1 Probe center and set height only. * P2 Probe center and towers. Set height, endstops and delta radius. * P3 Probe all positions: center, towers and opposite towers. Set all. - * P4-P7 Probe all positions at different locations and average them. + * P4-P10 Probe all positions + at different itermediate locations and average them. * * T Don't calibrate tower angle corrections * @@ -353,8 +399,8 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons void GcodeSuite::G33() { const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS); - if (!WITHIN(probe_points, 0, 7)) { - SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7)."); + if (!WITHIN(probe_points, 0, 10)) { + SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10)."); return; } @@ -382,15 +428,13 @@ void GcodeSuite::G33() { _0p_calibration = probe_points == 0, _1p_calibration = probe_points == 1, _4p_calibration = probe_points == 2, + _7p_9_centre = probe_points >= 8, _tower_results = (_4p_calibration && towers_set) || probe_points >= 3 || probe_points == 0, _opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3 || probe_points == 0, _endstop_results = probe_points != 1, - _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set, - _7p_double_circle = probe_points == 5, - _7p_triple_circle = probe_points == 6, - _7p_quadruple_circle = probe_points == 7; + _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set; const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h"; int8_t iterations = 0; float test_precision, @@ -412,12 +456,9 @@ void GcodeSuite::G33() { SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable - const float circles = (_7p_quadruple_circle ? 1.5 : - _7p_triple_circle ? 1.0 : - _7p_double_circle ? 0.5 : 0), - r = (1 + circles * 0.1) * delta_calibration_radius; - for (uint8_t axis = 1; axis <= 12; ++axis) { - const float a = RADIANS(180 + 30 * axis); + LOOP_CAL_RAD(axis) { + const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), + r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0)); if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) { SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible."); return; @@ -468,7 +509,7 @@ void GcodeSuite::G33() { do { - float z_at_pt[13] = { 0.0 }; + float z_at_pt[NPP + 1] = { 0.0 }; test_precision = zero_std_dev; @@ -526,34 +567,34 @@ void GcodeSuite::G33() { case 1: test_precision = 0.00; // forced end - LOOP_XYZ(axis) e_delta[axis] = Z1(0); + LOOP_XYZ(axis) e_delta[axis] = Z1(CEN); break; case 2: if (towers_set) { - e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor; - e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor; - e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor; - r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor; + e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor; + e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor; + e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor; + r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor; } else { - e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor; - e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor; - e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor; - r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor; + e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor; + e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor; + e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor; + r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor; } break; default: - e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor; - e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor; - e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor; - r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor; + e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor; + e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor; + e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor; + r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor; if (towers_set) { - t_delta[A_AXIS] = ( - Z4(5) + Z4(9) - Z4(11) + Z4(3)) * a_factor; - t_delta[B_AXIS] = ( Z4(1) - Z4(9) + Z4(7) - Z4(3)) * a_factor; - t_delta[C_AXIS] = (-Z4(1) + Z4(5) - Z4(7) + Z4(11) ) * a_factor; + t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor; + t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor; + t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor; e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5; e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5; e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;