Browse Source

Improve Bilinear Grid

- Extrapolate properly for even numbered grid points
- Extrapolate using average, not median
- Improve bilinear grid report output
- Add debug output for bilinear extrapolation
- Add option to extrapolate from edge, not center
pull/1/head
Scott Lahteine 8 years ago
parent
commit
5100bdac81
  1. 119
      Marlin/Marlin_main.cpp

119
Marlin/Marlin_main.cpp

@ -2136,7 +2136,9 @@ static void clean_up_after_endstop_or_probe_move() {
#if ABL_PLANAR #if ABL_PLANAR
planner.bed_level_matrix.set_to_identity(); planner.bed_level_matrix.set_to_identity();
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
memset(bed_level_grid, 0, sizeof(bed_level_grid)); for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
bed_level_grid[x][y] = 1000.0;
#endif #endif
} }
@ -2148,44 +2150,125 @@ static void clean_up_after_endstop_or_probe_move() {
* Extrapolate a single point from its neighbors * Extrapolate a single point from its neighbors
*/ */
static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) { static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
if (bed_level_grid[x][y]) return; // Don't overwrite good values. #if ENABLED(DEBUG_LEVELING_FEATURE)
float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right. if (DEBUGGING(LEVELING)) {
b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back. SERIAL_ECHOPGM("Extrapolate [");
c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal. if (x < 10) SERIAL_CHAR(' ');
SERIAL_ECHO((int)x);
SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
SERIAL_CHAR(' ');
if (y < 10) SERIAL_CHAR(' ');
SERIAL_ECHO((int)y);
SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
SERIAL_CHAR(']');
}
#endif
if (bed_level_grid[x][y] < 999.0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
#endif
return; // Don't overwrite good values.
}
// Get X neighbors, Y neighbors, and XY neighbors
float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
// Treat far unprobed points as zero, near as equal to far
if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
// Take the average intstead of the median
bed_level_grid[x][y] = (a + b + c) / 3.0;
// Median is robust (ignores outliers). // Median is robust (ignores outliers).
bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c) // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
: ((c < b) ? b : (a < c) ? a : c); // : ((c < b) ? b : (a < c) ? a : c);
} }
#define EXTRAPOLATE_FROM_EDGE
#if ENABLED(EXTRAPOLATE_FROM_EDGE)
#if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
#define HALF_IN_X
#elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
#define HALF_IN_Y
#endif
#endif
/** /**
* Fill in the unprobed points (corners of circular print surface) * Fill in the unprobed points (corners of circular print surface)
* using linear extrapolation, away from the center. * using linear extrapolation, away from the center.
*/ */
static void extrapolate_unprobed_bed_level() { static void extrapolate_unprobed_bed_level() {
int half_x = (ABL_GRID_POINTS_X - 1) / 2, #ifdef HALF_IN_X
half_y = (ABL_GRID_POINTS_Y - 1) / 2; const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
for (uint8_t y = 0; y <= half_y; y++) { #else
for (uint8_t x = 0; x <= half_x; x++) { const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
if (x + y < 3) continue; ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0); xlen = ctrx1;
extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0); #endif
extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0); #ifdef HALF_IN_Y
} const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
#else
const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
ylen = ctry1;
#endif
for (uint8_t xo = 0; xo <= xlen; xo++)
for (uint8_t yo = 0; yo <= ylen; yo++) {
uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
#ifndef HALF_IN_X
uint8_t x1 = ctrx1 - xo;
#endif
#ifndef HALF_IN_Y
uint8_t y1 = ctry1 - yo;
#ifndef HALF_IN_X
extrapolate_one_point(x1, y1, +1, +1); // left-below + +
#endif
extrapolate_one_point(x2, y1, -1, +1); // right-below - +
#endif
#ifndef HALF_IN_X
extrapolate_one_point(x1, y2, +1, -1); // left-above + -
#endif
extrapolate_one_point(x2, y2, -1, -1); // right-above - -
} }
} }
/** /**
* Print calibration results for plotting or manual frame adjustment. * Print calibration results for plotting or manual frame adjustment.
*/ */
static void print_bed_level() { static void print_bed_level() {
SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
for (uint8_t x = 1; x < ABL_GRID_POINTS_X + 1; x++) {
SERIAL_PROTOCOLPGM(" ");
if (x < 10) SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL((int)x);
}
SERIAL_EOL;
for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) { for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
if (y < 9) SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL(y + 1);
for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) { for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOLCHAR(' ');
float offset = bed_level_grid[x][y];
if (offset < 999.0) {
if (offset > 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(offset, 2);
}
else
SERIAL_PROTOCOLPGM(" ====");
} }
SERIAL_EOL; SERIAL_EOL;
} }
SERIAL_EOL;
} }
#endif // AUTO_BED_LEVELING_BILINEAR #endif // AUTO_BED_LEVELING_BILINEAR

Loading…
Cancel
Save