Browse Source
- Both TMC, L6470 and pin-driven drivers work. - All can be mixed and matched as needed.pull/1/head
domonoky
10 years ago
8 changed files with 1508 additions and 48 deletions
@ -0,0 +1,723 @@ |
|||
////////////////////////////////////////////////////////////
|
|||
//ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
|
|||
//LIBRARY Created by Adam Meyer of bildr Aug 18th 2012
|
|||
//Released as MIT license
|
|||
////////////////////////////////////////////////////////////
|
|||
|
|||
#include <Arduino.h> |
|||
#include "L6470.h" |
|||
#include <SPI.h> |
|||
|
|||
#define ENABLE_RESET_PIN 0 |
|||
#define K_VALUE 100 |
|||
|
|||
L6470::L6470(int SSPin){ |
|||
_SSPin = SSPin; |
|||
// Serial.begin(9600);
|
|||
} |
|||
|
|||
void L6470::init(int k_value){ |
|||
// This is the generic initialization function to set up the Arduino to
|
|||
// communicate with the dSPIN chip.
|
|||
|
|||
// set up the input/output pins for the application.
|
|||
pinMode(SLAVE_SELECT_PIN, OUTPUT); // The SPI peripheral REQUIRES the hardware SS pin-
|
|||
// pin 10- to be an output. This is in here just
|
|||
// in case some future user makes something other
|
|||
// than pin 10 the SS pin.
|
|||
|
|||
pinMode(_SSPin, OUTPUT); |
|||
digitalWrite(_SSPin, HIGH); |
|||
pinMode(MOSI, OUTPUT); |
|||
pinMode(MISO, INPUT); |
|||
pinMode(SCK, OUTPUT); |
|||
pinMode(BUSYN, INPUT); |
|||
#if (ENABLE_RESET_PIN == 1) |
|||
pinMode(RESET, OUTPUT); |
|||
// reset the dSPIN chip. This could also be accomplished by
|
|||
// calling the "L6470::ResetDev()" function after SPI is initialized.
|
|||
digitalWrite(RESET, HIGH); |
|||
delay(10); |
|||
digitalWrite(RESET, LOW); |
|||
delay(10); |
|||
digitalWrite(RESET, HIGH); |
|||
delay(10); |
|||
#endif |
|||
|
|||
|
|||
// initialize SPI for the dSPIN chip's needs:
|
|||
// most significant bit first,
|
|||
// SPI clock not to exceed 5MHz,
|
|||
// SPI_MODE3 (clock idle high, latch data on rising edge of clock)
|
|||
SPI.begin(); |
|||
SPI.setBitOrder(MSBFIRST); |
|||
SPI.setClockDivider(SPI_CLOCK_DIV16); // or 2, 8, 16, 32, 64
|
|||
SPI.setDataMode(SPI_MODE3); |
|||
|
|||
// First things first: let's check communications. The CONFIG register should
|
|||
// power up to 0x2E88, so we can use that to check the communications.
|
|||
if (GetParam(CONFIG) == 0x2E88){ |
|||
//Serial.println('good to go');
|
|||
} |
|||
else{ |
|||
//Serial.println('Comm issue');
|
|||
} |
|||
|
|||
#if (ENABLE_RESET_PIN == 0) |
|||
resetDev(); |
|||
#endif |
|||
// First, let's set the step mode register:
|
|||
// - SYNC_EN controls whether the BUSY/SYNC pin reflects the step
|
|||
// frequency or the BUSY status of the chip. We want it to be the BUSY
|
|||
// status.
|
|||
// - STEP_SEL_x is the microstepping rate- we'll go full step.
|
|||
// - SYNC_SEL_x is the ratio of (micro)steps to toggles on the
|
|||
// BUSY/SYNC pin (when that pin is used for SYNC). Make it 1:1, despite
|
|||
// not using that pin.
|
|||
//SetParam(STEP_MODE, !SYNC_EN | STEP_SEL_1 | SYNC_SEL_1);
|
|||
|
|||
|
|||
SetParam(KVAL_RUN, k_value); |
|||
SetParam(KVAL_ACC, k_value); |
|||
SetParam(KVAL_DEC, k_value); |
|||
SetParam(KVAL_HOLD, k_value); |
|||
|
|||
// Set up the CONFIG register as follows:
|
|||
// PWM frequency divisor = 1
|
|||
// PWM frequency multiplier = 2 (62.5kHz PWM frequency)
|
|||
// Slew rate is 290V/us
|
|||
// Do NOT shut down bridges on overcurrent
|
|||
// Disable motor voltage compensation
|
|||
// Hard stop on switch low
|
|||
// 16MHz internal oscillator, nothing on output
|
|||
SetParam(CONFIG, CONFIG_PWM_DIV_1 | CONFIG_PWM_MUL_2 | CONFIG_SR_290V_us| CONFIG_OC_SD_DISABLE | CONFIG_VS_COMP_DISABLE | CONFIG_SW_HARD_STOP | CONFIG_INT_16MHZ); |
|||
// Configure the RUN KVAL. This defines the duty cycle of the PWM of the bridges
|
|||
// during running. 0xFF means that they are essentially NOT PWMed during run; this
|
|||
// MAY result in more power being dissipated than you actually need for the task.
|
|||
// Setting this value too low may result in failure to turn.
|
|||
// There are ACC, DEC, and HOLD KVAL registers as well; you may need to play with
|
|||
// those values to get acceptable performance for a given application.
|
|||
//SetParam(KVAL_RUN, 0xFF);
|
|||
// Calling GetStatus() clears the UVLO bit in the status register, which is set by
|
|||
// default on power-up. The driver may not run without that bit cleared by this
|
|||
// read operation.
|
|||
getStatus(); |
|||
|
|||
hardStop(); //engage motors
|
|||
} |
|||
|
|||
boolean L6470::isBusy(){ |
|||
int status = getStatus(); |
|||
return !((status >> 1) & 0b1); |
|||
} |
|||
|
|||
void L6470::setMicroSteps(int microSteps){ |
|||
byte stepVal = 0; |
|||
|
|||
for(stepVal = 0; stepVal < 8; stepVal++){ |
|||
if(microSteps == 1) break; |
|||
microSteps = microSteps >> 1; |
|||
} |
|||
|
|||
SetParam(STEP_MODE, !SYNC_EN | stepVal | SYNC_SEL_1); |
|||
} |
|||
|
|||
void L6470::setThresholdSpeed(float thresholdSpeed){ |
|||
// Configure the FS_SPD register- this is the speed at which the driver ceases
|
|||
// microstepping and goes to full stepping. FSCalc() converts a value in steps/s
|
|||
// to a value suitable for this register; to disable full-step switching, you
|
|||
// can pass 0x3FF to this register.
|
|||
|
|||
if(thresholdSpeed == 0.0){ |
|||
SetParam(FS_SPD, 0x3FF); |
|||
} |
|||
else{ |
|||
SetParam(FS_SPD, FSCalc(thresholdSpeed)); |
|||
} |
|||
} |
|||
|
|||
|
|||
void L6470::setCurrent(int current){} |
|||
|
|||
|
|||
|
|||
void L6470::setMaxSpeed(int speed){ |
|||
// Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
|
|||
// second allowed. You'll want to mess around with your desired application to see
|
|||
// how far you can push it before the motor starts to slip. The ACTUAL parameter
|
|||
// passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
|
|||
// steps/s into an appropriate value for this function. Note that for any move or
|
|||
// goto type function where no speed is specified, this value will be used.
|
|||
SetParam(MAX_SPEED, MaxSpdCalc(speed)); |
|||
} |
|||
|
|||
|
|||
void L6470::setMinSpeed(int speed){ |
|||
// Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
|
|||
// second allowed. You'll want to mess around with your desired application to see
|
|||
// how far you can push it before the motor starts to slip. The ACTUAL parameter
|
|||
// passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
|
|||
// steps/s into an appropriate value for this function. Note that for any move or
|
|||
// goto type function where no speed is specified, this value will be used.
|
|||
SetParam(MIN_SPEED, MinSpdCalc(speed)); |
|||
} |
|||
|
|||
|
|||
|
|||
|
|||
void L6470::setAcc(float acceleration){ |
|||
// Configure the acceleration rate, in steps/tick/tick. There is also a DEC register;
|
|||
// both of them have a function (AccCalc() and DecCalc() respectively) that convert
|
|||
// from steps/s/s into the appropriate value for the register. Writing ACC to 0xfff
|
|||
// sets the acceleration and deceleration to 'infinite' (or as near as the driver can
|
|||
// manage). If ACC is set to 0xfff, DEC is ignored. To get infinite deceleration
|
|||
// without infinite acceleration, only hard stop will work.
|
|||
unsigned long accelerationBYTES = AccCalc(acceleration); |
|||
SetParam(ACC, accelerationBYTES); |
|||
} |
|||
|
|||
|
|||
void L6470::setDec(float deceleration){ |
|||
unsigned long decelerationBYTES = DecCalc(deceleration); |
|||
SetParam(DEC, decelerationBYTES); |
|||
} |
|||
|
|||
|
|||
long L6470::getPos(){ |
|||
unsigned long position = GetParam(ABS_POS); |
|||
return convert(position); |
|||
} |
|||
|
|||
float L6470::getSpeed(){ |
|||
/*
|
|||
SPEED |
|||
The SPEED register contains the current motor speed, expressed in step/tick (format unsigned fixed point 0.28). |
|||
In order to convert the SPEED value in step/s the following formula can be used: |
|||
Equation 4 |
|||
where SPEED is the integer number stored into the register and tick is 250 ns. |
|||
The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s. |
|||
Note: The range effectively available to the user is limited by the MAX_SPEED parameter. |
|||
*/ |
|||
|
|||
return (float) GetParam(SPEED); |
|||
//return (float) speed * pow(8, -22);
|
|||
//return FSCalc(speed); NEEDS FIX
|
|||
} |
|||
|
|||
|
|||
void L6470::setOverCurrent(unsigned int ma_current){ |
|||
// Configure the overcurrent detection threshold.
|
|||
byte OCValue = floor(ma_current / 375); |
|||
if(OCValue > 0x0F)OCValue = 0x0F; |
|||
SetParam(OCD_TH, OCValue); |
|||
} |
|||
|
|||
void L6470::setStallCurrent(float ma_current){ |
|||
byte STHValue = (byte)floor(ma_current / 31.25); |
|||
if(STHValue > 0x80)STHValue = 0x80; |
|||
if(STHValue < 0)STHValue = 0; |
|||
SetParam(STALL_TH, STHValue); |
|||
} |
|||
|
|||
void L6470::SetLowSpeedOpt(boolean enable){ |
|||
// Enable or disable the low-speed optimization option. If enabling,
|
|||
// the other 12 bits of the register will be automatically zero.
|
|||
// When disabling, the value will have to be explicitly written by
|
|||
// the user with a SetParam() call. See the datasheet for further
|
|||
// information about low-speed optimization.
|
|||
Xfer(SET_PARAM | MIN_SPEED); |
|||
if (enable) Param(0x1000, 13); |
|||
else Param(0, 13); |
|||
} |
|||
|
|||
|
|||
void L6470::run(byte dir, float spd){ |
|||
// RUN sets the motor spinning in a direction (defined by the constants
|
|||
// FWD and REV). Maximum speed and minimum speed are defined
|
|||
// by the MAX_SPEED and MIN_SPEED registers; exceeding the FS_SPD value
|
|||
// will switch the device into full-step mode.
|
|||
// The SpdCalc() function is provided to convert steps/s values into
|
|||
// appropriate integer values for this function.
|
|||
unsigned long speedVal = SpdCalc(spd); |
|||
|
|||
Xfer(RUN | dir); |
|||
if (speedVal > 0xFFFFF) speedVal = 0xFFFFF; |
|||
Xfer((byte)(speedVal >> 16)); |
|||
Xfer((byte)(speedVal >> 8)); |
|||
Xfer((byte)(speedVal)); |
|||
} |
|||
|
|||
|
|||
void L6470::Step_Clock(byte dir){ |
|||
// STEP_CLOCK puts the device in external step clocking mode. When active,
|
|||
// pin 25, STCK, becomes the step clock for the device, and steps it in
|
|||
// the direction (set by the FWD and REV constants) imposed by the call
|
|||
// of this function. Motion commands (RUN, MOVE, etc) will cause the device
|
|||
// to exit step clocking mode.
|
|||
Xfer(STEP_CLOCK | dir); |
|||
} |
|||
|
|||
void L6470::move(long n_step){ |
|||
// MOVE will send the motor n_step steps (size based on step mode) in the
|
|||
// direction imposed by dir (FWD or REV constants may be used). The motor
|
|||
// will accelerate according the acceleration and deceleration curves, and
|
|||
// will run at MAX_SPEED. Stepping mode will adhere to FS_SPD value, as well.
|
|||
|
|||
byte dir; |
|||
|
|||
if(n_step >= 0){ |
|||
dir = FWD; |
|||
} |
|||
else{ |
|||
dir = REV; |
|||
} |
|||
|
|||
long n_stepABS = abs(n_step); |
|||
|
|||
Xfer(MOVE | dir); //set direction
|
|||
if (n_stepABS > 0x3FFFFF) n_step = 0x3FFFFF; |
|||
Xfer((byte)(n_stepABS >> 16)); |
|||
Xfer((byte)(n_stepABS >> 8)); |
|||
Xfer((byte)(n_stepABS)); |
|||
} |
|||
|
|||
void L6470::goTo(long pos){ |
|||
// GOTO operates much like MOVE, except it produces absolute motion instead
|
|||
// of relative motion. The motor will be moved to the indicated position
|
|||
// in the shortest possible fashion.
|
|||
|
|||
Xfer(GOTO); |
|||
if (pos > 0x3FFFFF) pos = 0x3FFFFF; |
|||
Xfer((byte)(pos >> 16)); |
|||
Xfer((byte)(pos >> 8)); |
|||
Xfer((byte)(pos)); |
|||
} |
|||
|
|||
|
|||
void L6470::goTo_DIR(byte dir, long pos){ |
|||
// Same as GOTO, but with user constrained rotational direction.
|
|||
|
|||
Xfer(GOTO_DIR); |
|||
if (pos > 0x3FFFFF) pos = 0x3FFFFF; |
|||
Xfer((byte)(pos >> 16)); |
|||
Xfer((byte)(pos >> 8)); |
|||
Xfer((byte)(pos)); |
|||
} |
|||
|
|||
void L6470::goUntil(byte act, byte dir, unsigned long spd){ |
|||
// GoUntil will set the motor running with direction dir (REV or
|
|||
// FWD) until a falling edge is detected on the SW pin. Depending
|
|||
// on bit SW_MODE in CONFIG, either a hard stop or a soft stop is
|
|||
// performed at the falling edge, and depending on the value of
|
|||
// act (either RESET or COPY) the value in the ABS_POS register is
|
|||
// either RESET to 0 or COPY-ed into the MARK register.
|
|||
Xfer(GO_UNTIL | act | dir); |
|||
if (spd > 0x3FFFFF) spd = 0x3FFFFF; |
|||
Xfer((byte)(spd >> 16)); |
|||
Xfer((byte)(spd >> 8)); |
|||
Xfer((byte)(spd)); |
|||
} |
|||
|
|||
void L6470::releaseSW(byte act, byte dir){ |
|||
// Similar in nature to GoUntil, ReleaseSW produces motion at the
|
|||
// higher of two speeds: the value in MIN_SPEED or 5 steps/s.
|
|||
// The motor continues to run at this speed until a rising edge
|
|||
// is detected on the switch input, then a hard stop is performed
|
|||
// and the ABS_POS register is either COPY-ed into MARK or RESET to
|
|||
// 0, depending on whether RESET or COPY was passed to the function
|
|||
// for act.
|
|||
Xfer(RELEASE_SW | act | dir); |
|||
} |
|||
|
|||
void L6470::goHome(){ |
|||
// GoHome is equivalent to GoTo(0), but requires less time to send.
|
|||
// Note that no direction is provided; motion occurs through shortest
|
|||
// path. If a direction is required, use GoTo_DIR().
|
|||
Xfer(GO_HOME); |
|||
} |
|||
|
|||
void L6470::goMark(){ |
|||
// GoMark is equivalent to GoTo(MARK), but requires less time to send.
|
|||
// Note that no direction is provided; motion occurs through shortest
|
|||
// path. If a direction is required, use GoTo_DIR().
|
|||
Xfer(GO_MARK); |
|||
} |
|||
|
|||
|
|||
void L6470::setMark(long value){ |
|||
|
|||
Xfer(MARK); |
|||
if (value > 0x3FFFFF) value = 0x3FFFFF; |
|||
if (value < -0x3FFFFF) value = -0x3FFFFF; |
|||
|
|||
|
|||
Xfer((byte)(value >> 16)); |
|||
Xfer((byte)(value >> 8)); |
|||
Xfer((byte)(value)); |
|||
} |
|||
|
|||
|
|||
void L6470::setMark(){ |
|||
long value = getPos(); |
|||
|
|||
Xfer(MARK); |
|||
if (value > 0x3FFFFF) value = 0x3FFFFF; |
|||
if (value < -0x3FFFFF) value = -0x3FFFFF; |
|||
|
|||
|
|||
Xfer((byte)(value >> 16)); |
|||
Xfer((byte)(value >> 8)); |
|||
Xfer((byte)(value)); |
|||
} |
|||
|
|||
void L6470::setAsHome(){ |
|||
// Sets the ABS_POS register to 0, effectively declaring the current
|
|||
// position to be "HOME".
|
|||
Xfer(RESET_POS); |
|||
} |
|||
|
|||
void L6470::resetDev(){ |
|||
// Reset device to power up conditions. Equivalent to toggling the STBY
|
|||
// pin or cycling power.
|
|||
Xfer(RESET_DEVICE); |
|||
} |
|||
|
|||
void L6470::softStop(){ |
|||
// Bring the motor to a halt using the deceleration curve.
|
|||
Xfer(SOFT_STOP); |
|||
} |
|||
|
|||
void L6470::hardStop(){ |
|||
// Stop the motor right away. No deceleration.
|
|||
Xfer(HARD_STOP); |
|||
} |
|||
|
|||
void L6470::softFree(){ |
|||
// Decelerate the motor and disengage
|
|||
Xfer(SOFT_HIZ); |
|||
} |
|||
|
|||
void L6470::free(){ |
|||
// disengage the motor immediately with no deceleration.
|
|||
Xfer(HARD_HIZ); |
|||
} |
|||
|
|||
int L6470::getStatus(){ |
|||
// Fetch and return the 16-bit value in the STATUS register. Resets
|
|||
// any warning flags and exits any error states. Using GetParam()
|
|||
// to read STATUS does not clear these values.
|
|||
int temp = 0; |
|||
Xfer(GET_STATUS); |
|||
temp = Xfer(0)<<8; |
|||
temp |= Xfer(0); |
|||
return temp; |
|||
} |
|||
|
|||
unsigned long L6470::AccCalc(float stepsPerSecPerSec){ |
|||
// The value in the ACC register is [(steps/s/s)*(tick^2)]/(2^-40) where tick is
|
|||
// 250ns (datasheet value)- 0x08A on boot.
|
|||
// Multiply desired steps/s/s by .137438 to get an appropriate value for this register.
|
|||
// This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
|
|||
float temp = stepsPerSecPerSec * 0.137438; |
|||
if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF; |
|||
else return (unsigned long) long(temp); |
|||
} |
|||
|
|||
|
|||
unsigned long L6470::DecCalc(float stepsPerSecPerSec){ |
|||
// The calculation for DEC is the same as for ACC. Value is 0x08A on boot.
|
|||
// This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
|
|||
float temp = stepsPerSecPerSec * 0.137438; |
|||
if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF; |
|||
else return (unsigned long) long(temp); |
|||
} |
|||
|
|||
unsigned long L6470::MaxSpdCalc(float stepsPerSec){ |
|||
// The value in the MAX_SPD register is [(steps/s)*(tick)]/(2^-18) where tick is
|
|||
// 250ns (datasheet value)- 0x041 on boot.
|
|||
// Multiply desired steps/s by .065536 to get an appropriate value for this register
|
|||
// This is a 10-bit value, so we need to make sure it remains at or below 0x3FF
|
|||
float temp = stepsPerSec * .065536; |
|||
if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF; |
|||
else return (unsigned long) long(temp); |
|||
} |
|||
|
|||
unsigned long L6470::MinSpdCalc(float stepsPerSec){ |
|||
// The value in the MIN_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
|
|||
// 250ns (datasheet value)- 0x000 on boot.
|
|||
// Multiply desired steps/s by 4.1943 to get an appropriate value for this register
|
|||
// This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
|
|||
float temp = stepsPerSec * 4.1943; |
|||
if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF; |
|||
else return (unsigned long) long(temp); |
|||
} |
|||
|
|||
unsigned long L6470::FSCalc(float stepsPerSec){ |
|||
// The value in the FS_SPD register is ([(steps/s)*(tick)]/(2^-18))-0.5 where tick is
|
|||
// 250ns (datasheet value)- 0x027 on boot.
|
|||
// Multiply desired steps/s by .065536 and subtract .5 to get an appropriate value for this register
|
|||
// This is a 10-bit value, so we need to make sure the value is at or below 0x3FF.
|
|||
float temp = (stepsPerSec * .065536)-.5; |
|||
if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF; |
|||
else return (unsigned long) long(temp); |
|||
} |
|||
|
|||
unsigned long L6470::IntSpdCalc(float stepsPerSec){ |
|||
// The value in the INT_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
|
|||
// 250ns (datasheet value)- 0x408 on boot.
|
|||
// Multiply desired steps/s by 4.1943 to get an appropriate value for this register
|
|||
// This is a 14-bit value, so we need to make sure the value is at or below 0x3FFF.
|
|||
float temp = stepsPerSec * 4.1943; |
|||
if( (unsigned long) long(temp) > 0x00003FFF) return 0x00003FFF; |
|||
else return (unsigned long) long(temp); |
|||
} |
|||
|
|||
unsigned long L6470::SpdCalc(float stepsPerSec){ |
|||
// When issuing RUN command, the 20-bit speed is [(steps/s)*(tick)]/(2^-28) where tick is
|
|||
// 250ns (datasheet value).
|
|||
// Multiply desired steps/s by 67.106 to get an appropriate value for this register
|
|||
// This is a 20-bit value, so we need to make sure the value is at or below 0xFFFFF.
|
|||
|
|||
float temp = stepsPerSec * 67.106; |
|||
if( (unsigned long) long(temp) > 0x000FFFFF) return 0x000FFFFF; |
|||
else return (unsigned long)temp; |
|||
} |
|||
|
|||
unsigned long L6470::Param(unsigned long value, byte bit_len){ |
|||
// Generalization of the subsections of the register read/write functionality.
|
|||
// We want the end user to just write the value without worrying about length,
|
|||
// so we pass a bit length parameter from the calling function.
|
|||
unsigned long ret_val=0; // We'll return this to generalize this function
|
|||
// for both read and write of registers.
|
|||
byte byte_len = bit_len/8; // How many BYTES do we have?
|
|||
if (bit_len%8 > 0) byte_len++; // Make sure not to lose any partial byte values.
|
|||
// Let's make sure our value has no spurious bits set, and if the value was too
|
|||
// high, max it out.
|
|||
unsigned long mask = 0xffffffff >> (32-bit_len); |
|||
if (value > mask) value = mask; |
|||
// The following three if statements handle the various possible byte length
|
|||
// transfers- it'll be no less than 1 but no more than 3 bytes of data.
|
|||
// L6470::Xfer() sends a byte out through SPI and returns a byte received
|
|||
// over SPI- when calling it, we typecast a shifted version of the masked
|
|||
// value, then we shift the received value back by the same amount and
|
|||
// store it until return time.
|
|||
if (byte_len == 3) { |
|||
ret_val |= long(Xfer((byte)(value>>16))) << 16; |
|||
//Serial.println(ret_val, HEX);
|
|||
} |
|||
if (byte_len >= 2) { |
|||
ret_val |= long(Xfer((byte)(value>>8))) << 8; |
|||
//Serial.println(ret_val, HEX);
|
|||
} |
|||
if (byte_len >= 1) { |
|||
ret_val |= Xfer((byte)value); |
|||
//Serial.println(ret_val, HEX);
|
|||
} |
|||
// Return the received values. Mask off any unnecessary bits, just for
|
|||
// the sake of thoroughness- we don't EXPECT to see anything outside
|
|||
// the bit length range but better to be safe than sorry.
|
|||
return (ret_val & mask); |
|||
} |
|||
|
|||
byte L6470::Xfer(byte data){ |
|||
// This simple function shifts a byte out over SPI and receives a byte over
|
|||
// SPI. Unusually for SPI devices, the dSPIN requires a toggling of the
|
|||
// CS (slaveSelect) pin after each byte sent. That makes this function
|
|||
// a bit more reasonable, because we can include more functionality in it.
|
|||
byte data_out; |
|||
digitalWrite(_SSPin,LOW); |
|||
// SPI.transfer() both shifts a byte out on the MOSI pin AND receives a
|
|||
// byte in on the MISO pin.
|
|||
data_out = SPI.transfer(data); |
|||
digitalWrite(_SSPin,HIGH); |
|||
return data_out; |
|||
} |
|||
|
|||
|
|||
|
|||
void L6470::SetParam(byte param, unsigned long value){ |
|||
Xfer(SET_PARAM | param); |
|||
ParamHandler(param, value); |
|||
} |
|||
|
|||
unsigned long L6470::GetParam(byte param){ |
|||
// Realize the "get parameter" function, to read from the various registers in
|
|||
// the dSPIN chip.
|
|||
Xfer(GET_PARAM | param); |
|||
return ParamHandler(param, 0); |
|||
} |
|||
|
|||
long L6470::convert(unsigned long val){ |
|||
//convert 22bit 2s comp to signed long
|
|||
int MSB = val >> 21; |
|||
|
|||
val = val << 11; |
|||
val = val >> 11; |
|||
|
|||
if(MSB == 1) val = val | 0b11111111111000000000000000000000; |
|||
return val; |
|||
} |
|||
|
|||
unsigned long L6470::ParamHandler(byte param, unsigned long value){ |
|||
// Much of the functionality between "get parameter" and "set parameter" is
|
|||
// very similar, so we deal with that by putting all of it in one function
|
|||
// here to save memory space and simplify the program.
|
|||
unsigned long ret_val = 0; // This is a temp for the value to return.
|
|||
// This switch structure handles the appropriate action for each register.
|
|||
// This is necessary since not all registers are of the same length, either
|
|||
// bit-wise or byte-wise, so we want to make sure we mask out any spurious
|
|||
// bits and do the right number of transfers. That is handled by the dSPIN_Param()
|
|||
// function, in most cases, but for 1-byte or smaller transfers, we call
|
|||
// Xfer() directly.
|
|||
switch (param) |
|||
{ |
|||
// ABS_POS is the current absolute offset from home. It is a 22 bit number expressed
|
|||
// in two's complement. At power up, this value is 0. It cannot be written when
|
|||
// the motor is running, but at any other time, it can be updated to change the
|
|||
// interpreted position of the motor.
|
|||
case ABS_POS: |
|||
ret_val = Param(value, 22); |
|||
break; |
|||
// EL_POS is the current electrical position in the step generation cycle. It can
|
|||
// be set when the motor is not in motion. Value is 0 on power up.
|
|||
case EL_POS: |
|||
ret_val = Param(value, 9); |
|||
break; |
|||
// MARK is a second position other than 0 that the motor can be told to go to. As
|
|||
// with ABS_POS, it is 22-bit two's complement. Value is 0 on power up.
|
|||
case MARK: |
|||
ret_val = Param(value, 22); |
|||
break; |
|||
// SPEED contains information about the current speed. It is read-only. It does
|
|||
// NOT provide direction information.
|
|||
case SPEED: |
|||
ret_val = Param(0, 20); |
|||
break; |
|||
// ACC and DEC set the acceleration and deceleration rates. Set ACC to 0xFFF
|
|||
// to get infinite acceleration/decelaeration- there is no way to get infinite
|
|||
// deceleration w/o infinite acceleration (except the HARD STOP command).
|
|||
// Cannot be written while motor is running. Both default to 0x08A on power up.
|
|||
// AccCalc() and DecCalc() functions exist to convert steps/s/s values into
|
|||
// 12-bit values for these two registers.
|
|||
case ACC: |
|||
ret_val = Param(value, 12); |
|||
break; |
|||
case DEC: |
|||
ret_val = Param(value, 12); |
|||
break; |
|||
// MAX_SPEED is just what it says- any command which attempts to set the speed
|
|||
// of the motor above this value will simply cause the motor to turn at this
|
|||
// speed. Value is 0x041 on power up.
|
|||
// MaxSpdCalc() function exists to convert steps/s value into a 10-bit value
|
|||
// for this register.
|
|||
case MAX_SPEED: |
|||
ret_val = Param(value, 10); |
|||
break; |
|||
// MIN_SPEED controls two things- the activation of the low-speed optimization
|
|||
// feature and the lowest speed the motor will be allowed to operate at. LSPD_OPT
|
|||
// is the 13th bit, and when it is set, the minimum allowed speed is automatically
|
|||
// set to zero. This value is 0 on startup.
|
|||
// MinSpdCalc() function exists to convert steps/s value into a 12-bit value for this
|
|||
// register. SetLowSpeedOpt() function exists to enable/disable the optimization feature.
|
|||
case MIN_SPEED: |
|||
ret_val = Param(value, 12); |
|||
break; |
|||
// FS_SPD register contains a threshold value above which microstepping is disabled
|
|||
// and the dSPIN operates in full-step mode. Defaults to 0x027 on power up.
|
|||
// FSCalc() function exists to convert steps/s value into 10-bit integer for this
|
|||
// register.
|
|||
case FS_SPD: |
|||
ret_val = Param(value, 10); |
|||
break; |
|||
// KVAL is the maximum voltage of the PWM outputs. These 8-bit values are ratiometric
|
|||
// representations: 255 for full output voltage, 128 for half, etc. Default is 0x29.
|
|||
// The implications of different KVAL settings is too complex to dig into here, but
|
|||
// it will usually work to max the value for RUN, ACC, and DEC. Maxing the value for
|
|||
// HOLD may result in excessive power dissipation when the motor is not running.
|
|||
case KVAL_HOLD: |
|||
ret_val = Xfer((byte)value); |
|||
break; |
|||
case KVAL_RUN: |
|||
ret_val = Xfer((byte)value); |
|||
break; |
|||
case KVAL_ACC: |
|||
ret_val = Xfer((byte)value); |
|||
break; |
|||
case KVAL_DEC: |
|||
ret_val = Xfer((byte)value); |
|||
break; |
|||
// INT_SPD, ST_SLP, FN_SLP_ACC and FN_SLP_DEC are all related to the back EMF
|
|||
// compensation functionality. Please see the datasheet for details of this
|
|||
// function- it is too complex to discuss here. Default values seem to work
|
|||
// well enough.
|
|||
case INT_SPD: |
|||
ret_val = Param(value, 14); |
|||
break; |
|||
case ST_SLP: |
|||
ret_val = Xfer((byte)value); |
|||
break; |
|||
case FN_SLP_ACC: |
|||
ret_val = Xfer((byte)value); |
|||
break; |
|||
case FN_SLP_DEC: |
|||
ret_val = Xfer((byte)value); |
|||
break; |
|||
// K_THERM is motor winding thermal drift compensation. Please see the datasheet
|
|||
// for full details on operation- the default value should be okay for most users.
|
|||
case K_THERM: |
|||
ret_val = Xfer((byte)value & 0x0F); |
|||
break; |
|||
// ADC_OUT is a read-only register containing the result of the ADC measurements.
|
|||
// This is less useful than it sounds; see the datasheet for more information.
|
|||
case ADC_OUT: |
|||
ret_val = Xfer(0); |
|||
break; |
|||
// Set the overcurrent threshold. Ranges from 375mA to 6A in steps of 375mA.
|
|||
// A set of defined constants is provided for the user's convenience. Default
|
|||
// value is 3.375A- 0x08. This is a 4-bit value.
|
|||
case OCD_TH: |
|||
ret_val = Xfer((byte)value & 0x0F); |
|||
break; |
|||
// Stall current threshold. Defaults to 0x40, or 2.03A. Value is from 31.25mA to
|
|||
// 4A in 31.25mA steps. This is a 7-bit value.
|
|||
case STALL_TH: |
|||
ret_val = Xfer((byte)value & 0x7F); |
|||
break; |
|||
// STEP_MODE controls the microstepping settings, as well as the generation of an
|
|||
// output signal from the dSPIN. Bits 2:0 control the number of microsteps per
|
|||
// step the part will generate. Bit 7 controls whether the BUSY/SYNC pin outputs
|
|||
// a BUSY signal or a step synchronization signal. Bits 6:4 control the frequency
|
|||
// of the output signal relative to the full-step frequency; see datasheet for
|
|||
// that relationship as it is too complex to reproduce here.
|
|||
// Most likely, only the microsteps per step value will be needed; there is a set
|
|||
// of constants provided for ease of use of these values.
|
|||
case STEP_MODE: |
|||
ret_val = Xfer((byte)value); |
|||
break; |
|||
// ALARM_EN controls which alarms will cause the FLAG pin to fall. A set of constants
|
|||
// is provided to make this easy to interpret. By default, ALL alarms will trigger the
|
|||
// FLAG pin.
|
|||
case ALARM_EN: |
|||
ret_val = Xfer((byte)value); |
|||
break; |
|||
// CONFIG contains some assorted configuration bits and fields. A fairly comprehensive
|
|||
// set of reasonably self-explanatory constants is provided, but users should refer
|
|||
// to the datasheet before modifying the contents of this register to be certain they
|
|||
// understand the implications of their modifications. Value on boot is 0x2E88; this
|
|||
// can be a useful way to verify proper start up and operation of the dSPIN chip.
|
|||
case CONFIG: |
|||
ret_val = Param(value, 16); |
|||
break; |
|||
// STATUS contains read-only information about the current condition of the chip. A
|
|||
// comprehensive set of constants for masking and testing this register is provided, but
|
|||
// users should refer to the datasheet to ensure that they fully understand each one of
|
|||
// the bits in the register.
|
|||
case STATUS: // STATUS is a read-only register
|
|||
ret_val = Param(0, 16); |
|||
break; |
|||
default: |
|||
ret_val = Xfer((byte)(value)); |
|||
break; |
|||
} |
|||
return ret_val; |
|||
} |
@ -0,0 +1,286 @@ |
|||
////////////////////////////////////////////////////////////
|
|||
//ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
|
|||
//LIBRARY Created by Adam Meyer of bildr Aug 18th 2012
|
|||
//Released as MIT license
|
|||
////////////////////////////////////////////////////////////
|
|||
#ifndef L6470_h |
|||
#define L6470_h |
|||
|
|||
#include <Arduino.h> |
|||
#include <SPI.h> |
|||
|
|||
#define SLAVE_SELECT_PIN 38 // Wire this to the CSN pin
|
|||
// #define RESET 6 // Wire this to the STBY line
|
|||
#define BUSYN 7 // Wire this to the BSYN line
|
|||
|
|||
// constant definitions for overcurrent thresholds. Write these values to
|
|||
// register dSPIN_OCD_TH to set the level at which an overcurrent even occurs.
|
|||
#define OCD_TH_375mA 0x00 |
|||
#define OCD_TH_750mA 0x01 |
|||
#define OCD_TH_1125mA 0x02 |
|||
#define OCD_TH_1500mA 0x03 |
|||
#define OCD_TH_1875mA 0x04 |
|||
#define OCD_TH_2250mA 0x05 |
|||
#define OCD_TH_2625mA 0x06 |
|||
#define OCD_TH_3000mA 0x07 |
|||
#define OCD_TH_3375mA 0x08 |
|||
#define OCD_TH_3750mA 0x09 |
|||
#define OCD_TH_4125mA 0x0A |
|||
#define OCD_TH_4500mA 0x0B |
|||
#define OCD_TH_4875mA 0x0C |
|||
#define OCD_TH_5250mA 0x0D |
|||
#define OCD_TH_5625mA 0x0E |
|||
#define OCD_TH_6000mA 0x0F |
|||
|
|||
// STEP_MODE option values.
|
|||
// First comes the "microsteps per step" options...
|
|||
#define STEP_MODE_STEP_SEL 0x07 // Mask for these bits only.
|
|||
#define STEP_SEL_1 0x00 |
|||
#define STEP_SEL_1_2 0x01 |
|||
#define STEP_SEL_1_4 0x02 |
|||
#define STEP_SEL_1_8 0x03 |
|||
#define STEP_SEL_1_16 0x04 |
|||
#define STEP_SEL_1_32 0x05 |
|||
#define STEP_SEL_1_64 0x06 |
|||
#define STEP_SEL_1_128 0x07 |
|||
|
|||
// ...next, define the SYNC_EN bit. When set, the BUSYN pin will instead
|
|||
// output a clock related to the full-step frequency as defined by the
|
|||
// SYNC_SEL bits below.
|
|||
#define STEP_MODE_SYNC_EN 0x80 // Mask for this bit
|
|||
#define SYNC_EN 0x80 |
|||
|
|||
// ...last, define the SYNC_SEL modes. The clock output is defined by
|
|||
// the full-step frequency and the value in these bits- see the datasheet
|
|||
// for a matrix describing that relationship (page 46).
|
|||
#define STEP_MODE_SYNC_SEL 0x70 |
|||
#define SYNC_SEL_1_2 0x00 |
|||
#define SYNC_SEL_1 0x10 |
|||
#define SYNC_SEL_2 0x20 |
|||
#define SYNC_SEL_4 0x30 |
|||
#define SYNC_SEL_8 0x40 |
|||
#define SYNC_SEL_16 0x50 |
|||
#define SYNC_SEL_32 0x60 |
|||
#define SYNC_SEL_64 0x70 |
|||
|
|||
// Bit names for the ALARM_EN register.
|
|||
// Each of these bits defines one potential alarm condition.
|
|||
// When one of these conditions occurs and the respective bit in ALARM_EN is set,
|
|||
// the FLAG pin will go low. The register must be queried to determine which event
|
|||
// caused the alarm.
|
|||
#define ALARM_EN_OVERCURRENT 0x01 |
|||
#define ALARM_EN_THERMAL_SHUTDOWN 0x02 |
|||
#define ALARM_EN_THERMAL_WARNING 0x04 |
|||
#define ALARM_EN_UNDER_VOLTAGE 0x08 |
|||
#define ALARM_EN_STALL_DET_A 0x10 |
|||
#define ALARM_EN_STALL_DET_B 0x20 |
|||
#define ALARM_EN_SW_TURN_ON 0x40 |
|||
#define ALARM_EN_WRONG_NPERF_CMD 0x80 |
|||
|
|||
// CONFIG register renames.
|
|||
|
|||
// Oscillator options.
|
|||
// The dSPIN needs to know what the clock frequency is because it uses that for some
|
|||
// calculations during operation.
|
|||
#define CONFIG_OSC_SEL 0x000F // Mask for this bit field.
|
|||
#define CONFIG_INT_16MHZ 0x0000 // Internal 16MHz, no output
|
|||
#define CONFIG_INT_16MHZ_OSCOUT_2MHZ 0x0008 // Default; internal 16MHz, 2MHz output
|
|||
#define CONFIG_INT_16MHZ_OSCOUT_4MHZ 0x0009 // Internal 16MHz, 4MHz output
|
|||
#define CONFIG_INT_16MHZ_OSCOUT_8MHZ 0x000A // Internal 16MHz, 8MHz output
|
|||
#define CONFIG_INT_16MHZ_OSCOUT_16MHZ 0x000B // Internal 16MHz, 16MHz output
|
|||
#define CONFIG_EXT_8MHZ_XTAL_DRIVE 0x0004 // External 8MHz crystal
|
|||
#define CONFIG_EXT_16MHZ_XTAL_DRIVE 0x0005 // External 16MHz crystal
|
|||
#define CONFIG_EXT_24MHZ_XTAL_DRIVE 0x0006 // External 24MHz crystal
|
|||
#define CONFIG_EXT_32MHZ_XTAL_DRIVE 0x0007 // External 32MHz crystal
|
|||
#define CONFIG_EXT_8MHZ_OSCOUT_INVERT 0x000C // External 8MHz crystal, output inverted
|
|||
#define CONFIG_EXT_16MHZ_OSCOUT_INVERT 0x000D // External 16MHz crystal, output inverted
|
|||
#define CONFIG_EXT_24MHZ_OSCOUT_INVERT 0x000E // External 24MHz crystal, output inverted
|
|||
#define CONFIG_EXT_32MHZ_OSCOUT_INVERT 0x000F // External 32MHz crystal, output inverted
|
|||
|
|||
// Configure the functionality of the external switch input
|
|||
#define CONFIG_SW_MODE 0x0010 // Mask for this bit.
|
|||
#define CONFIG_SW_HARD_STOP 0x0000 // Default; hard stop motor on switch.
|
|||
#define CONFIG_SW_USER 0x0010 // Tie to the GoUntil and ReleaseSW
|
|||
// commands to provide jog function.
|
|||
// See page 25 of datasheet.
|
|||
|
|||
// Configure the motor voltage compensation mode (see page 34 of datasheet)
|
|||
#define CONFIG_EN_VSCOMP 0x0020 // Mask for this bit.
|
|||
#define CONFIG_VS_COMP_DISABLE 0x0000 // Disable motor voltage compensation.
|
|||
#define CONFIG_VS_COMP_ENABLE 0x0020 // Enable motor voltage compensation.
|
|||
|
|||
// Configure overcurrent detection event handling
|
|||
#define CONFIG_OC_SD 0x0080 // Mask for this bit.
|
|||
#define CONFIG_OC_SD_DISABLE 0x0000 // Bridges do NOT shutdown on OC detect
|
|||
#define CONFIG_OC_SD_ENABLE 0x0080 // Bridges shutdown on OC detect
|
|||
|
|||
// Configure the slew rate of the power bridge output
|
|||
#define CONFIG_POW_SR 0x0300 // Mask for this bit field.
|
|||
#define CONFIG_SR_180V_us 0x0000 // 180V/us
|
|||
#define CONFIG_SR_290V_us 0x0200 // 290V/us
|
|||
#define CONFIG_SR_530V_us 0x0300 // 530V/us
|
|||
|
|||
// Integer divisors for PWM sinewave generation
|
|||
// See page 32 of the datasheet for more information on this.
|
|||
#define CONFIG_F_PWM_DEC 0x1C00 // mask for this bit field
|
|||
#define CONFIG_PWM_MUL_0_625 (0x00)<<10 |
|||
#define CONFIG_PWM_MUL_0_75 (0x01)<<10 |
|||
#define CONFIG_PWM_MUL_0_875 (0x02)<<10 |
|||
#define CONFIG_PWM_MUL_1 (0x03)<<10 |
|||
#define CONFIG_PWM_MUL_1_25 (0x04)<<10 |
|||
#define CONFIG_PWM_MUL_1_5 (0x05)<<10 |
|||
#define CONFIG_PWM_MUL_1_75 (0x06)<<10 |
|||
#define CONFIG_PWM_MUL_2 (0x07)<<10 |
|||
|
|||
// Multiplier for the PWM sinewave frequency
|
|||
#define CONFIG_F_PWM_INT 0xE000 // mask for this bit field.
|
|||
#define CONFIG_PWM_DIV_1 (0x00)<<13 |
|||
#define CONFIG_PWM_DIV_2 (0x01)<<13 |
|||
#define CONFIG_PWM_DIV_3 (0x02)<<13 |
|||
#define CONFIG_PWM_DIV_4 (0x03)<<13 |
|||
#define CONFIG_PWM_DIV_5 (0x04)<<13 |
|||
#define CONFIG_PWM_DIV_6 (0x05)<<13 |
|||
#define CONFIG_PWM_DIV_7 (0x06)<<13 |
|||
|
|||
// Status register bit renames- read-only bits conferring information about the
|
|||
// device to the user.
|
|||
#define STATUS_HIZ 0x0001 // high when bridges are in HiZ mode
|
|||
#define STATUS_BUSY 0x0002 // mirrors BUSY pin
|
|||
#define STATUS_SW_F 0x0004 // low when switch open, high when closed
|
|||
#define STATUS_SW_EVN 0x0008 // active high, set on switch falling edge,
|
|||
// cleared by reading STATUS
|
|||
#define STATUS_DIR 0x0010 // Indicates current motor direction.
|
|||
// High is FWD, Low is REV.
|
|||
#define STATUS_NOTPERF_CMD 0x0080 // Last command not performed.
|
|||
#define STATUS_WRONG_CMD 0x0100 // Last command not valid.
|
|||
#define STATUS_UVLO 0x0200 // Undervoltage lockout is active
|
|||
#define STATUS_TH_WRN 0x0400 // Thermal warning
|
|||
#define STATUS_TH_SD 0x0800 // Thermal shutdown
|
|||
#define STATUS_OCD 0x1000 // Overcurrent detected
|
|||
#define STATUS_STEP_LOSS_A 0x2000 // Stall detected on A bridge
|
|||
#define STATUS_STEP_LOSS_B 0x4000 // Stall detected on B bridge
|
|||
#define STATUS_SCK_MOD 0x8000 // Step clock mode is active
|
|||
|
|||
// Status register motor status field
|
|||
#define STATUS_MOT_STATUS 0x0060 // field mask
|
|||
#define STATUS_MOT_STATUS_STOPPED (0x0000)<<13 // Motor stopped
|
|||
#define STATUS_MOT_STATUS_ACCELERATION (0x0001)<<13 // Motor accelerating
|
|||
#define STATUS_MOT_STATUS_DECELERATION (0x0002)<<13 // Motor decelerating
|
|||
#define STATUS_MOT_STATUS_CONST_SPD (0x0003)<<13 // Motor at constant speed
|
|||
|
|||
// Register address redefines.
|
|||
// See the Param_Handler() function for more info about these.
|
|||
#define ABS_POS 0x01 |
|||
#define EL_POS 0x02 |
|||
#define MARK 0x03 |
|||
#define SPEED 0x04 |
|||
#define ACC 0x05 |
|||
#define DEC 0x06 |
|||
#define MAX_SPEED 0x07 |
|||
#define MIN_SPEED 0x08 |
|||
#define FS_SPD 0x15 |
|||
#define KVAL_HOLD 0x09 |
|||
#define KVAL_RUN 0x0A |
|||
#define KVAL_ACC 0x0B |
|||
#define KVAL_DEC 0x0C |
|||
#define INT_SPD 0x0D |
|||
#define ST_SLP 0x0E |
|||
#define FN_SLP_ACC 0x0F |
|||
#define FN_SLP_DEC 0x10 |
|||
#define K_THERM 0x11 |
|||
#define ADC_OUT 0x12 |
|||
#define OCD_TH 0x13 |
|||
#define STALL_TH 0x14 |
|||
#define STEP_MODE 0x16 |
|||
#define ALARM_EN 0x17 |
|||
#define CONFIG 0x18 |
|||
#define STATUS 0x19 |
|||
|
|||
//dSPIN commands
|
|||
#define NOP 0x00 |
|||
#define SET_PARAM 0x00 |
|||
#define GET_PARAM 0x20 |
|||
#define RUN 0x50 |
|||
#define STEP_CLOCK 0x58 |
|||
#define MOVE 0x40 |
|||
#define GOTO 0x60 |
|||
#define GOTO_DIR 0x68 |
|||
#define GO_UNTIL 0x82 |
|||
#define RELEASE_SW 0x92 |
|||
#define GO_HOME 0x70 |
|||
#define GO_MARK 0x78 |
|||
#define RESET_POS 0xD8 |
|||
#define RESET_DEVICE 0xC0 |
|||
#define SOFT_STOP 0xB0 |
|||
#define HARD_STOP 0xB8 |
|||
#define SOFT_HIZ 0xA0 |
|||
#define HARD_HIZ 0xA8 |
|||
#define GET_STATUS 0xD0 |
|||
|
|||
/* dSPIN direction options */ |
|||
#define FWD 0x01 |
|||
#define REV 0x00 |
|||
|
|||
/* dSPIN action options */ |
|||
#define ACTION_RESET 0x00 |
|||
#define ACTION_COPY 0x01 |
|||
|
|||
|
|||
class L6470{ |
|||
|
|||
public: |
|||
|
|||
L6470(int SSPin); |
|||
void init(int k_value); |
|||
void setMicroSteps(int microSteps); |
|||
void setCurrent(int current); |
|||
void setMaxSpeed(int speed); |
|||
void setMinSpeed(int speed); |
|||
void setAcc(float acceleration); |
|||
void setDec(float deceleration); |
|||
void setOverCurrent(unsigned int ma_current); |
|||
void setThresholdSpeed(float threshold); |
|||
void setStallCurrent(float ma_current); |
|||
|
|||
unsigned long ParamHandler(byte param, unsigned long value); |
|||
void SetLowSpeedOpt(boolean enable); |
|||
void run(byte dir, float spd); |
|||
void Step_Clock(byte dir); |
|||
void goHome(); |
|||
void setAsHome(); |
|||
void goMark(); |
|||
void move(long n_step); |
|||
void goTo(long pos); |
|||
void goTo_DIR(byte dir, long pos); |
|||
void goUntil(byte act, byte dir, unsigned long spd); |
|||
boolean isBusy(); |
|||
void releaseSW(byte act, byte dir); |
|||
float getSpeed(); |
|||
long getPos(); |
|||
void setMark(); |
|||
void setMark(long value); |
|||
void resetPos(); |
|||
void resetDev(); |
|||
void softStop(); |
|||
void hardStop(); |
|||
void softFree(); |
|||
void free(); |
|||
int getStatus(); |
|||
void SetParam(byte param, unsigned long value); |
|||
|
|||
private: |
|||
long convert(unsigned long val); |
|||
unsigned long GetParam(byte param); |
|||
unsigned long AccCalc(float stepsPerSecPerSec); |
|||
unsigned long DecCalc(float stepsPerSecPerSec); |
|||
unsigned long MaxSpdCalc(float stepsPerSec); |
|||
unsigned long MinSpdCalc(float stepsPerSec); |
|||
unsigned long FSCalc(float stepsPerSec); |
|||
unsigned long IntSpdCalc(float stepsPerSec); |
|||
unsigned long SpdCalc(float stepsPerSec); |
|||
unsigned long Param(unsigned long value, byte bit_len); |
|||
byte Xfer(byte data); |
|||
int _SSPin; |
|||
}; |
|||
|
|||
#endif |
@ -0,0 +1,53 @@ |
|||
####################################################### |
|||
# keywords.txt - keywords file for the L6470 library |
|||
# |
|||
# ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics |
|||
# Library by Adam Meyer of bildr Aug 18th 2012 |
|||
# |
|||
# Released as MIT license |
|||
####################################################### |
|||
|
|||
####################################### |
|||
# Datatypes (KEYWORD1) |
|||
####################################### |
|||
|
|||
L6470 KEYWORD1 |
|||
|
|||
####################################### |
|||
# Methods and Functions (KEYWORD2) |
|||
####################################### |
|||
|
|||
L6470 KEYWORD2 |
|||
init KEYWORD2 |
|||
setMicroSteps KEYWORD2 |
|||
setCurrent KEYWORD2 |
|||
setMaxSpeed KEYWORD2 |
|||
setMinSpeed KEYWORD2 |
|||
setAcc KEYWORD2 |
|||
setDec KEYWORD2 |
|||
setOverCurrent KEYWORD2 |
|||
setThresholdSpeed KEYWORD2 |
|||
setStallCurrent KEYWORD2 |
|||
ParamHandler KEYWORD2 |
|||
SetLowSpeedOpt KEYWORD2 |
|||
run KEYWORD2 |
|||
Step_Clock KEYWORD2 |
|||
goHome KEYWORD2 |
|||
goMark KEYWORD2 |
|||
move KEYWORD2 |
|||
goTo KEYWORD2 |
|||
goTo_DIR KEYWORD2 |
|||
goUntil KEYWORD2 |
|||
isBusy KEYWORD2 |
|||
releaseSW KEYWORD2 |
|||
resetPos KEYWORD2 |
|||
resetDev KEYWORD2 |
|||
softStop KEYWORD2 |
|||
hardStop KEYWORD2 |
|||
softHiZ KEYWORD2 |
|||
hardHiZ KEYWORD2 |
|||
getStatus KEYWORD2 |
|||
|
|||
####################################### |
|||
# Constants (LITERAL1) |
|||
####################################### |
Loading…
Reference in new issue