Browse Source

Merge Anti-jitter for all servo moves (PR#2427)

pull/1/head
Richard Wackerbarth 10 years ago
parent
commit
63715aba4f
  1. 18
      Marlin/Configuration.h
  2. 39
      Marlin/Marlin_main.cpp
  3. 17
      Marlin/servo.cpp
  4. 5
      Marlin/servo.h

18
Marlin/Configuration.h

@ -504,13 +504,6 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
//#define Z_PROBE_SLED // turn on if you have a z-probe mounted on a sled like those designed by Charles Bell //#define Z_PROBE_SLED // turn on if you have a z-probe mounted on a sled like those designed by Charles Bell
//#define SLED_DOCKING_OFFSET 5 // the extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like. //#define SLED_DOCKING_OFFSET 5 // the extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.
// #define PROBE_SERVO_DEACTIVATION_DELAY 300
//If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing, //If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!! //it is highly recommended you let this Z_SAFE_HOMING enabled!!!
@ -774,6 +767,17 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// //
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command //#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// If DEACTIVATE_SERVOS_AFTER_MOVE is defined, the servos will be turned on only during movement and then turned off to avoid jitter
// SERVO_DEACTIVATION_DELAY is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// If your servo does not reach the requested position, enlarge the time.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.
//
//#define DEACTIVATE_SERVOS_AFTER_MOVE
#ifdef DEACTIVATE_SERVOS_AFTER_MOVE
#define SERVO_DEACTIVATION_DELAY 300
#endif
// Servo Endstops // Servo Endstops
// //
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes. // This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.

39
Marlin/Marlin_main.cpp

@ -36,7 +36,7 @@
#endif #endif
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING
#define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0) #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && defined(DEACTIVATE_SERVOS_AFTER_MOVE))
#ifdef MESH_BED_LEVELING #ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h" #include "mesh_bed_leveling.h"
@ -570,13 +570,9 @@ void servo_init() {
#ifdef SERVO_ENDSTOPS #ifdef SERVO_ENDSTOPS
for (int i = 0; i < 3; i++) for (int i = 0; i < 3; i++)
if (servo_endstops[i] >= 0) if (servo_endstops[i] >= 0)
servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]); servo[servo_endstops[i]].move(0, servo_endstop_angles[i * 2 + 1]);
#endif #endif
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servo[servo_endstops[Z_AXIS]].detach();
#endif
} }
/** /**
@ -1315,14 +1311,7 @@ static void setup_for_endstop_move() {
// Engage Z Servo endstop if enabled // Engage Z Servo endstop if enabled
if (servo_endstops[Z_AXIS] >= 0) { if (servo_endstops[Z_AXIS] >= 0) {
Servo *srv = &servo[servo_endstops[Z_AXIS]]; Servo *srv = &servo[servo_endstops[Z_AXIS]];
#if SERVO_LEVELING srv->move(0, servo_endstop_angles[Z_AXIS * 2]);
srv->attach(0);
#endif
srv->write(servo_endstop_angles[Z_AXIS * 2]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
srv->detach();
#endif
} }
#elif defined(Z_PROBE_ALLEN_KEY) #elif defined(Z_PROBE_ALLEN_KEY)
@ -1424,14 +1413,7 @@ static void setup_for_endstop_move() {
// Change the Z servo angle // Change the Z servo angle
Servo *srv = &servo[servo_endstops[Z_AXIS]]; Servo *srv = &servo[servo_endstops[Z_AXIS]];
#if SERVO_LEVELING srv->move(0, servo_endstop_angles[Z_AXIS * 2 + 1]);
srv->attach(0);
#endif
srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
srv->detach();
#endif
} }
#elif defined(Z_PROBE_ALLEN_KEY) #elif defined(Z_PROBE_ALLEN_KEY)
@ -1683,7 +1665,7 @@ static void homeaxis(AxisEnum axis) {
if (axis != Z_AXIS) { if (axis != Z_AXIS) {
// Engage Servo endstop if enabled // Engage Servo endstop if enabled
if (servo_endstops[axis] > -1) if (servo_endstops[axis] > -1)
servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]); servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2]);
} }
#endif #endif
@ -1786,7 +1768,7 @@ static void homeaxis(AxisEnum axis) {
{ {
// Retract Servo endstop if enabled // Retract Servo endstop if enabled
if (servo_endstops[axis] > -1) if (servo_endstops[axis] > -1)
servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]); servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2 + 1]);
} }
#endif #endif
@ -4354,14 +4336,7 @@ inline void gcode_M226() {
servo_position = code_value_short(); servo_position = code_value_short();
if (servo_index >= 0 && servo_index < NUM_SERVOS) { if (servo_index >= 0 && servo_index < NUM_SERVOS) {
Servo *srv = &servo[servo_index]; Servo *srv = &servo[servo_index];
#if SERVO_LEVELING srv->move(0, servo_position);
srv->attach(0);
#endif
srv->write(servo_position);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
srv->detach();
#endif
} }
else { else {
SERIAL_ECHO_START; SERIAL_ECHO_START;

17
Marlin/servo.cpp

@ -35,12 +35,14 @@
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds) write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds writeMicroseconds() - Sets the servo pulse width in microseconds
move(pin, angel) - Sequence of attach(pin), write(angel),
if DEACTIVATE_SERVOS_AFTER_MOVE is defined waits SERVO_DEACTIVATION_DELAY, than detaches.
read() - Gets the last written servo pulse width as an angle between 0 and 180. read() - Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release) readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached. attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin. detach() - Stops an attached servos from pulsing its i/o pin.
*/ */
#include "Configuration.h" #include "Configuration.h"
#ifdef NUM_SERVOS #ifdef NUM_SERVOS
@ -301,4 +303,17 @@ int Servo::readMicroseconds() {
bool Servo::attached() { return servos[this->servoIndex].Pin.isActive; } bool Servo::attached() { return servos[this->servoIndex].Pin.isActive; }
uint8_t Servo::move(int pin, int value) {
uint8_t ret;
ret = this->attach(pin);
if (ret) {
this->write(value);
#ifdef DEACTIVATE_SERVOS_AFTER_MOVE && (SERVO_DEACTIVATION_DELAY > 0)
delay(SERVO_DEACTIVATION_DELAY);
this->detach();
#endif
}
return ret;
}
#endif #endif

5
Marlin/servo.h

@ -40,6 +40,8 @@
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release) readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached. attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin. detach() - Stops an attached servos from pulsing its i/o pin.
move(pin, angel) - Sequence of attach(pin), write(angel),
if DEACTIVATE_SERVOS_AFTER_MOVE is defined waits SERVO_DEACTIVATION_DELAY, than detaches.
*/ */
#ifndef servo_h #ifndef servo_h
@ -120,6 +122,9 @@ class Servo {
void detach(); void detach();
void write(int value); // if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds void write(int value); // if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
void writeMicroseconds(int value); // Write pulse width in microseconds void writeMicroseconds(int value); // Write pulse width in microseconds
uint8_t move(int pin, int value); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure.
// if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds.
// if DEACTIVATE_SERVOS_AFTER_MOVE is defined waits SERVO_DEACTIVATION_DELAY, than detaches.
int read(); // returns current pulse width as an angle between 0 and 180 degrees int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release) int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false bool attached(); // return true if this servo is attached, otherwise false

Loading…
Cancel
Save