Scott Lahteine
6 years ago
1 changed files with 234 additions and 213 deletions
@ -1,250 +1,271 @@ |
|||
#ifdef __AVR__ |
|||
|
|||
#include "../../inc/MarlinConfigPre.h" |
|||
/**
|
|||
* get_pwm_timer |
|||
* Grabs timer information and registers of the provided pin |
|||
* returns Timer struct containing this information |
|||
* Used by set_pwm_frequency, set_pwm_duty |
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
#ifdef __AVR__ |
|||
|
|||
#include "../../inc/MarlinConfigPre.h" |
|||
|
|||
#if ENABLED(FAST_PWM_FAN) |
|||
|
|||
#include "HAL.h" |
|||
|
|||
struct Timer { |
|||
volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer
|
|||
volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer
|
|||
volatile uint16_t* ICRn; // max 1 ICR register per timer
|
|||
uint8_t n; // the timer number [0->5]
|
|||
uint8_t q; // the timer output [0->2] (A->C)
|
|||
}; |
|||
struct Timer { |
|||
volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer
|
|||
volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer
|
|||
volatile uint16_t* ICRn; // max 1 ICR register per timer
|
|||
uint8_t n; // the timer number [0->5]
|
|||
uint8_t q; // the timer output [0->2] (A->C)
|
|||
}; |
|||
|
|||
Timer get_pwm_timer(pin_t pin) { |
|||
uint8_t q = 0; |
|||
switch (digitalPinToTimer(pin)) { |
|||
// Protect reserved timers (TIMER0 & TIMER1)
|
|||
#ifdef TCCR0A |
|||
#if !AVR_AT90USB1286_FAMILY |
|||
case TIMER0A: |
|||
#endif |
|||
case TIMER0B: |
|||
#endif |
|||
#ifdef TCCR1A |
|||
case TIMER1A: case TIMER1B: |
|||
/**
|
|||
* get_pwm_timer |
|||
* Get the timer information and register of the provided pin. |
|||
* Return a Timer struct containing this information. |
|||
* Used by set_pwm_frequency, set_pwm_duty |
|||
*/ |
|||
Timer get_pwm_timer(const pin_t pin) { |
|||
uint8_t q = 0; |
|||
switch (digitalPinToTimer(pin)) { |
|||
// Protect reserved timers (TIMER0 & TIMER1)
|
|||
#ifdef TCCR0A |
|||
#if !AVR_AT90USB1286_FAMILY |
|||
case TIMER0A: |
|||
#endif |
|||
break; |
|||
#if defined(TCCR2) || defined(TCCR2A) |
|||
#ifdef TCCR2 |
|||
case TIMER2: { |
|||
case TIMER0B: |
|||
#endif |
|||
#ifdef TCCR1A |
|||
case TIMER1A: case TIMER1B: |
|||
#endif |
|||
break; |
|||
#if defined(TCCR2) || defined(TCCR2A) |
|||
#ifdef TCCR2 |
|||
case TIMER2: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR2, nullptr, nullptr}, |
|||
/*OCRnQ*/ { (uint16_t*)&OCR2, nullptr, nullptr}, |
|||
/*ICRn*/ nullptr, |
|||
/*n, q*/ 2, 0 |
|||
}; |
|||
} |
|||
#elif defined TCCR2A |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
case TIMER2A: break; // protect TIMER2A
|
|||
case TIMER2B: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, nullptr}, |
|||
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr}, |
|||
/*ICRn*/ nullptr, |
|||
/*n, q*/ 2, 1 |
|||
}; |
|||
return timer; |
|||
} |
|||
#else |
|||
case TIMER2B: ++q; |
|||
case TIMER2A: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR2, nullptr, nullptr}, |
|||
/*OCRnQ*/ { (uint16_t*)&OCR2, nullptr, nullptr}, |
|||
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, nullptr}, |
|||
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr}, |
|||
/*ICRn*/ nullptr, |
|||
/*n, q*/ 2, 0 |
|||
2, q |
|||
}; |
|||
return timer; |
|||
} |
|||
#elif defined TCCR2A |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
case TIMER2A: break; // protect TIMER2A
|
|||
case TIMER2B: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, nullptr}, |
|||
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr}, |
|||
/*ICRn*/ nullptr, |
|||
/*n, q*/ 2, 1 |
|||
}; |
|||
return timer; |
|||
} |
|||
#else |
|||
case TIMER2B: ++q; |
|||
case TIMER2A: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, nullptr}, |
|||
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr}, |
|||
/*ICRn*/ nullptr, |
|||
2, q |
|||
}; |
|||
return timer; |
|||
} |
|||
#endif |
|||
#endif |
|||
#endif |
|||
#ifdef TCCR3A |
|||
case TIMER3C: ++q; |
|||
case TIMER3B: ++q; |
|||
case TIMER3A: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR3A, &TCCR3B, &TCCR3C}, |
|||
/*OCRnQ*/ { &OCR3A, &OCR3B, &OCR3C}, |
|||
/*ICRn*/ &ICR3, |
|||
/*n, q*/ 3, q |
|||
}; |
|||
return timer; |
|||
} |
|||
#endif |
|||
#ifdef TCCR4A |
|||
case TIMER4C: ++q; |
|||
case TIMER4B: ++q; |
|||
case TIMER4A: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR4A, &TCCR4B, &TCCR4C}, |
|||
/*OCRnQ*/ { &OCR4A, &OCR4B, &OCR4C}, |
|||
/*ICRn*/ &ICR4, |
|||
/*n, q*/ 4, q |
|||
}; |
|||
return timer; |
|||
} |
|||
#endif |
|||
#ifdef TCCR5A |
|||
case TIMER5C: ++q; |
|||
case TIMER5B: ++q; |
|||
case TIMER5A: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR5A, &TCCR5B, &TCCR5C}, |
|||
/*OCRnQ*/ { &OCR5A, &OCR5B, &OCR5C }, |
|||
/*ICRn*/ &ICR5, |
|||
/*n, q*/ 5, q |
|||
}; |
|||
return timer; |
|||
} |
|||
#endif |
|||
} |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { nullptr, nullptr, nullptr}, |
|||
/*OCRnQ*/ { nullptr, nullptr, nullptr}, |
|||
/*ICRn*/ nullptr, |
|||
0, 0 |
|||
}; |
|||
return timer; |
|||
#endif |
|||
#ifdef TCCR3A |
|||
case TIMER3C: ++q; |
|||
case TIMER3B: ++q; |
|||
case TIMER3A: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR3A, &TCCR3B, &TCCR3C}, |
|||
/*OCRnQ*/ { &OCR3A, &OCR3B, &OCR3C}, |
|||
/*ICRn*/ &ICR3, |
|||
/*n, q*/ 3, q |
|||
}; |
|||
return timer; |
|||
} |
|||
#endif |
|||
#ifdef TCCR4A |
|||
case TIMER4C: ++q; |
|||
case TIMER4B: ++q; |
|||
case TIMER4A: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR4A, &TCCR4B, &TCCR4C}, |
|||
/*OCRnQ*/ { &OCR4A, &OCR4B, &OCR4C}, |
|||
/*ICRn*/ &ICR4, |
|||
/*n, q*/ 4, q |
|||
}; |
|||
return timer; |
|||
} |
|||
#endif |
|||
#ifdef TCCR5A |
|||
case TIMER5C: ++q; |
|||
case TIMER5B: ++q; |
|||
case TIMER5A: { |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { &TCCR5A, &TCCR5B, &TCCR5C}, |
|||
/*OCRnQ*/ { &OCR5A, &OCR5B, &OCR5C }, |
|||
/*ICRn*/ &ICR5, |
|||
/*n, q*/ 5, q |
|||
}; |
|||
return timer; |
|||
} |
|||
#endif |
|||
} |
|||
Timer timer = { |
|||
/*TCCRnQ*/ { nullptr, nullptr, nullptr}, |
|||
/*OCRnQ*/ { nullptr, nullptr, nullptr}, |
|||
/*ICRn*/ nullptr, |
|||
0, 0 |
|||
}; |
|||
return timer; |
|||
} |
|||
|
|||
void set_pwm_frequency(const pin_t pin, int f_desired) { |
|||
Timer timer = get_pwm_timer(pin); |
|||
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
|
|||
uint16_t size; |
|||
if (timer.n == 2) size = 255; else size = 65535; |
|||
void set_pwm_frequency(const pin_t pin, int f_desired) { |
|||
Timer timer = get_pwm_timer(pin); |
|||
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
|
|||
uint16_t size; |
|||
if (timer.n == 2) size = 255; else size = 65535; |
|||
|
|||
uint16_t res = 255; // resolution (TOP value)
|
|||
uint8_t j = 0; // prescaler index
|
|||
uint8_t wgm = 1; // waveform generation mode
|
|||
uint16_t res = 255; // resolution (TOP value)
|
|||
uint8_t j = 0; // prescaler index
|
|||
uint8_t wgm = 1; // waveform generation mode
|
|||
|
|||
// Calculating the prescaler and resolution to use to achieve closest frequency
|
|||
if (f_desired != 0) { |
|||
int f = (F_CPU) / (2 * 1024 * size) + 1; // Initialize frequency as lowest (non-zero) achievable
|
|||
uint16_t prescaler[] = { 0, 1, 8, /*TIMER2 ONLY*/32, 64, /*TIMER2 ONLY*/128, 256, 1024 }; |
|||
// Calculating the prescaler and resolution to use to achieve closest frequency
|
|||
if (f_desired != 0) { |
|||
int f = (F_CPU) / (2 * 1024 * size) + 1; // Initialize frequency as lowest (non-zero) achievable
|
|||
uint16_t prescaler[] = { 0, 1, 8, /*TIMER2 ONLY*/32, 64, /*TIMER2 ONLY*/128, 256, 1024 }; |
|||
|
|||
// loop over prescaler values
|
|||
for (uint8_t i = 1; i < 8; i++) { |
|||
uint16_t res_temp_fast = 255, res_temp_phase_correct = 255; |
|||
if (timer.n == 2) { |
|||
// No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
|
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired); |
|||
res_temp_fast = rtf - 1; |
|||
res_temp_phase_correct = rtf / 2; |
|||
#endif |
|||
} |
|||
else { |
|||
// Skip TIMER2 specific prescalers when not TIMER2
|
|||
if (i == 3 || i == 5) continue; |
|||
// loop over prescaler values
|
|||
for (uint8_t i = 1; i < 8; i++) { |
|||
uint16_t res_temp_fast = 255, res_temp_phase_correct = 255; |
|||
if (timer.n == 2) { |
|||
// No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
|
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired); |
|||
res_temp_fast = rtf - 1; |
|||
res_temp_phase_correct = rtf / 2; |
|||
} |
|||
#endif |
|||
} |
|||
else { |
|||
// Skip TIMER2 specific prescalers when not TIMER2
|
|||
if (i == 3 || i == 5) continue; |
|||
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired); |
|||
res_temp_fast = rtf - 1; |
|||
res_temp_phase_correct = rtf / 2; |
|||
} |
|||
|
|||
LIMIT(res_temp_fast, 1u, size); |
|||
LIMIT(res_temp_phase_correct, 1u, size); |
|||
// Calculate frequencies of test prescaler and resolution values
|
|||
const int f_temp_fast = (F_CPU) / (prescaler[i] * (1 + res_temp_fast)), |
|||
f_temp_phase_correct = (F_CPU) / (2 * prescaler[i] * res_temp_phase_correct), |
|||
f_diff = ABS(f - f_desired), |
|||
f_fast_diff = ABS(f_temp_fast - f_desired), |
|||
f_phase_diff = ABS(f_temp_phase_correct - f_desired); |
|||
|
|||
// If FAST values are closest to desired f
|
|||
if (f_fast_diff < f_diff && f_fast_diff <= f_phase_diff) { |
|||
// Remember this combination
|
|||
f = f_temp_fast; |
|||
res = res_temp_fast; |
|||
j = i; |
|||
// Set the Wave Generation Mode to FAST PWM
|
|||
if (timer.n == 2) { |
|||
wgm = ( |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
WGM2_FAST_PWM_OCR2A |
|||
#else |
|||
WGM2_FAST_PWM |
|||
#endif |
|||
); |
|||
} |
|||
else wgm = WGM_FAST_PWM_ICRn; |
|||
LIMIT(res_temp_fast, 1u, size); |
|||
LIMIT(res_temp_phase_correct, 1u, size); |
|||
// Calculate frequencies of test prescaler and resolution values
|
|||
const int f_temp_fast = (F_CPU) / (prescaler[i] * (1 + res_temp_fast)), |
|||
f_temp_phase_correct = (F_CPU) / (2 * prescaler[i] * res_temp_phase_correct), |
|||
f_diff = ABS(f - f_desired), |
|||
f_fast_diff = ABS(f_temp_fast - f_desired), |
|||
f_phase_diff = ABS(f_temp_phase_correct - f_desired); |
|||
|
|||
// If FAST values are closest to desired f
|
|||
if (f_fast_diff < f_diff && f_fast_diff <= f_phase_diff) { |
|||
// Remember this combination
|
|||
f = f_temp_fast; |
|||
res = res_temp_fast; |
|||
j = i; |
|||
// Set the Wave Generation Mode to FAST PWM
|
|||
if (timer.n == 2) { |
|||
wgm = ( |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
WGM2_FAST_PWM_OCR2A |
|||
#else |
|||
WGM2_FAST_PWM |
|||
#endif |
|||
); |
|||
} |
|||
// If PHASE CORRECT values are closes to desired f
|
|||
else if (f_phase_diff < f_diff) { |
|||
f = f_temp_phase_correct; |
|||
res = res_temp_phase_correct; |
|||
j = i; |
|||
// Set the Wave Generation Mode to PWM PHASE CORRECT
|
|||
if (timer.n == 2) { |
|||
wgm = ( |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
WGM2_PWM_PC_OCR2A |
|||
#else |
|||
WGM2_PWM_PC |
|||
#endif |
|||
); |
|||
} |
|||
else wgm = WGM_PWM_PC_ICRn; |
|||
else wgm = WGM_FAST_PWM_ICRn; |
|||
} |
|||
// If PHASE CORRECT values are closes to desired f
|
|||
else if (f_phase_diff < f_diff) { |
|||
f = f_temp_phase_correct; |
|||
res = res_temp_phase_correct; |
|||
j = i; |
|||
// Set the Wave Generation Mode to PWM PHASE CORRECT
|
|||
if (timer.n == 2) { |
|||
wgm = ( |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
WGM2_PWM_PC_OCR2A |
|||
#else |
|||
WGM2_PWM_PC |
|||
#endif |
|||
); |
|||
} |
|||
else wgm = WGM_PWM_PC_ICRn; |
|||
} |
|||
} |
|||
_SET_WGMnQ(timer.TCCRnQ, wgm); |
|||
_SET_CSn(timer.TCCRnQ, j); |
|||
|
|||
if (timer.n == 2) { |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
_SET_OCRnQ(timer.OCRnQ, 0, res); // Set OCR2A value (TOP) = res
|
|||
#endif |
|||
} |
|||
else |
|||
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
|
|||
} |
|||
_SET_WGMnQ(timer.TCCRnQ, wgm); |
|||
_SET_CSn(timer.TCCRnQ, j); |
|||
|
|||
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) { |
|||
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
|
|||
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
|
|||
if (v == 0) |
|||
digitalWrite(pin, invert); |
|||
else if (v == v_size) |
|||
digitalWrite(pin, !invert); |
|||
else { |
|||
Timer timer = get_pwm_timer(pin); |
|||
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
|
|||
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
|
|||
_SET_COMnQ(timer.TCCRnQ, (timer.q |
|||
#ifdef TCCR2 |
|||
+ (timer.q == 2) // COM20 is on bit 4 of TCCR2, thus requires q + 1 in the macro
|
|||
#endif |
|||
), COM_CLEAR_SET + invert |
|||
); |
|||
if (timer.n == 2) { |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
_SET_OCRnQ(timer.OCRnQ, 0, res); // Set OCR2A value (TOP) = res
|
|||
#endif |
|||
} |
|||
else |
|||
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
|
|||
} |
|||
|
|||
uint16_t top; |
|||
if (timer.n == 2) { // if TIMER2
|
|||
top = ( |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
*timer.OCRnQ[0] // top = OCR2A
|
|||
#else |
|||
255 // top = 0xFF (max)
|
|||
#endif |
|||
); |
|||
} |
|||
else |
|||
top = *timer.ICRn; // top = ICRn
|
|||
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) { |
|||
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
|
|||
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
|
|||
if (v == 0) |
|||
digitalWrite(pin, invert); |
|||
else if (v == v_size) |
|||
digitalWrite(pin, !invert); |
|||
else { |
|||
Timer timer = get_pwm_timer(pin); |
|||
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
|
|||
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
|
|||
_SET_COMnQ(timer.TCCRnQ, (timer.q |
|||
#ifdef TCCR2 |
|||
+ (timer.q == 2) // COM20 is on bit 4 of TCCR2, thus requires q + 1 in the macro
|
|||
#endif |
|||
), COM_CLEAR_SET + invert |
|||
); |
|||
|
|||
_SET_OCRnQ(timer.OCRnQ, timer.q, v * float(top / v_size)); // Scale 8/16-bit v to top value
|
|||
uint16_t top; |
|||
if (timer.n == 2) { // if TIMER2
|
|||
top = ( |
|||
#if ENABLED(USE_OCR2A_AS_TOP) |
|||
*timer.OCRnQ[0] // top = OCR2A
|
|||
#else |
|||
255 // top = 0xFF (max)
|
|||
#endif |
|||
); |
|||
} |
|||
else |
|||
top = *timer.ICRn; // top = ICRn
|
|||
|
|||
_SET_OCRnQ(timer.OCRnQ, timer.q, v * float(top / v_size)); // Scale 8/16-bit v to top value
|
|||
} |
|||
} |
|||
|
|||
#endif // FAST_PWM_FAN
|
|||
#endif // __AVR__
|
|||
|
Loading…
Reference in new issue