|
|
@ -56,6 +56,10 @@ |
|
|
|
* |
|
|
|
* IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) |
|
|
|
* |
|
|
|
* -- |
|
|
|
* |
|
|
|
* The fast inverse function needed for Bézier interpolation for AVR |
|
|
|
* was designed, written and tested by Eduardo José Tagle on April/2018 |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "planner.h" |
|
|
@ -215,6 +219,523 @@ void Planner::init() { |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(BEZIER_JERK_CONTROL) |
|
|
|
|
|
|
|
#ifdef __AVR__ |
|
|
|
// This routine, for AVR, returns 0x1000000 / d, but trying to get the inverse as
|
|
|
|
// fast as possible. A fast converging iterative Newton-Raphson method is able to
|
|
|
|
// reach full precision in just 1 iteration, and takes 211 cycles (worst case, mean
|
|
|
|
// case is less, up to 30 cycles for small divisors), instead of the 500 cycles a
|
|
|
|
// normal division would take.
|
|
|
|
//
|
|
|
|
// Inspired by the following page,
|
|
|
|
// https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
|
|
|
|
//
|
|
|
|
// Suppose we want to calculate
|
|
|
|
// floor(2 ^ k / B) where B is a positive integer
|
|
|
|
// Then
|
|
|
|
// B must be <= 2^k, otherwise, the quotient is 0.
|
|
|
|
//
|
|
|
|
// The Newton - Raphson iteration for x = B / 2 ^ k yields:
|
|
|
|
// q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
|
|
|
|
//
|
|
|
|
// We can rearrange it as:
|
|
|
|
// q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
|
|
|
|
//
|
|
|
|
// Each iteration of this kind requires only integer multiplications
|
|
|
|
// and bit shifts.
|
|
|
|
// Does it converge to floor(2 ^ k / B) ?: Not necessarily, but, in
|
|
|
|
// the worst case, it eventually alternates between floor(2 ^ k / B)
|
|
|
|
// and ceiling(2 ^ k / B)).
|
|
|
|
// So we can use some not-so-clever test to see if we are in this
|
|
|
|
// case, and extract floor(2 ^ k / B).
|
|
|
|
// Lastly, a simple but important optimization for this approach is to
|
|
|
|
// truncate multiplications (i.e.calculate only the higher bits of the
|
|
|
|
// product) in the early iterations of the Newton - Raphson method.The
|
|
|
|
// reason to do so, is that the results of the early iterations are far
|
|
|
|
// from the quotient, and it doesn't matter to perform them inaccurately.
|
|
|
|
// Finally, we should pick a good starting value for x. Knowing how many
|
|
|
|
// digits the divisor has, we can estimate it:
|
|
|
|
//
|
|
|
|
// 2^k / x = 2 ^ log2(2^k / x)
|
|
|
|
// 2^k / x = 2 ^(log2(2^k)-log2(x))
|
|
|
|
// 2^k / x = 2 ^(k*log2(2)-log2(x))
|
|
|
|
// 2^k / x = 2 ^ (k-log2(x))
|
|
|
|
// 2^k / x >= 2 ^ (k-floor(log2(x)))
|
|
|
|
// floor(log2(x)) simply is the index of the most significant bit set.
|
|
|
|
//
|
|
|
|
// If we could improve this estimation even further, then the number of
|
|
|
|
// iterations can be dropped quite a bit, thus saving valuable execution time.
|
|
|
|
// The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
|
|
|
|
// Research, Silicon Valley,August 26, 2008, that is available at
|
|
|
|
// https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
|
|
|
|
// suggests , for its integer division algorithm, that using a table to supply the
|
|
|
|
// first 8 bits of precision, and due to the quadratic convergence nature of the
|
|
|
|
// Newton-Raphon iteration, then just 2 iterations should be enough to get
|
|
|
|
// maximum precision of the division.
|
|
|
|
// If we precompute values of inverses for small denominator values, then
|
|
|
|
// just one Newton-Raphson iteration is enough to reach full precision
|
|
|
|
// We will use the top 9 bits of the denominator as index.
|
|
|
|
//
|
|
|
|
// The AVR assembly function is implementing the following C code, included
|
|
|
|
// here as reference:
|
|
|
|
//
|
|
|
|
// uint32_t get_period_inverse(uint32_t d) {
|
|
|
|
// static const uint8_t inv_tab[256] = {
|
|
|
|
// 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
|
|
|
|
// 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
|
|
|
|
// 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
|
|
|
|
// 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
|
|
|
|
// 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
|
|
|
|
// 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
|
|
|
|
// 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
|
|
|
|
// 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
|
|
|
|
// 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
|
|
|
|
// 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
|
|
|
|
// 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
|
|
|
|
// 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
|
|
|
|
// 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
|
|
|
|
// 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
|
|
|
|
// 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
|
|
|
|
// 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
|
|
|
|
// };
|
|
|
|
//
|
|
|
|
// // For small denominators, it is cheaper to directly store the result,
|
|
|
|
// // because those denominators would require 2 Newton-Raphson iterations
|
|
|
|
// // to converge to the required result precision. For bigger ones, just
|
|
|
|
// // ONE Newton-Raphson iteration is enough to get maximum precision!
|
|
|
|
// static const uint32_t small_inv_tab[111] PROGMEM = {
|
|
|
|
// 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
|
|
|
|
// 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
|
|
|
|
// 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
|
|
|
|
// 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
|
|
|
|
// 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
|
|
|
|
// 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
|
|
|
|
// 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
|
|
|
|
// };
|
|
|
|
//
|
|
|
|
// // For small divisors, it is best to directly retrieve the results
|
|
|
|
// if (d <= 110)
|
|
|
|
// return pgm_read_dword(&small_inv_tab[d]);
|
|
|
|
//
|
|
|
|
// // Compute initial estimation of 0x1000000/x -
|
|
|
|
// // Get most significant bit set on divider
|
|
|
|
// uint8_t idx = 0;
|
|
|
|
// uint32_t nr = d;
|
|
|
|
// if (!(nr & 0xff0000)) {
|
|
|
|
// nr <<= 8;
|
|
|
|
// idx += 8;
|
|
|
|
// if (!(nr & 0xff0000)) {
|
|
|
|
// nr <<= 8;
|
|
|
|
// idx += 8;
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
// if (!(nr & 0xf00000)) {
|
|
|
|
// nr <<= 4;
|
|
|
|
// idx += 4;
|
|
|
|
// }
|
|
|
|
// if (!(nr & 0xc00000)) {
|
|
|
|
// nr <<= 2;
|
|
|
|
// idx += 2;
|
|
|
|
// }
|
|
|
|
// if (!(nr & 0x800000)) {
|
|
|
|
// nr <<= 1;
|
|
|
|
// idx += 1;
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
|
|
|
|
// uint32_t tidx = nr >> 15; // top 9 bits. bit8 is always set
|
|
|
|
// uint32_t ie = inv_tab[tidx & 0xFF] + 256; // Get the table value. bit9 is always set
|
|
|
|
// uint32_t x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
|
|
|
|
//
|
|
|
|
// // Now, refine estimation by newton-raphson. 1 iteration is enough
|
|
|
|
// x = uint32_t((x * uint64_t((1 << 25) - x * d)) >> 24);
|
|
|
|
//
|
|
|
|
// // Estimate remainder
|
|
|
|
// uint32_t r = (1 << 24) - x * d;
|
|
|
|
//
|
|
|
|
// // Check if we must adjust result
|
|
|
|
// if (r >= d) x++;
|
|
|
|
//
|
|
|
|
// // x holds the proper estimation
|
|
|
|
// return uint32_t(x);
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
static uint32_t get_period_inverse(uint32_t d) { |
|
|
|
|
|
|
|
static const uint8_t inv_tab[256] PROGMEM = { |
|
|
|
255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227, |
|
|
|
225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200, |
|
|
|
199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176, |
|
|
|
175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154, |
|
|
|
153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135, |
|
|
|
134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117, |
|
|
|
116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101, |
|
|
|
100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86, |
|
|
|
85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72, |
|
|
|
71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59, |
|
|
|
59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48, |
|
|
|
47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37, |
|
|
|
36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27, |
|
|
|
26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17, |
|
|
|
17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8, |
|
|
|
8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0 |
|
|
|
}; |
|
|
|
|
|
|
|
// For small denominators, it is cheaper to directly store the result.
|
|
|
|
// For bigger ones, just ONE Newton-Raphson iteration is enough to get
|
|
|
|
// maximum precision we need
|
|
|
|
static const uint32_t small_inv_tab[111] PROGMEM = { |
|
|
|
16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481, |
|
|
|
1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200, |
|
|
|
524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962, |
|
|
|
349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305, |
|
|
|
262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369, |
|
|
|
209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602, |
|
|
|
174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520 |
|
|
|
}; |
|
|
|
|
|
|
|
// For small divisors, it is best to directly retrieve the results
|
|
|
|
if (d <= 110) |
|
|
|
return pgm_read_dword(&small_inv_tab[d]); |
|
|
|
|
|
|
|
register uint8_t r8 = d & 0xFF; |
|
|
|
register uint8_t r9 = (d >> 8) & 0xFF; |
|
|
|
register uint8_t r10 = (d >> 16) & 0xFF; |
|
|
|
register uint8_t r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18; |
|
|
|
register const uint8_t* ptab = inv_tab; |
|
|
|
|
|
|
|
__asm__ __volatile__( |
|
|
|
/* %8:%7:%6 = interval*/ |
|
|
|
/* r31:r30: MUST be those registers, and they must point to the inv_tab */ |
|
|
|
|
|
|
|
" clr %13" "\n\t" /* %13 = 0 */ |
|
|
|
|
|
|
|
/* Now we must compute */ |
|
|
|
/* result = 0xFFFFFF / d */ |
|
|
|
/* %8:%7:%6 = interval*/ |
|
|
|
/* %16:%15:%14 = nr */ |
|
|
|
/* %13 = 0*/ |
|
|
|
|
|
|
|
/* A plain division of 24x24 bits should take 388 cycles to complete. We will */ |
|
|
|
/* use Newton-Raphson for the calculation, and will strive to get way less cycles*/ |
|
|
|
/* for the same result - Using C division, it takes 500cycles to complete .*/ |
|
|
|
|
|
|
|
" clr %3" "\n\t" /* idx = 0 */ |
|
|
|
" mov %14,%6" "\n\t" |
|
|
|
" mov %15,%7" "\n\t" |
|
|
|
" mov %16,%8" "\n\t" /* nr = interval */ |
|
|
|
" tst %16" "\n\t" /* nr & 0xFF0000 == 0 ? */ |
|
|
|
" brne 2f" "\n\t" /* No, skip this */ |
|
|
|
" mov %16,%15" "\n\t" |
|
|
|
" mov %15,%14" "\n\t" /* nr <<= 8, %14 not needed */ |
|
|
|
" subi %3,-8" "\n\t" /* idx += 8 */ |
|
|
|
" tst %16" "\n\t" /* nr & 0xFF0000 == 0 ? */ |
|
|
|
" brne 2f" "\n\t" /* No, skip this */ |
|
|
|
" mov %16,%15" "\n\t" /* nr <<= 8, %14 not needed */ |
|
|
|
" clr %15" "\n\t" /* We clear %14 */ |
|
|
|
" subi %3,-8" "\n\t" /* idx += 8 */ |
|
|
|
|
|
|
|
/* here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0 */ |
|
|
|
"2:" "\n\t" |
|
|
|
" cpi %16,0x10" "\n\t" /* (nr & 0xf00000) == 0 ? */ |
|
|
|
" brcc 3f" "\n\t" /* No, skip this */ |
|
|
|
" swap %15" "\n\t" /* Swap nibbles */ |
|
|
|
" swap %16" "\n\t" /* Swap nibbles. Low nibble is 0 */ |
|
|
|
" mov %14, %15" "\n\t" |
|
|
|
" andi %14,0x0f" "\n\t" /* Isolate low nibble */ |
|
|
|
" andi %15,0xf0" "\n\t" /* Keep proper nibble in %15 */ |
|
|
|
" or %16, %14" "\n\t" /* %16:%15 <<= 4 */ |
|
|
|
" subi %3,-4" "\n\t" /* idx += 4 */ |
|
|
|
|
|
|
|
"3:" "\n\t" |
|
|
|
" cpi %16,0x40" "\n\t" /* (nr & 0xc00000) == 0 ? */ |
|
|
|
" brcc 4f" "\n\t" /* No, skip this*/ |
|
|
|
" add %15,%15" "\n\t" |
|
|
|
" adc %16,%16" "\n\t" |
|
|
|
" add %15,%15" "\n\t" |
|
|
|
" adc %16,%16" "\n\t" /* %16:%15 <<= 2 */ |
|
|
|
" subi %3,-2" "\n\t" /* idx += 2 */ |
|
|
|
|
|
|
|
"4:" "\n\t" |
|
|
|
" cpi %16,0x80" "\n\t" /* (nr & 0x800000) == 0 ? */ |
|
|
|
" brcc 5f" "\n\t" /* No, skip this */ |
|
|
|
" add %15,%15" "\n\t" |
|
|
|
" adc %16,%16" "\n\t" /* %16:%15 <<= 1 */ |
|
|
|
" inc %3" "\n\t" /* idx += 1 */ |
|
|
|
|
|
|
|
/* Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure*/ |
|
|
|
/* we have at least 9 MSBits available to enter the initial estimation table*/ |
|
|
|
"5:" "\n\t" |
|
|
|
" add %15,%15" "\n\t" |
|
|
|
" adc %16,%16" "\n\t" /* %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)*/ |
|
|
|
" add r30,%16" "\n\t" /* Only use top 8 bits */ |
|
|
|
" adc r31,%13" "\n\t" /* r31:r30 = inv_tab + (tidx) */ |
|
|
|
" lpm %14, Z" "\n\t" /* %14 = inv_tab[tidx] */ |
|
|
|
" ldi %15, 1" "\n\t" /* %15 = 1 %15:%14 = inv_tab[tidx] + 256 */ |
|
|
|
|
|
|
|
/* We must scale the approximation to the proper place*/ |
|
|
|
" clr %16" "\n\t" /* %16 will always be 0 here */ |
|
|
|
" subi %3,8" "\n\t" /* idx == 8 ? */ |
|
|
|
" breq 6f" "\n\t" /* yes, no need to scale*/ |
|
|
|
" brcs 7f" "\n\t" /* If C=1, means idx < 8, result was negative!*/ |
|
|
|
|
|
|
|
/* idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]*/ |
|
|
|
" sbrs %3,0" "\n\t" /* shift by 1bit position?*/ |
|
|
|
" rjmp 8f" "\n\t" /* No*/ |
|
|
|
" add %14,%14" "\n\t" |
|
|
|
" adc %15,%15" "\n\t" /* %15:16 <<= 1*/ |
|
|
|
"8:" "\n\t" |
|
|
|
" sbrs %3,1" "\n\t" /* shift by 2bit position?*/ |
|
|
|
" rjmp 9f" "\n\t" /* No*/ |
|
|
|
" add %14,%14" "\n\t" |
|
|
|
" adc %15,%15" "\n\t" |
|
|
|
" add %14,%14" "\n\t" |
|
|
|
" adc %15,%15" "\n\t" /* %15:16 <<= 1*/ |
|
|
|
"9:" "\n\t" |
|
|
|
" sbrs %3,2" "\n\t" /* shift by 4bits position?*/ |
|
|
|
" rjmp 16f" "\n\t" /* No*/ |
|
|
|
" swap %15" "\n\t" /* Swap nibbles. lo nibble of %15 will always be 0*/ |
|
|
|
" swap %14" "\n\t" /* Swap nibbles*/ |
|
|
|
" mov %12,%14" "\n\t" |
|
|
|
" andi %12,0x0f" "\n\t" /* isolate low nibble*/ |
|
|
|
" andi %14,0xf0" "\n\t" /* and clear it*/ |
|
|
|
" or %15,%12" "\n\t" /* %15:%16 <<= 4*/ |
|
|
|
"16:" "\n\t" |
|
|
|
" sbrs %3,3" "\n\t" /* shift by 8bits position?*/ |
|
|
|
" rjmp 6f" "\n\t" /* No, we are done */ |
|
|
|
" mov %16,%15" "\n\t" |
|
|
|
" mov %15,%14" "\n\t" |
|
|
|
" clr %14" "\n\t" |
|
|
|
" jmp 6f" "\n\t" |
|
|
|
|
|
|
|
/* idx < 8, now %3 = idx - 8. Get the count of bits */ |
|
|
|
"7:" "\n\t" |
|
|
|
" neg %3" "\n\t" /* %3 = -idx = count of bits to move right. idx range:[1...8]*/ |
|
|
|
" sbrs %3,0" "\n\t" /* shift by 1 bit position ?*/ |
|
|
|
" rjmp 10f" "\n\t" /* No, skip it*/ |
|
|
|
" asr %15" "\n\t" /* (bit7 is always 0 here)*/ |
|
|
|
" ror %14" "\n\t" |
|
|
|
"10:" "\n\t" |
|
|
|
" sbrs %3,1" "\n\t" /* shift by 2 bit position ?*/ |
|
|
|
" rjmp 11f" "\n\t" /* No, skip it*/ |
|
|
|
" asr %15" "\n\t" /* (bit7 is always 0 here)*/ |
|
|
|
" ror %14" "\n\t" |
|
|
|
" asr %15" "\n\t" /* (bit7 is always 0 here)*/ |
|
|
|
" ror %14" "\n\t" |
|
|
|
"11:" "\n\t" |
|
|
|
" sbrs %3,2" "\n\t" /* shift by 4 bit position ?*/ |
|
|
|
" rjmp 12f" "\n\t" /* No, skip it*/ |
|
|
|
" swap %15" "\n\t" /* Swap nibbles*/ |
|
|
|
" andi %14, 0xf0" "\n\t" /* Lose the lowest nibble*/ |
|
|
|
" swap %14" "\n\t" /* Swap nibbles. Upper nibble is 0*/ |
|
|
|
" or %14,%15" "\n\t" /* Pass nibble from upper byte*/ |
|
|
|
" andi %15, 0x0f" "\n\t" /* And get rid of that nibble*/ |
|
|
|
"12:" "\n\t" |
|
|
|
" sbrs %3,3" "\n\t" /* shift by 8 bit position ?*/ |
|
|
|
" rjmp 6f" "\n\t" /* No, skip it*/ |
|
|
|
" mov %14,%15" "\n\t" |
|
|
|
" clr %15" "\n\t" |
|
|
|
"6:" "\n\t" /* %16:%15:%14 = initial estimation of 0x1000000 / d*/ |
|
|
|
|
|
|
|
/* Now, we must refine the estimation present on %16:%15:%14 using 1 iteration*/ |
|
|
|
/* of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough*/ |
|
|
|
/* to get more than 18bits of precision (the initial table lookup gives 9 bits of*/ |
|
|
|
/* precision to start from). 18bits of precision is all what is needed here for result */ |
|
|
|
|
|
|
|
/* %8:%7:%6 = d = interval*/ |
|
|
|
/* %16:%15:%14 = x = initial estimation of 0x1000000 / d*/ |
|
|
|
/* %13 = 0*/ |
|
|
|
/* %3:%2:%1:%0 = working accumulator*/ |
|
|
|
|
|
|
|
/* Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive*/ |
|
|
|
" clr %0" "\n\t" |
|
|
|
" clr %1" "\n\t" |
|
|
|
" clr %2" "\n\t" |
|
|
|
" ldi %3,2" "\n\t" /* %3:%2:%1:%0 = 0x2000000*/ |
|
|
|
" mul %6,%14" "\n\t" /* r1:r0 = LO(d) * LO(x)*/ |
|
|
|
" sub %0,r0" "\n\t" |
|
|
|
" sbc %1,r1" "\n\t" |
|
|
|
" sbc %2,%13" "\n\t" |
|
|
|
" sbc %3,%13" "\n\t" /* %3:%2:%1:%0 -= LO(d) * LO(x)*/ |
|
|
|
" mul %7,%14" "\n\t" /* r1:r0 = MI(d) * LO(x)*/ |
|
|
|
" sub %1,r0" "\n\t" |
|
|
|
" sbc %2,r1" "\n\t" |
|
|
|
" sbc %3,%13" "\n\t" /* %3:%2:%1:%0 -= MI(d) * LO(x) << 8*/ |
|
|
|
" mul %8,%14" "\n\t" /* r1:r0 = HI(d) * LO(x)*/ |
|
|
|
" sub %2,r0" "\n\t" |
|
|
|
" sbc %3,r1" "\n\t" /* %3:%2:%1:%0 -= MIL(d) * LO(x) << 16*/ |
|
|
|
" mul %6,%15" "\n\t" /* r1:r0 = LO(d) * MI(x)*/ |
|
|
|
" sub %1,r0" "\n\t" |
|
|
|
" sbc %2,r1" "\n\t" |
|
|
|
" sbc %3,%13" "\n\t" /* %3:%2:%1:%0 -= LO(d) * MI(x) << 8*/ |
|
|
|
" mul %7,%15" "\n\t" /* r1:r0 = MI(d) * MI(x)*/ |
|
|
|
" sub %2,r0" "\n\t" |
|
|
|
" sbc %3,r1" "\n\t" /* %3:%2:%1:%0 -= MI(d) * MI(x) << 16*/ |
|
|
|
" mul %8,%15" "\n\t" /* r1:r0 = HI(d) * MI(x)*/ |
|
|
|
" sub %3,r0" "\n\t" /* %3:%2:%1:%0 -= MIL(d) * MI(x) << 24*/ |
|
|
|
" mul %6,%16" "\n\t" /* r1:r0 = LO(d) * HI(x)*/ |
|
|
|
" sub %2,r0" "\n\t" |
|
|
|
" sbc %3,r1" "\n\t" /* %3:%2:%1:%0 -= LO(d) * HI(x) << 16*/ |
|
|
|
" mul %7,%16" "\n\t" /* r1:r0 = MI(d) * HI(x)*/ |
|
|
|
" sub %3,r0" "\n\t" /* %3:%2:%1:%0 -= MI(d) * HI(x) << 24*/ |
|
|
|
/* %3:%2:%1:%0 = (1<<25) - x*d [169]*/ |
|
|
|
|
|
|
|
/* We need to multiply that result by x, and we are only interested in the top 24bits of that multiply*/ |
|
|
|
|
|
|
|
/* %16:%15:%14 = x = initial estimation of 0x1000000 / d*/ |
|
|
|
/* %3:%2:%1:%0 = (1<<25) - x*d = acc*/ |
|
|
|
/* %13 = 0 */ |
|
|
|
|
|
|
|
/* result = %11:%10:%9:%5:%4*/ |
|
|
|
" mul %14,%0" "\n\t" /* r1:r0 = LO(x) * LO(acc)*/ |
|
|
|
" mov %4,r1" "\n\t" |
|
|
|
" clr %5" "\n\t" |
|
|
|
" clr %9" "\n\t" |
|
|
|
" clr %10" "\n\t" |
|
|
|
" clr %11" "\n\t" /* %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8*/ |
|
|
|
" mul %15,%0" "\n\t" /* r1:r0 = MI(x) * LO(acc)*/ |
|
|
|
" add %4,r0" "\n\t" |
|
|
|
" adc %5,r1" "\n\t" |
|
|
|
" adc %9,%13" "\n\t" |
|
|
|
" adc %10,%13" "\n\t" |
|
|
|
" adc %11,%13" "\n\t" /* %11:%10:%9:%5:%4 += MI(x) * LO(acc) */ |
|
|
|
" mul %16,%0" "\n\t" /* r1:r0 = HI(x) * LO(acc)*/ |
|
|
|
" add %5,r0" "\n\t" |
|
|
|
" adc %9,r1" "\n\t" |
|
|
|
" adc %10,%13" "\n\t" |
|
|
|
" adc %11,%13" "\n\t" /* %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8*/ |
|
|
|
|
|
|
|
" mul %14,%1" "\n\t" /* r1:r0 = LO(x) * MIL(acc)*/ |
|
|
|
" add %4,r0" "\n\t" |
|
|
|
" adc %5,r1" "\n\t" |
|
|
|
" adc %9,%13" "\n\t" |
|
|
|
" adc %10,%13" "\n\t" |
|
|
|
" adc %11,%13" "\n\t" /* %11:%10:%9:%5:%4 = LO(x) * MIL(acc)*/ |
|
|
|
" mul %15,%1" "\n\t" /* r1:r0 = MI(x) * MIL(acc)*/ |
|
|
|
" add %5,r0" "\n\t" |
|
|
|
" adc %9,r1" "\n\t" |
|
|
|
" adc %10,%13" "\n\t" |
|
|
|
" adc %11,%13" "\n\t" /* %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8*/ |
|
|
|
" mul %16,%1" "\n\t" /* r1:r0 = HI(x) * MIL(acc)*/ |
|
|
|
" add %9,r0" "\n\t" |
|
|
|
" adc %10,r1" "\n\t" |
|
|
|
" adc %11,%13" "\n\t" /* %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16*/ |
|
|
|
|
|
|
|
" mul %14,%2" "\n\t" /* r1:r0 = LO(x) * MIH(acc)*/ |
|
|
|
" add %5,r0" "\n\t" |
|
|
|
" adc %9,r1" "\n\t" |
|
|
|
" adc %10,%13" "\n\t" |
|
|
|
" adc %11,%13" "\n\t" /* %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8*/ |
|
|
|
" mul %15,%2" "\n\t" /* r1:r0 = MI(x) * MIH(acc)*/ |
|
|
|
" add %9,r0" "\n\t" |
|
|
|
" adc %10,r1" "\n\t" |
|
|
|
" adc %11,%13" "\n\t" /* %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16*/ |
|
|
|
" mul %16,%2" "\n\t" /* r1:r0 = HI(x) * MIH(acc)*/ |
|
|
|
" add %10,r0" "\n\t" |
|
|
|
" adc %11,r1" "\n\t" /* %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24*/ |
|
|
|
|
|
|
|
" mul %14,%3" "\n\t" /* r1:r0 = LO(x) * HI(acc)*/ |
|
|
|
" add %9,r0" "\n\t" |
|
|
|
" adc %10,r1" "\n\t" |
|
|
|
" adc %11,%13" "\n\t" /* %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16*/ |
|
|
|
" mul %15,%3" "\n\t" /* r1:r0 = MI(x) * HI(acc)*/ |
|
|
|
" add %10,r0" "\n\t" |
|
|
|
" adc %11,r1" "\n\t" /* %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24*/ |
|
|
|
" mul %16,%3" "\n\t" /* r1:r0 = HI(x) * HI(acc)*/ |
|
|
|
" add %11,r0" "\n\t" /* %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32*/ |
|
|
|
|
|
|
|
/* At this point, %11:%10:%9 contains the new estimation of x. */ |
|
|
|
|
|
|
|
/* Finally, we must correct the result. Estimate remainder as*/ |
|
|
|
/* (1<<24) - x*d*/ |
|
|
|
/* %11:%10:%9 = x*/ |
|
|
|
/* %8:%7:%6 = d = interval" "\n\t" /* */ |
|
|
|
" ldi %3,1" "\n\t" |
|
|
|
" clr %2" "\n\t" |
|
|
|
" clr %1" "\n\t" |
|
|
|
" clr %0" "\n\t" /* %3:%2:%1:%0 = 0x1000000*/ |
|
|
|
" mul %6,%9" "\n\t" /* r1:r0 = LO(d) * LO(x)*/ |
|
|
|
" sub %0,r0" "\n\t" |
|
|
|
" sbc %1,r1" "\n\t" |
|
|
|
" sbc %2,%13" "\n\t" |
|
|
|
" sbc %3,%13" "\n\t" /* %3:%2:%1:%0 -= LO(d) * LO(x)*/ |
|
|
|
" mul %7,%9" "\n\t" /* r1:r0 = MI(d) * LO(x)*/ |
|
|
|
" sub %1,r0" "\n\t" |
|
|
|
" sbc %2,r1" "\n\t" |
|
|
|
" sbc %3,%13" "\n\t" /* %3:%2:%1:%0 -= MI(d) * LO(x) << 8*/ |
|
|
|
" mul %8,%9" "\n\t" /* r1:r0 = HI(d) * LO(x)*/ |
|
|
|
" sub %2,r0" "\n\t" |
|
|
|
" sbc %3,r1" "\n\t" /* %3:%2:%1:%0 -= MIL(d) * LO(x) << 16*/ |
|
|
|
" mul %6,%10" "\n\t" /* r1:r0 = LO(d) * MI(x)*/ |
|
|
|
" sub %1,r0" "\n\t" |
|
|
|
" sbc %2,r1" "\n\t" |
|
|
|
" sbc %3,%13" "\n\t" /* %3:%2:%1:%0 -= LO(d) * MI(x) << 8*/ |
|
|
|
" mul %7,%10" "\n\t" /* r1:r0 = MI(d) * MI(x)*/ |
|
|
|
" sub %2,r0" "\n\t" |
|
|
|
" sbc %3,r1" "\n\t" /* %3:%2:%1:%0 -= MI(d) * MI(x) << 16*/ |
|
|
|
" mul %8,%10" "\n\t" /* r1:r0 = HI(d) * MI(x)*/ |
|
|
|
" sub %3,r0" "\n\t" /* %3:%2:%1:%0 -= MIL(d) * MI(x) << 24*/ |
|
|
|
" mul %6,%11" "\n\t" /* r1:r0 = LO(d) * HI(x)*/ |
|
|
|
" sub %2,r0" "\n\t" |
|
|
|
" sbc %3,r1" "\n\t" /* %3:%2:%1:%0 -= LO(d) * HI(x) << 16*/ |
|
|
|
" mul %7,%11" "\n\t" /* r1:r0 = MI(d) * HI(x)*/ |
|
|
|
" sub %3,r0" "\n\t" /* %3:%2:%1:%0 -= MI(d) * HI(x) << 24*/ |
|
|
|
/* %3:%2:%1:%0 = r = (1<<24) - x*d*/ |
|
|
|
/* %8:%7:%6 = d = interval */ |
|
|
|
|
|
|
|
/* Perform the final correction*/ |
|
|
|
" sub %0,%6" "\n\t" |
|
|
|
" sbc %1,%7" "\n\t" |
|
|
|
" sbc %2,%8" "\n\t" /* r -= d*/ |
|
|
|
" brcs 14f" "\n\t" /* if ( r >= d) */ |
|
|
|
|
|
|
|
/* %11:%10:%9 = x */ |
|
|
|
" ldi %3,1" "\n\t" |
|
|
|
" add %9,%3" "\n\t" |
|
|
|
" adc %10,%13" "\n\t" |
|
|
|
" adc %11,%13" "\n\t" /* x++*/ |
|
|
|
"14:" "\n\t" |
|
|
|
|
|
|
|
/* Estimation is done. %11:%10:%9 = x */ |
|
|
|
" clr __zero_reg__" "\n\t" /* Make C runtime happy */ |
|
|
|
/* [211 cycles total]*/ |
|
|
|
: "=r" (r2), |
|
|
|
"=r" (r3), |
|
|
|
"=r" (r4), |
|
|
|
"=d" (r5), |
|
|
|
"=r" (r6), |
|
|
|
"=r" (r7), |
|
|
|
"+r" (r8), |
|
|
|
"+r" (r9), |
|
|
|
"+r" (r10), |
|
|
|
"=d" (r11), |
|
|
|
"=r" (r12), |
|
|
|
"=r" (r13), |
|
|
|
"=d" (r14), |
|
|
|
"=d" (r15), |
|
|
|
"=d" (r16), |
|
|
|
"=d" (r17), |
|
|
|
"=d" (r18), |
|
|
|
"+z" (ptab) |
|
|
|
: |
|
|
|
: "r0", "r1", "cc" |
|
|
|
); |
|
|
|
|
|
|
|
// Return the result
|
|
|
|
return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16); |
|
|
|
} |
|
|
|
#else |
|
|
|
// All the other 32 CPUs can easily perform the inverse using hardware division,
|
|
|
|
// so we don´t need to reduce precision or to use assembly language at all.
|
|
|
|
|
|
|
|
// This routine, for all the other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d
|
|
|
|
static FORCE_INLINE uint32_t get_period_inverse(uint32_t d) { |
|
|
|
return 0xFFFFFFFF / d; |
|
|
|
} |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#define MINIMAL_STEP_RATE 120 |
|
|
|
|
|
|
|
/**
|
|
|
@ -266,8 +787,13 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e |
|
|
|
|
|
|
|
#if ENABLED(BEZIER_JERK_CONTROL) |
|
|
|
// Jerk controlled speed requires to express speed versus time, NOT steps
|
|
|
|
int32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * HAL_STEPPER_TIMER_RATE, |
|
|
|
uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * HAL_STEPPER_TIMER_RATE, |
|
|
|
deceleration_time = ((float)(cruise_rate - final_rate) / accel) * HAL_STEPPER_TIMER_RATE; |
|
|
|
|
|
|
|
// And to offload calculations from the ISR, we also calculate the inverse of those times here
|
|
|
|
uint32_t acceleration_time_inverse = get_period_inverse(acceleration_time); |
|
|
|
uint32_t deceleration_time_inverse = get_period_inverse(deceleration_time); |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
|
|
@ -278,6 +804,8 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e |
|
|
|
#if ENABLED(BEZIER_JERK_CONTROL) |
|
|
|
block->acceleration_time = acceleration_time; |
|
|
|
block->deceleration_time = deceleration_time; |
|
|
|
block->acceleration_time_inverse = acceleration_time_inverse; |
|
|
|
block->deceleration_time_inverse = deceleration_time_inverse; |
|
|
|
block->cruise_rate = cruise_rate; |
|
|
|
#endif |
|
|
|
block->final_rate = final_rate; |
|
|
|