Browse Source

Trim Adjustments for Delta Configurations

pull/1/head
Shane Francis 10 years ago
committed by Richard Wackerbarth
parent
commit
4c8330c15c
  1. 23
      Marlin/Marlin.h
  2. 56
      Marlin/Marlin_main.cpp

23
Marlin/Marlin.h

@ -260,14 +260,31 @@ extern float min_pos[3]; // axis[n].min_pos
extern float max_pos[3]; // axis[n].max_pos extern float max_pos[3]; // axis[n].max_pos
extern bool axis_known_position[3]; // axis[n].is_known extern bool axis_known_position[3]; // axis[n].is_known
#if ENABLED(DELTA) || ENABLED(SCARA)
void calculate_delta(float cartesian[3]);
#if ENABLED(DELTA) #if ENABLED(DELTA)
extern float delta[3]; extern float delta[3];
extern float endstop_adj[3]; // axis[n].endstop_adj extern float endstop_adj[3]; // axis[n].endstop_adj
extern float delta_radius; extern float delta_radius;
#ifndef DELTA_RADIUS_TRIM_TOWER_1
#define DELTA_RADIUS_TRIM_TOWER_1 0.0
#endif
#ifndef DELTA_RADIUS_TRIM_TOWER_2
#define DELTA_RADIUS_TRIM_TOWER_2 0.0
#endif
#ifndef DELTA_RADIUS_TRIM_TOWER_3
#define DELTA_RADIUS_TRIM_TOWER_3 0.0
#endif
extern float delta_diagonal_rod; extern float delta_diagonal_rod;
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_1
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#endif
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_2
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0
#endif
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_3
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0
#endif
extern float delta_segments_per_second; extern float delta_segments_per_second;
void calculate_delta(float cartesian[3]);
void recalc_delta_settings(float radius, float diagonal_rod); void recalc_delta_settings(float radius, float diagonal_rod);
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
extern int delta_grid_spacing[2]; extern int delta_grid_spacing[2];
@ -275,9 +292,9 @@ extern bool axis_known_position[3]; // axis[n].is_known
#endif #endif
#elif ENABLED(SCARA) #elif ENABLED(SCARA)
extern float axis_scaling[3]; // Build size scaling extern float axis_scaling[3]; // Build size scaling
void calculate_delta(float cartesian[3]);
void calculate_SCARA_forward_Transform(float f_scara[3]); void calculate_SCARA_forward_Transform(float f_scara[3]);
#endif #endif
#endif
#if ENABLED(Z_DUAL_ENDSTOPS) #if ENABLED(Z_DUAL_ENDSTOPS)
extern float z_endstop_adj; extern float z_endstop_adj;

56
Marlin/Marlin_main.cpp

@ -351,20 +351,31 @@ bool target_direction;
#endif #endif
#if ENABLED(DELTA) #if ENABLED(DELTA)
#define TOWER_1 X_AXIS
#define TOWER_2 Y_AXIS
#define TOWER_3 Z_AXIS
float delta[3] = { 0 }; float delta[3] = { 0 };
#define SIN_60 0.8660254037844386 #define SIN_60 0.8660254037844386
#define COS_60 0.5 #define COS_60 0.5
float endstop_adj[3] = { 0 }; float endstop_adj[3] = { 0 };
// these are the default values, can be overriden with M665 // these are the default values, can be overriden with M665
float delta_radius = DELTA_RADIUS; float delta_radius = DELTA_RADIUS;
float delta_tower1_x = -SIN_60 * delta_radius; // front left tower float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
float delta_tower1_y = -COS_60 * delta_radius; float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
float delta_tower2_x = SIN_60 * delta_radius; // front right tower float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
float delta_tower2_y = -COS_60 * delta_radius; float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
float delta_tower3_x = 0; // back middle tower float delta_tower3_x = 0; // back middle tower
float delta_tower3_y = delta_radius; float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
float delta_diagonal_rod = DELTA_DIAGONAL_ROD; float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
float delta_diagonal_rod_2 = sq(delta_diagonal_rod); float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
//float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
int delta_grid_spacing[2] = { 0, 0 }; int delta_grid_spacing[2] = { 0, 0 };
@ -4491,11 +4502,17 @@ inline void gcode_M206() {
* L = diagonal rod * L = diagonal rod
* R = delta radius * R = delta radius
* S = segments per second * S = segments per second
* A = Alpha (Tower 1) diagonal rod trim
* B = Beta (Tower 2) diagonal rod trim
* C = Gamma (Tower 3) diagonal rod trim
*/ */
inline void gcode_M665() { inline void gcode_M665() {
if (code_seen('L')) delta_diagonal_rod = code_value(); if (code_seen('L')) delta_diagonal_rod = code_value();
if (code_seen('R')) delta_radius = code_value(); if (code_seen('R')) delta_radius = code_value();
if (code_seen('S')) delta_segments_per_second = code_value(); if (code_seen('S')) delta_segments_per_second = code_value();
if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
recalc_delta_settings(delta_radius, delta_diagonal_rod); recalc_delta_settings(delta_radius, delta_diagonal_rod);
} }
/** /**
@ -6249,25 +6266,28 @@ void clamp_to_software_endstops(float target[3]) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
void recalc_delta_settings(float radius, float diagonal_rod) { void recalc_delta_settings(float radius, float diagonal_rod) {
delta_tower1_x = -SIN_60 * radius; // front left tower delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
delta_tower1_y = -COS_60 * radius; delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
delta_tower2_x = SIN_60 * radius; // front right tower delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
delta_tower2_y = -COS_60 * radius; delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
delta_tower3_x = 0.0; // back middle tower delta_tower3_x = 0.0; // back middle tower
delta_tower3_y = radius; delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
delta_diagonal_rod_2 = sq(diagonal_rod); delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
} }
void calculate_delta(float cartesian[3]) { void calculate_delta(float cartesian[3]) {
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
- sq(delta_tower1_x-cartesian[X_AXIS]) - sq(delta_tower1_x-cartesian[X_AXIS])
- sq(delta_tower1_y-cartesian[Y_AXIS]) - sq(delta_tower1_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS]; ) + cartesian[Z_AXIS];
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2 delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
- sq(delta_tower2_x-cartesian[X_AXIS]) - sq(delta_tower2_x-cartesian[X_AXIS])
- sq(delta_tower2_y-cartesian[Y_AXIS]) - sq(delta_tower2_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS]; ) + cartesian[Z_AXIS];
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2 delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
- sq(delta_tower3_x-cartesian[X_AXIS]) - sq(delta_tower3_x-cartesian[X_AXIS])
- sq(delta_tower3_y-cartesian[Y_AXIS]) - sq(delta_tower3_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS]; ) + cartesian[Z_AXIS];
@ -6276,9 +6296,9 @@ void clamp_to_software_endstops(float target[3]) {
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]); SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]); SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]); SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]); SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
*/ */
} }

Loading…
Cancel
Save