Browse Source

Trailing whitespace cleanup

pull/1/head
Scott Lahteine 7 years ago
parent
commit
57c2f8d2f6
  1. 188
      Marlin/src/module/planner.cpp

188
Marlin/src/module/planner.cpp

@ -422,12 +422,12 @@ void Planner::init() {
// for the same result - Using C division, it takes 500cycles to complete .
A("clr %3") // idx = 0
A("mov %14,%6")
A("mov %15,%7")
A("mov %14,%6")
A("mov %15,%7")
A("mov %16,%8") // nr = interval
A("tst %16") // nr & 0xFF0000 == 0 ?
A("brne 2f") // No, skip this
A("mov %16,%15")
A("mov %16,%15")
A("mov %15,%14") // nr <<= 8, %14 not needed
A("subi %3,-8") // idx += 8
A("tst %16") // nr & 0xFF0000 == 0 ?
@ -442,7 +442,7 @@ void Planner::init() {
A("brcc 3f") // No, skip this
A("swap %15") // Swap nibbles
A("swap %16") // Swap nibbles. Low nibble is 0
A("mov %14, %15")
A("mov %14, %15")
A("andi %14,0x0F") // Isolate low nibble
A("andi %15,0xF0") // Keep proper nibble in %15
A("or %16, %14") // %16:%15 <<= 4
@ -451,23 +451,23 @@ void Planner::init() {
L("3")
A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
A("brcc 4f") // No, skip this
A("add %15,%15")
A("adc %16,%16")
A("add %15,%15")
A("add %15,%15")
A("adc %16,%16")
A("add %15,%15")
A("adc %16,%16") // %16:%15 <<= 2
A("subi %3,-2") // idx += 2
L("4")
A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
A("brcc 5f") // No, skip this
A("add %15,%15")
A("add %15,%15")
A("adc %16,%16") // %16:%15 <<= 1
A("inc %3") // idx += 1
// Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
// we have at least 9 MSBits available to enter the initial estimation table
L("5")
A("add %15,%15")
A("add %15,%15")
A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
A("add r30,%16") // Only use top 8 bits
A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
@ -483,31 +483,31 @@ void Planner::init() {
// idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
A("sbrs %3,0") // shift by 1bit position?
A("rjmp 8f") // No
A("add %14,%14")
A("add %14,%14")
A("adc %15,%15") // %15:16 <<= 1
L("8")
A("sbrs %3,1") // shift by 2bit position?
A("rjmp 9f") // No
A("add %14,%14")
A("adc %15,%15")
A("add %14,%14")
A("add %14,%14")
A("adc %15,%15")
A("add %14,%14")
A("adc %15,%15") // %15:16 <<= 1
L("9")
A("sbrs %3,2") // shift by 4bits position?
A("rjmp 16f") // No
A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0
A("swap %14") // Swap nibbles
A("mov %12,%14")
A("mov %12,%14")
A("andi %12,0x0F") // isolate low nibble
A("andi %14,0xF0") // and clear it
A("or %15,%12") // %15:%16 <<= 4
L("16")
A("sbrs %3,3") // shift by 8bits position?
A("rjmp 6f") // No, we are done
A("mov %16,%15")
A("mov %15,%14")
A("clr %14")
A("jmp 6f")
A("mov %16,%15")
A("mov %15,%14")
A("clr %14")
A("jmp 6f")
// idx < 8, now %3 = idx - 8. Get the count of bits
L("7")
@ -515,14 +515,14 @@ void Planner::init() {
A("sbrs %3,0") // shift by 1 bit position ?
A("rjmp 10f") // No, skip it
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
A("ror %14")
L("10")
A("sbrs %3,1") // shift by 2 bit position ?
A("rjmp 11f") // No, skip it
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
A("ror %14")
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
A("ror %14")
L("11")
A("sbrs %3,2") // shift by 4 bit position ?
A("rjmp 12f") // No, skip it
@ -534,8 +534,8 @@ void Planner::init() {
L("12")
A("sbrs %3,3") // shift by 8 bit position ?
A("rjmp 6f") // No, skip it
A("mov %14,%15")
A("clr %15")
A("mov %14,%15")
A("clr %15")
L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
// Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
@ -549,33 +549,33 @@ void Planner::init() {
// %3:%2:%1:%0 = working accumulator
// Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
A("clr %0")
A("clr %1")
A("clr %2")
A("clr %0")
A("clr %1")
A("clr %2")
A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
A("sub %1,r0")
A("sbc %2,r1" )
A("sub %1,r0")
A("sbc %2,r1" )
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
A("sub %2,r0")
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
A("sub %2,r0")
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
A("sub %2,r0")
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
@ -589,58 +589,58 @@ void Planner::init() {
// result = %11:%10:%9:%5:%4
A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
A("mov %4,r1")
A("clr %5")
A("clr %9")
A("clr %10")
A("mov %4,r1")
A("clr %5")
A("clr %9")
A("clr %10")
A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
A("add %9,r0")
A("adc %10,r1")
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
A("add %9,r0")
A("adc %10,r1")
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
A("add %10,r0")
A("add %10,r0")
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
A("add %9,r0")
A("adc %10,r1")
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
A("add %10,r0")
A("add %10,r0")
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
@ -651,33 +651,33 @@ void Planner::init() {
// (1<<24) - x*d
// %11:%10:%9 = x
// %8:%7:%6 = d = interval" "\n\t"
A("ldi %3,1")
A("clr %2")
A("clr %1")
A("ldi %3,1")
A("clr %2")
A("clr %1")
A("clr %0") // %3:%2:%1:%0 = 0x1000000
A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
A("sub %2,r0")
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
A("sub %2,r0")
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
A("sub %2,r0")
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
@ -685,15 +685,15 @@ void Planner::init() {
// %8:%7:%6 = d = interval
// Perform the final correction
A("sub %0,%6")
A("sbc %1,%7")
A("sub %0,%6")
A("sbc %1,%7")
A("sbc %2,%8") // r -= d
A("brcs 14f") // if ( r >= d)
// %11:%10:%9 = x
A("ldi %3,1")
A("add %9,%3")
A("adc %10,%13")
A("ldi %3,1")
A("add %9,%3")
A("adc %10,%13")
A("adc %11,%13") // x++
L("14")
@ -1874,25 +1874,25 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
/**
* Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
* Let a circle be tangent to both previous and current path line segments, where the junction
* deviation is defined as the distance from the junction to the closest edge of the circle,
* colinear with the circle center. The circular segment joining the two paths represents the
* Let a circle be tangent to both previous and current path line segments, where the junction
* deviation is defined as the distance from the junction to the closest edge of the circle,
* colinear with the circle center. The circular segment joining the two paths represents the
* path of centripetal acceleration. Solve for max velocity based on max acceleration about the
* radius of the circle, defined indirectly by junction deviation. This may be also viewed as
* path width or max_jerk in the previous Grbl version. This approach does not actually deviate
* radius of the circle, defined indirectly by junction deviation. This may be also viewed as
* path width or max_jerk in the previous Grbl version. This approach does not actually deviate
* from path, but used as a robust way to compute cornering speeds, as it takes into account the
* nonlinearities of both the junction angle and junction velocity.
*
* NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
* NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
* mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact
* stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here
* is exactly the same. Instead of motioning all the way to junction point, the machine will
* just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
* a continuous mode path, but ARM-based microcontrollers most certainly do.
*
* a continuous mode path, but ARM-based microcontrollers most certainly do.
*
* NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be
* changed dynamically during operation nor can the line move geometry. This must be kept in
* memory in the event of a feedrate override changing the nominal speeds of blocks, which can
* memory in the event of a feedrate override changing the nominal speeds of blocks, which can
* change the overall maximum entry speed conditions of all blocks.
*/
@ -2020,7 +2020,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
}
else
vmax_junction = safe_speed;
previous_safe_speed = safe_speed;
#endif // Classic Jerk Limiting
@ -2084,7 +2084,7 @@ void Planner::buffer_sync_block() {
block->nominal_speed =
block->entry_speed =
block->max_entry_speed =
block->millimeters =
block->millimeters =
block->acceleration = 0;
block->step_event_count =

Loading…
Cancel
Save