diff --git a/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.cpp b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.cpp new file mode 100644 index 0000000000..8278c19aee --- /dev/null +++ b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.cpp @@ -0,0 +1,723 @@ +//////////////////////////////////////////////////////////// +//ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics +//LIBRARY Created by Adam Meyer of bildr Aug 18th 2012 +//Released as MIT license +//////////////////////////////////////////////////////////// + +#include +#include "L6470.h" +#include + +#define ENABLE_RESET_PIN 0 +#define K_VALUE 100 + +L6470::L6470(int SSPin){ + _SSPin = SSPin; + // Serial.begin(9600); +} + +void L6470::init(int k_value){ + // This is the generic initialization function to set up the Arduino to + // communicate with the dSPIN chip. + + // set up the input/output pins for the application. + pinMode(SLAVE_SELECT_PIN, OUTPUT); // The SPI peripheral REQUIRES the hardware SS pin- + // pin 10- to be an output. This is in here just + // in case some future user makes something other + // than pin 10 the SS pin. + + pinMode(_SSPin, OUTPUT); + digitalWrite(_SSPin, HIGH); + pinMode(MOSI, OUTPUT); + pinMode(MISO, INPUT); + pinMode(SCK, OUTPUT); + pinMode(BUSYN, INPUT); +#if (ENABLE_RESET_PIN == 1) + pinMode(RESET, OUTPUT); + // reset the dSPIN chip. This could also be accomplished by + // calling the "L6470::ResetDev()" function after SPI is initialized. + digitalWrite(RESET, HIGH); + delay(10); + digitalWrite(RESET, LOW); + delay(10); + digitalWrite(RESET, HIGH); + delay(10); +#endif + + + // initialize SPI for the dSPIN chip's needs: + // most significant bit first, + // SPI clock not to exceed 5MHz, + // SPI_MODE3 (clock idle high, latch data on rising edge of clock) + SPI.begin(); + SPI.setBitOrder(MSBFIRST); + SPI.setClockDivider(SPI_CLOCK_DIV16); // or 2, 8, 16, 32, 64 + SPI.setDataMode(SPI_MODE3); + + // First things first: let's check communications. The CONFIG register should + // power up to 0x2E88, so we can use that to check the communications. + if (GetParam(CONFIG) == 0x2E88){ + //Serial.println('good to go'); + } + else{ + //Serial.println('Comm issue'); + } + +#if (ENABLE_RESET_PIN == 0) + resetDev(); +#endif + // First, let's set the step mode register: + // - SYNC_EN controls whether the BUSY/SYNC pin reflects the step + // frequency or the BUSY status of the chip. We want it to be the BUSY + // status. + // - STEP_SEL_x is the microstepping rate- we'll go full step. + // - SYNC_SEL_x is the ratio of (micro)steps to toggles on the + // BUSY/SYNC pin (when that pin is used for SYNC). Make it 1:1, despite + // not using that pin. + //SetParam(STEP_MODE, !SYNC_EN | STEP_SEL_1 | SYNC_SEL_1); + + + SetParam(KVAL_RUN, k_value); + SetParam(KVAL_ACC, k_value); + SetParam(KVAL_DEC, k_value); + SetParam(KVAL_HOLD, k_value); + + // Set up the CONFIG register as follows: + // PWM frequency divisor = 1 + // PWM frequency multiplier = 2 (62.5kHz PWM frequency) + // Slew rate is 290V/us + // Do NOT shut down bridges on overcurrent + // Disable motor voltage compensation + // Hard stop on switch low + // 16MHz internal oscillator, nothing on output + SetParam(CONFIG, CONFIG_PWM_DIV_1 | CONFIG_PWM_MUL_2 | CONFIG_SR_290V_us| CONFIG_OC_SD_DISABLE | CONFIG_VS_COMP_DISABLE | CONFIG_SW_HARD_STOP | CONFIG_INT_16MHZ); + // Configure the RUN KVAL. This defines the duty cycle of the PWM of the bridges + // during running. 0xFF means that they are essentially NOT PWMed during run; this + // MAY result in more power being dissipated than you actually need for the task. + // Setting this value too low may result in failure to turn. + // There are ACC, DEC, and HOLD KVAL registers as well; you may need to play with + // those values to get acceptable performance for a given application. + //SetParam(KVAL_RUN, 0xFF); + // Calling GetStatus() clears the UVLO bit in the status register, which is set by + // default on power-up. The driver may not run without that bit cleared by this + // read operation. + getStatus(); + + hardStop(); //engage motors +} + +boolean L6470::isBusy(){ + int status = getStatus(); + return !((status >> 1) & 0b1); +} + +void L6470::setMicroSteps(int microSteps){ + byte stepVal = 0; + + for(stepVal = 0; stepVal < 8; stepVal++){ + if(microSteps == 1) break; + microSteps = microSteps >> 1; + } + + SetParam(STEP_MODE, !SYNC_EN | stepVal | SYNC_SEL_1); +} + +void L6470::setThresholdSpeed(float thresholdSpeed){ + // Configure the FS_SPD register- this is the speed at which the driver ceases + // microstepping and goes to full stepping. FSCalc() converts a value in steps/s + // to a value suitable for this register; to disable full-step switching, you + // can pass 0x3FF to this register. + + if(thresholdSpeed == 0.0){ + SetParam(FS_SPD, 0x3FF); + } + else{ + SetParam(FS_SPD, FSCalc(thresholdSpeed)); + } +} + + +void L6470::setCurrent(int current){} + + + +void L6470::setMaxSpeed(int speed){ + // Configure the MAX_SPEED register- this is the maximum number of (micro)steps per + // second allowed. You'll want to mess around with your desired application to see + // how far you can push it before the motor starts to slip. The ACTUAL parameter + // passed to this function is in steps/tick; MaxSpdCalc() will convert a number of + // steps/s into an appropriate value for this function. Note that for any move or + // goto type function where no speed is specified, this value will be used. + SetParam(MAX_SPEED, MaxSpdCalc(speed)); +} + + +void L6470::setMinSpeed(int speed){ + // Configure the MAX_SPEED register- this is the maximum number of (micro)steps per + // second allowed. You'll want to mess around with your desired application to see + // how far you can push it before the motor starts to slip. The ACTUAL parameter + // passed to this function is in steps/tick; MaxSpdCalc() will convert a number of + // steps/s into an appropriate value for this function. Note that for any move or + // goto type function where no speed is specified, this value will be used. + SetParam(MIN_SPEED, MinSpdCalc(speed)); +} + + + + +void L6470::setAcc(float acceleration){ + // Configure the acceleration rate, in steps/tick/tick. There is also a DEC register; + // both of them have a function (AccCalc() and DecCalc() respectively) that convert + // from steps/s/s into the appropriate value for the register. Writing ACC to 0xfff + // sets the acceleration and deceleration to 'infinite' (or as near as the driver can + // manage). If ACC is set to 0xfff, DEC is ignored. To get infinite deceleration + // without infinite acceleration, only hard stop will work. + unsigned long accelerationBYTES = AccCalc(acceleration); + SetParam(ACC, accelerationBYTES); +} + + +void L6470::setDec(float deceleration){ + unsigned long decelerationBYTES = DecCalc(deceleration); + SetParam(DEC, decelerationBYTES); +} + + +long L6470::getPos(){ + unsigned long position = GetParam(ABS_POS); + return convert(position); +} + +float L6470::getSpeed(){ + /* + SPEED + The SPEED register contains the current motor speed, expressed in step/tick (format unsigned fixed point 0.28). + In order to convert the SPEED value in step/s the following formula can be used: + Equation 4 + where SPEED is the integer number stored into the register and tick is 250 ns. + The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s. + Note: The range effectively available to the user is limited by the MAX_SPEED parameter. + */ + + return (float) GetParam(SPEED); + //return (float) speed * pow(8, -22); + //return FSCalc(speed); NEEDS FIX +} + + +void L6470::setOverCurrent(unsigned int ma_current){ + // Configure the overcurrent detection threshold. + byte OCValue = floor(ma_current / 375); + if(OCValue > 0x0F)OCValue = 0x0F; + SetParam(OCD_TH, OCValue); +} + +void L6470::setStallCurrent(float ma_current){ + byte STHValue = (byte)floor(ma_current / 31.25); + if(STHValue > 0x80)STHValue = 0x80; + if(STHValue < 0)STHValue = 0; + SetParam(STALL_TH, STHValue); +} + +void L6470::SetLowSpeedOpt(boolean enable){ + // Enable or disable the low-speed optimization option. If enabling, + // the other 12 bits of the register will be automatically zero. + // When disabling, the value will have to be explicitly written by + // the user with a SetParam() call. See the datasheet for further + // information about low-speed optimization. + Xfer(SET_PARAM | MIN_SPEED); + if (enable) Param(0x1000, 13); + else Param(0, 13); +} + + +void L6470::run(byte dir, float spd){ + // RUN sets the motor spinning in a direction (defined by the constants + // FWD and REV). Maximum speed and minimum speed are defined + // by the MAX_SPEED and MIN_SPEED registers; exceeding the FS_SPD value + // will switch the device into full-step mode. + // The SpdCalc() function is provided to convert steps/s values into + // appropriate integer values for this function. + unsigned long speedVal = SpdCalc(spd); + + Xfer(RUN | dir); + if (speedVal > 0xFFFFF) speedVal = 0xFFFFF; + Xfer((byte)(speedVal >> 16)); + Xfer((byte)(speedVal >> 8)); + Xfer((byte)(speedVal)); +} + + +void L6470::Step_Clock(byte dir){ + // STEP_CLOCK puts the device in external step clocking mode. When active, + // pin 25, STCK, becomes the step clock for the device, and steps it in + // the direction (set by the FWD and REV constants) imposed by the call + // of this function. Motion commands (RUN, MOVE, etc) will cause the device + // to exit step clocking mode. + Xfer(STEP_CLOCK | dir); +} + +void L6470::move(long n_step){ + // MOVE will send the motor n_step steps (size based on step mode) in the + // direction imposed by dir (FWD or REV constants may be used). The motor + // will accelerate according the acceleration and deceleration curves, and + // will run at MAX_SPEED. Stepping mode will adhere to FS_SPD value, as well. + + byte dir; + + if(n_step >= 0){ + dir = FWD; + } + else{ + dir = REV; + } + + long n_stepABS = abs(n_step); + + Xfer(MOVE | dir); //set direction + if (n_stepABS > 0x3FFFFF) n_step = 0x3FFFFF; + Xfer((byte)(n_stepABS >> 16)); + Xfer((byte)(n_stepABS >> 8)); + Xfer((byte)(n_stepABS)); +} + +void L6470::goTo(long pos){ + // GOTO operates much like MOVE, except it produces absolute motion instead + // of relative motion. The motor will be moved to the indicated position + // in the shortest possible fashion. + + Xfer(GOTO); + if (pos > 0x3FFFFF) pos = 0x3FFFFF; + Xfer((byte)(pos >> 16)); + Xfer((byte)(pos >> 8)); + Xfer((byte)(pos)); +} + + +void L6470::goTo_DIR(byte dir, long pos){ + // Same as GOTO, but with user constrained rotational direction. + + Xfer(GOTO_DIR); + if (pos > 0x3FFFFF) pos = 0x3FFFFF; + Xfer((byte)(pos >> 16)); + Xfer((byte)(pos >> 8)); + Xfer((byte)(pos)); +} + +void L6470::goUntil(byte act, byte dir, unsigned long spd){ + // GoUntil will set the motor running with direction dir (REV or + // FWD) until a falling edge is detected on the SW pin. Depending + // on bit SW_MODE in CONFIG, either a hard stop or a soft stop is + // performed at the falling edge, and depending on the value of + // act (either RESET or COPY) the value in the ABS_POS register is + // either RESET to 0 or COPY-ed into the MARK register. + Xfer(GO_UNTIL | act | dir); + if (spd > 0x3FFFFF) spd = 0x3FFFFF; + Xfer((byte)(spd >> 16)); + Xfer((byte)(spd >> 8)); + Xfer((byte)(spd)); +} + +void L6470::releaseSW(byte act, byte dir){ + // Similar in nature to GoUntil, ReleaseSW produces motion at the + // higher of two speeds: the value in MIN_SPEED or 5 steps/s. + // The motor continues to run at this speed until a rising edge + // is detected on the switch input, then a hard stop is performed + // and the ABS_POS register is either COPY-ed into MARK or RESET to + // 0, depending on whether RESET or COPY was passed to the function + // for act. + Xfer(RELEASE_SW | act | dir); +} + +void L6470::goHome(){ + // GoHome is equivalent to GoTo(0), but requires less time to send. + // Note that no direction is provided; motion occurs through shortest + // path. If a direction is required, use GoTo_DIR(). + Xfer(GO_HOME); +} + +void L6470::goMark(){ + // GoMark is equivalent to GoTo(MARK), but requires less time to send. + // Note that no direction is provided; motion occurs through shortest + // path. If a direction is required, use GoTo_DIR(). + Xfer(GO_MARK); +} + + +void L6470::setMark(long value){ + + Xfer(MARK); + if (value > 0x3FFFFF) value = 0x3FFFFF; + if (value < -0x3FFFFF) value = -0x3FFFFF; + + + Xfer((byte)(value >> 16)); + Xfer((byte)(value >> 8)); + Xfer((byte)(value)); +} + + +void L6470::setMark(){ + long value = getPos(); + + Xfer(MARK); + if (value > 0x3FFFFF) value = 0x3FFFFF; + if (value < -0x3FFFFF) value = -0x3FFFFF; + + + Xfer((byte)(value >> 16)); + Xfer((byte)(value >> 8)); + Xfer((byte)(value)); +} + +void L6470::setAsHome(){ + // Sets the ABS_POS register to 0, effectively declaring the current + // position to be "HOME". + Xfer(RESET_POS); +} + +void L6470::resetDev(){ + // Reset device to power up conditions. Equivalent to toggling the STBY + // pin or cycling power. + Xfer(RESET_DEVICE); +} + +void L6470::softStop(){ + // Bring the motor to a halt using the deceleration curve. + Xfer(SOFT_STOP); +} + +void L6470::hardStop(){ + // Stop the motor right away. No deceleration. + Xfer(HARD_STOP); +} + +void L6470::softFree(){ + // Decelerate the motor and disengage + Xfer(SOFT_HIZ); +} + +void L6470::free(){ + // disengage the motor immediately with no deceleration. + Xfer(HARD_HIZ); +} + +int L6470::getStatus(){ + // Fetch and return the 16-bit value in the STATUS register. Resets + // any warning flags and exits any error states. Using GetParam() + // to read STATUS does not clear these values. + int temp = 0; + Xfer(GET_STATUS); + temp = Xfer(0)<<8; + temp |= Xfer(0); + return temp; +} + +unsigned long L6470::AccCalc(float stepsPerSecPerSec){ + // The value in the ACC register is [(steps/s/s)*(tick^2)]/(2^-40) where tick is + // 250ns (datasheet value)- 0x08A on boot. + // Multiply desired steps/s/s by .137438 to get an appropriate value for this register. + // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF. + float temp = stepsPerSecPerSec * 0.137438; + if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF; + else return (unsigned long) long(temp); +} + + +unsigned long L6470::DecCalc(float stepsPerSecPerSec){ + // The calculation for DEC is the same as for ACC. Value is 0x08A on boot. + // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF. + float temp = stepsPerSecPerSec * 0.137438; + if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF; + else return (unsigned long) long(temp); +} + +unsigned long L6470::MaxSpdCalc(float stepsPerSec){ + // The value in the MAX_SPD register is [(steps/s)*(tick)]/(2^-18) where tick is + // 250ns (datasheet value)- 0x041 on boot. + // Multiply desired steps/s by .065536 to get an appropriate value for this register + // This is a 10-bit value, so we need to make sure it remains at or below 0x3FF + float temp = stepsPerSec * .065536; + if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF; + else return (unsigned long) long(temp); +} + +unsigned long L6470::MinSpdCalc(float stepsPerSec){ + // The value in the MIN_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is + // 250ns (datasheet value)- 0x000 on boot. + // Multiply desired steps/s by 4.1943 to get an appropriate value for this register + // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF. + float temp = stepsPerSec * 4.1943; + if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF; + else return (unsigned long) long(temp); +} + +unsigned long L6470::FSCalc(float stepsPerSec){ + // The value in the FS_SPD register is ([(steps/s)*(tick)]/(2^-18))-0.5 where tick is + // 250ns (datasheet value)- 0x027 on boot. + // Multiply desired steps/s by .065536 and subtract .5 to get an appropriate value for this register + // This is a 10-bit value, so we need to make sure the value is at or below 0x3FF. + float temp = (stepsPerSec * .065536)-.5; + if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF; + else return (unsigned long) long(temp); +} + +unsigned long L6470::IntSpdCalc(float stepsPerSec){ + // The value in the INT_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is + // 250ns (datasheet value)- 0x408 on boot. + // Multiply desired steps/s by 4.1943 to get an appropriate value for this register + // This is a 14-bit value, so we need to make sure the value is at or below 0x3FFF. + float temp = stepsPerSec * 4.1943; + if( (unsigned long) long(temp) > 0x00003FFF) return 0x00003FFF; + else return (unsigned long) long(temp); +} + +unsigned long L6470::SpdCalc(float stepsPerSec){ + // When issuing RUN command, the 20-bit speed is [(steps/s)*(tick)]/(2^-28) where tick is + // 250ns (datasheet value). + // Multiply desired steps/s by 67.106 to get an appropriate value for this register + // This is a 20-bit value, so we need to make sure the value is at or below 0xFFFFF. + + float temp = stepsPerSec * 67.106; + if( (unsigned long) long(temp) > 0x000FFFFF) return 0x000FFFFF; + else return (unsigned long)temp; +} + +unsigned long L6470::Param(unsigned long value, byte bit_len){ + // Generalization of the subsections of the register read/write functionality. + // We want the end user to just write the value without worrying about length, + // so we pass a bit length parameter from the calling function. + unsigned long ret_val=0; // We'll return this to generalize this function + // for both read and write of registers. + byte byte_len = bit_len/8; // How many BYTES do we have? + if (bit_len%8 > 0) byte_len++; // Make sure not to lose any partial byte values. + // Let's make sure our value has no spurious bits set, and if the value was too + // high, max it out. + unsigned long mask = 0xffffffff >> (32-bit_len); + if (value > mask) value = mask; + // The following three if statements handle the various possible byte length + // transfers- it'll be no less than 1 but no more than 3 bytes of data. + // L6470::Xfer() sends a byte out through SPI and returns a byte received + // over SPI- when calling it, we typecast a shifted version of the masked + // value, then we shift the received value back by the same amount and + // store it until return time. + if (byte_len == 3) { + ret_val |= long(Xfer((byte)(value>>16))) << 16; + //Serial.println(ret_val, HEX); + } + if (byte_len >= 2) { + ret_val |= long(Xfer((byte)(value>>8))) << 8; + //Serial.println(ret_val, HEX); + } + if (byte_len >= 1) { + ret_val |= Xfer((byte)value); + //Serial.println(ret_val, HEX); + } + // Return the received values. Mask off any unnecessary bits, just for + // the sake of thoroughness- we don't EXPECT to see anything outside + // the bit length range but better to be safe than sorry. + return (ret_val & mask); +} + +byte L6470::Xfer(byte data){ + // This simple function shifts a byte out over SPI and receives a byte over + // SPI. Unusually for SPI devices, the dSPIN requires a toggling of the + // CS (slaveSelect) pin after each byte sent. That makes this function + // a bit more reasonable, because we can include more functionality in it. + byte data_out; + digitalWrite(_SSPin,LOW); + // SPI.transfer() both shifts a byte out on the MOSI pin AND receives a + // byte in on the MISO pin. + data_out = SPI.transfer(data); + digitalWrite(_SSPin,HIGH); + return data_out; +} + + + +void L6470::SetParam(byte param, unsigned long value){ + Xfer(SET_PARAM | param); + ParamHandler(param, value); +} + +unsigned long L6470::GetParam(byte param){ + // Realize the "get parameter" function, to read from the various registers in + // the dSPIN chip. + Xfer(GET_PARAM | param); + return ParamHandler(param, 0); +} + +long L6470::convert(unsigned long val){ + //convert 22bit 2s comp to signed long + int MSB = val >> 21; + + val = val << 11; + val = val >> 11; + + if(MSB == 1) val = val | 0b11111111111000000000000000000000; + return val; +} + +unsigned long L6470::ParamHandler(byte param, unsigned long value){ + // Much of the functionality between "get parameter" and "set parameter" is + // very similar, so we deal with that by putting all of it in one function + // here to save memory space and simplify the program. + unsigned long ret_val = 0; // This is a temp for the value to return. + // This switch structure handles the appropriate action for each register. + // This is necessary since not all registers are of the same length, either + // bit-wise or byte-wise, so we want to make sure we mask out any spurious + // bits and do the right number of transfers. That is handled by the dSPIN_Param() + // function, in most cases, but for 1-byte or smaller transfers, we call + // Xfer() directly. + switch (param) + { + // ABS_POS is the current absolute offset from home. It is a 22 bit number expressed + // in two's complement. At power up, this value is 0. It cannot be written when + // the motor is running, but at any other time, it can be updated to change the + // interpreted position of the motor. + case ABS_POS: + ret_val = Param(value, 22); + break; + // EL_POS is the current electrical position in the step generation cycle. It can + // be set when the motor is not in motion. Value is 0 on power up. + case EL_POS: + ret_val = Param(value, 9); + break; + // MARK is a second position other than 0 that the motor can be told to go to. As + // with ABS_POS, it is 22-bit two's complement. Value is 0 on power up. + case MARK: + ret_val = Param(value, 22); + break; + // SPEED contains information about the current speed. It is read-only. It does + // NOT provide direction information. + case SPEED: + ret_val = Param(0, 20); + break; + // ACC and DEC set the acceleration and deceleration rates. Set ACC to 0xFFF + // to get infinite acceleration/decelaeration- there is no way to get infinite + // deceleration w/o infinite acceleration (except the HARD STOP command). + // Cannot be written while motor is running. Both default to 0x08A on power up. + // AccCalc() and DecCalc() functions exist to convert steps/s/s values into + // 12-bit values for these two registers. + case ACC: + ret_val = Param(value, 12); + break; + case DEC: + ret_val = Param(value, 12); + break; + // MAX_SPEED is just what it says- any command which attempts to set the speed + // of the motor above this value will simply cause the motor to turn at this + // speed. Value is 0x041 on power up. + // MaxSpdCalc() function exists to convert steps/s value into a 10-bit value + // for this register. + case MAX_SPEED: + ret_val = Param(value, 10); + break; + // MIN_SPEED controls two things- the activation of the low-speed optimization + // feature and the lowest speed the motor will be allowed to operate at. LSPD_OPT + // is the 13th bit, and when it is set, the minimum allowed speed is automatically + // set to zero. This value is 0 on startup. + // MinSpdCalc() function exists to convert steps/s value into a 12-bit value for this + // register. SetLowSpeedOpt() function exists to enable/disable the optimization feature. + case MIN_SPEED: + ret_val = Param(value, 12); + break; + // FS_SPD register contains a threshold value above which microstepping is disabled + // and the dSPIN operates in full-step mode. Defaults to 0x027 on power up. + // FSCalc() function exists to convert steps/s value into 10-bit integer for this + // register. + case FS_SPD: + ret_val = Param(value, 10); + break; + // KVAL is the maximum voltage of the PWM outputs. These 8-bit values are ratiometric + // representations: 255 for full output voltage, 128 for half, etc. Default is 0x29. + // The implications of different KVAL settings is too complex to dig into here, but + // it will usually work to max the value for RUN, ACC, and DEC. Maxing the value for + // HOLD may result in excessive power dissipation when the motor is not running. + case KVAL_HOLD: + ret_val = Xfer((byte)value); + break; + case KVAL_RUN: + ret_val = Xfer((byte)value); + break; + case KVAL_ACC: + ret_val = Xfer((byte)value); + break; + case KVAL_DEC: + ret_val = Xfer((byte)value); + break; + // INT_SPD, ST_SLP, FN_SLP_ACC and FN_SLP_DEC are all related to the back EMF + // compensation functionality. Please see the datasheet for details of this + // function- it is too complex to discuss here. Default values seem to work + // well enough. + case INT_SPD: + ret_val = Param(value, 14); + break; + case ST_SLP: + ret_val = Xfer((byte)value); + break; + case FN_SLP_ACC: + ret_val = Xfer((byte)value); + break; + case FN_SLP_DEC: + ret_val = Xfer((byte)value); + break; + // K_THERM is motor winding thermal drift compensation. Please see the datasheet + // for full details on operation- the default value should be okay for most users. + case K_THERM: + ret_val = Xfer((byte)value & 0x0F); + break; + // ADC_OUT is a read-only register containing the result of the ADC measurements. + // This is less useful than it sounds; see the datasheet for more information. + case ADC_OUT: + ret_val = Xfer(0); + break; + // Set the overcurrent threshold. Ranges from 375mA to 6A in steps of 375mA. + // A set of defined constants is provided for the user's convenience. Default + // value is 3.375A- 0x08. This is a 4-bit value. + case OCD_TH: + ret_val = Xfer((byte)value & 0x0F); + break; + // Stall current threshold. Defaults to 0x40, or 2.03A. Value is from 31.25mA to + // 4A in 31.25mA steps. This is a 7-bit value. + case STALL_TH: + ret_val = Xfer((byte)value & 0x7F); + break; + // STEP_MODE controls the microstepping settings, as well as the generation of an + // output signal from the dSPIN. Bits 2:0 control the number of microsteps per + // step the part will generate. Bit 7 controls whether the BUSY/SYNC pin outputs + // a BUSY signal or a step synchronization signal. Bits 6:4 control the frequency + // of the output signal relative to the full-step frequency; see datasheet for + // that relationship as it is too complex to reproduce here. + // Most likely, only the microsteps per step value will be needed; there is a set + // of constants provided for ease of use of these values. + case STEP_MODE: + ret_val = Xfer((byte)value); + break; + // ALARM_EN controls which alarms will cause the FLAG pin to fall. A set of constants + // is provided to make this easy to interpret. By default, ALL alarms will trigger the + // FLAG pin. + case ALARM_EN: + ret_val = Xfer((byte)value); + break; + // CONFIG contains some assorted configuration bits and fields. A fairly comprehensive + // set of reasonably self-explanatory constants is provided, but users should refer + // to the datasheet before modifying the contents of this register to be certain they + // understand the implications of their modifications. Value on boot is 0x2E88; this + // can be a useful way to verify proper start up and operation of the dSPIN chip. + case CONFIG: + ret_val = Param(value, 16); + break; + // STATUS contains read-only information about the current condition of the chip. A + // comprehensive set of constants for masking and testing this register is provided, but + // users should refer to the datasheet to ensure that they fully understand each one of + // the bits in the register. + case STATUS: // STATUS is a read-only register + ret_val = Param(0, 16); + break; + default: + ret_val = Xfer((byte)(value)); + break; + } + return ret_val; +} diff --git a/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.h b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.h new file mode 100644 index 0000000000..8b57686463 --- /dev/null +++ b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.h @@ -0,0 +1,286 @@ +//////////////////////////////////////////////////////////// +//ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics +//LIBRARY Created by Adam Meyer of bildr Aug 18th 2012 +//Released as MIT license +//////////////////////////////////////////////////////////// +#ifndef L6470_h +#define L6470_h + +#include +#include + +#define SLAVE_SELECT_PIN 38 // Wire this to the CSN pin +// #define RESET 6 // Wire this to the STBY line +#define BUSYN 7 // Wire this to the BSYN line + +// constant definitions for overcurrent thresholds. Write these values to +// register dSPIN_OCD_TH to set the level at which an overcurrent even occurs. +#define OCD_TH_375mA 0x00 +#define OCD_TH_750mA 0x01 +#define OCD_TH_1125mA 0x02 +#define OCD_TH_1500mA 0x03 +#define OCD_TH_1875mA 0x04 +#define OCD_TH_2250mA 0x05 +#define OCD_TH_2625mA 0x06 +#define OCD_TH_3000mA 0x07 +#define OCD_TH_3375mA 0x08 +#define OCD_TH_3750mA 0x09 +#define OCD_TH_4125mA 0x0A +#define OCD_TH_4500mA 0x0B +#define OCD_TH_4875mA 0x0C +#define OCD_TH_5250mA 0x0D +#define OCD_TH_5625mA 0x0E +#define OCD_TH_6000mA 0x0F + +// STEP_MODE option values. +// First comes the "microsteps per step" options... +#define STEP_MODE_STEP_SEL 0x07 // Mask for these bits only. +#define STEP_SEL_1 0x00 +#define STEP_SEL_1_2 0x01 +#define STEP_SEL_1_4 0x02 +#define STEP_SEL_1_8 0x03 +#define STEP_SEL_1_16 0x04 +#define STEP_SEL_1_32 0x05 +#define STEP_SEL_1_64 0x06 +#define STEP_SEL_1_128 0x07 + +// ...next, define the SYNC_EN bit. When set, the BUSYN pin will instead +// output a clock related to the full-step frequency as defined by the +// SYNC_SEL bits below. +#define STEP_MODE_SYNC_EN 0x80 // Mask for this bit +#define SYNC_EN 0x80 + +// ...last, define the SYNC_SEL modes. The clock output is defined by +// the full-step frequency and the value in these bits- see the datasheet +// for a matrix describing that relationship (page 46). +#define STEP_MODE_SYNC_SEL 0x70 +#define SYNC_SEL_1_2 0x00 +#define SYNC_SEL_1 0x10 +#define SYNC_SEL_2 0x20 +#define SYNC_SEL_4 0x30 +#define SYNC_SEL_8 0x40 +#define SYNC_SEL_16 0x50 +#define SYNC_SEL_32 0x60 +#define SYNC_SEL_64 0x70 + +// Bit names for the ALARM_EN register. +// Each of these bits defines one potential alarm condition. +// When one of these conditions occurs and the respective bit in ALARM_EN is set, +// the FLAG pin will go low. The register must be queried to determine which event +// caused the alarm. +#define ALARM_EN_OVERCURRENT 0x01 +#define ALARM_EN_THERMAL_SHUTDOWN 0x02 +#define ALARM_EN_THERMAL_WARNING 0x04 +#define ALARM_EN_UNDER_VOLTAGE 0x08 +#define ALARM_EN_STALL_DET_A 0x10 +#define ALARM_EN_STALL_DET_B 0x20 +#define ALARM_EN_SW_TURN_ON 0x40 +#define ALARM_EN_WRONG_NPERF_CMD 0x80 + +// CONFIG register renames. + +// Oscillator options. +// The dSPIN needs to know what the clock frequency is because it uses that for some +// calculations during operation. +#define CONFIG_OSC_SEL 0x000F // Mask for this bit field. +#define CONFIG_INT_16MHZ 0x0000 // Internal 16MHz, no output +#define CONFIG_INT_16MHZ_OSCOUT_2MHZ 0x0008 // Default; internal 16MHz, 2MHz output +#define CONFIG_INT_16MHZ_OSCOUT_4MHZ 0x0009 // Internal 16MHz, 4MHz output +#define CONFIG_INT_16MHZ_OSCOUT_8MHZ 0x000A // Internal 16MHz, 8MHz output +#define CONFIG_INT_16MHZ_OSCOUT_16MHZ 0x000B // Internal 16MHz, 16MHz output +#define CONFIG_EXT_8MHZ_XTAL_DRIVE 0x0004 // External 8MHz crystal +#define CONFIG_EXT_16MHZ_XTAL_DRIVE 0x0005 // External 16MHz crystal +#define CONFIG_EXT_24MHZ_XTAL_DRIVE 0x0006 // External 24MHz crystal +#define CONFIG_EXT_32MHZ_XTAL_DRIVE 0x0007 // External 32MHz crystal +#define CONFIG_EXT_8MHZ_OSCOUT_INVERT 0x000C // External 8MHz crystal, output inverted +#define CONFIG_EXT_16MHZ_OSCOUT_INVERT 0x000D // External 16MHz crystal, output inverted +#define CONFIG_EXT_24MHZ_OSCOUT_INVERT 0x000E // External 24MHz crystal, output inverted +#define CONFIG_EXT_32MHZ_OSCOUT_INVERT 0x000F // External 32MHz crystal, output inverted + +// Configure the functionality of the external switch input +#define CONFIG_SW_MODE 0x0010 // Mask for this bit. +#define CONFIG_SW_HARD_STOP 0x0000 // Default; hard stop motor on switch. +#define CONFIG_SW_USER 0x0010 // Tie to the GoUntil and ReleaseSW + // commands to provide jog function. + // See page 25 of datasheet. + +// Configure the motor voltage compensation mode (see page 34 of datasheet) +#define CONFIG_EN_VSCOMP 0x0020 // Mask for this bit. +#define CONFIG_VS_COMP_DISABLE 0x0000 // Disable motor voltage compensation. +#define CONFIG_VS_COMP_ENABLE 0x0020 // Enable motor voltage compensation. + +// Configure overcurrent detection event handling +#define CONFIG_OC_SD 0x0080 // Mask for this bit. +#define CONFIG_OC_SD_DISABLE 0x0000 // Bridges do NOT shutdown on OC detect +#define CONFIG_OC_SD_ENABLE 0x0080 // Bridges shutdown on OC detect + +// Configure the slew rate of the power bridge output +#define CONFIG_POW_SR 0x0300 // Mask for this bit field. +#define CONFIG_SR_180V_us 0x0000 // 180V/us +#define CONFIG_SR_290V_us 0x0200 // 290V/us +#define CONFIG_SR_530V_us 0x0300 // 530V/us + +// Integer divisors for PWM sinewave generation +// See page 32 of the datasheet for more information on this. +#define CONFIG_F_PWM_DEC 0x1C00 // mask for this bit field +#define CONFIG_PWM_MUL_0_625 (0x00)<<10 +#define CONFIG_PWM_MUL_0_75 (0x01)<<10 +#define CONFIG_PWM_MUL_0_875 (0x02)<<10 +#define CONFIG_PWM_MUL_1 (0x03)<<10 +#define CONFIG_PWM_MUL_1_25 (0x04)<<10 +#define CONFIG_PWM_MUL_1_5 (0x05)<<10 +#define CONFIG_PWM_MUL_1_75 (0x06)<<10 +#define CONFIG_PWM_MUL_2 (0x07)<<10 + +// Multiplier for the PWM sinewave frequency +#define CONFIG_F_PWM_INT 0xE000 // mask for this bit field. +#define CONFIG_PWM_DIV_1 (0x00)<<13 +#define CONFIG_PWM_DIV_2 (0x01)<<13 +#define CONFIG_PWM_DIV_3 (0x02)<<13 +#define CONFIG_PWM_DIV_4 (0x03)<<13 +#define CONFIG_PWM_DIV_5 (0x04)<<13 +#define CONFIG_PWM_DIV_6 (0x05)<<13 +#define CONFIG_PWM_DIV_7 (0x06)<<13 + +// Status register bit renames- read-only bits conferring information about the +// device to the user. +#define STATUS_HIZ 0x0001 // high when bridges are in HiZ mode +#define STATUS_BUSY 0x0002 // mirrors BUSY pin +#define STATUS_SW_F 0x0004 // low when switch open, high when closed +#define STATUS_SW_EVN 0x0008 // active high, set on switch falling edge, + // cleared by reading STATUS +#define STATUS_DIR 0x0010 // Indicates current motor direction. + // High is FWD, Low is REV. +#define STATUS_NOTPERF_CMD 0x0080 // Last command not performed. +#define STATUS_WRONG_CMD 0x0100 // Last command not valid. +#define STATUS_UVLO 0x0200 // Undervoltage lockout is active +#define STATUS_TH_WRN 0x0400 // Thermal warning +#define STATUS_TH_SD 0x0800 // Thermal shutdown +#define STATUS_OCD 0x1000 // Overcurrent detected +#define STATUS_STEP_LOSS_A 0x2000 // Stall detected on A bridge +#define STATUS_STEP_LOSS_B 0x4000 // Stall detected on B bridge +#define STATUS_SCK_MOD 0x8000 // Step clock mode is active + +// Status register motor status field +#define STATUS_MOT_STATUS 0x0060 // field mask +#define STATUS_MOT_STATUS_STOPPED (0x0000)<<13 // Motor stopped +#define STATUS_MOT_STATUS_ACCELERATION (0x0001)<<13 // Motor accelerating +#define STATUS_MOT_STATUS_DECELERATION (0x0002)<<13 // Motor decelerating +#define STATUS_MOT_STATUS_CONST_SPD (0x0003)<<13 // Motor at constant speed + +// Register address redefines. +// See the Param_Handler() function for more info about these. +#define ABS_POS 0x01 +#define EL_POS 0x02 +#define MARK 0x03 +#define SPEED 0x04 +#define ACC 0x05 +#define DEC 0x06 +#define MAX_SPEED 0x07 +#define MIN_SPEED 0x08 +#define FS_SPD 0x15 +#define KVAL_HOLD 0x09 +#define KVAL_RUN 0x0A +#define KVAL_ACC 0x0B +#define KVAL_DEC 0x0C +#define INT_SPD 0x0D +#define ST_SLP 0x0E +#define FN_SLP_ACC 0x0F +#define FN_SLP_DEC 0x10 +#define K_THERM 0x11 +#define ADC_OUT 0x12 +#define OCD_TH 0x13 +#define STALL_TH 0x14 +#define STEP_MODE 0x16 +#define ALARM_EN 0x17 +#define CONFIG 0x18 +#define STATUS 0x19 + +//dSPIN commands +#define NOP 0x00 +#define SET_PARAM 0x00 +#define GET_PARAM 0x20 +#define RUN 0x50 +#define STEP_CLOCK 0x58 +#define MOVE 0x40 +#define GOTO 0x60 +#define GOTO_DIR 0x68 +#define GO_UNTIL 0x82 +#define RELEASE_SW 0x92 +#define GO_HOME 0x70 +#define GO_MARK 0x78 +#define RESET_POS 0xD8 +#define RESET_DEVICE 0xC0 +#define SOFT_STOP 0xB0 +#define HARD_STOP 0xB8 +#define SOFT_HIZ 0xA0 +#define HARD_HIZ 0xA8 +#define GET_STATUS 0xD0 + +/* dSPIN direction options */ +#define FWD 0x01 +#define REV 0x00 + +/* dSPIN action options */ +#define ACTION_RESET 0x00 +#define ACTION_COPY 0x01 + + +class L6470{ + + public: + + L6470(int SSPin); + void init(int k_value); + void setMicroSteps(int microSteps); + void setCurrent(int current); + void setMaxSpeed(int speed); + void setMinSpeed(int speed); + void setAcc(float acceleration); + void setDec(float deceleration); + void setOverCurrent(unsigned int ma_current); + void setThresholdSpeed(float threshold); + void setStallCurrent(float ma_current); + + unsigned long ParamHandler(byte param, unsigned long value); + void SetLowSpeedOpt(boolean enable); + void run(byte dir, float spd); + void Step_Clock(byte dir); + void goHome(); + void setAsHome(); + void goMark(); + void move(long n_step); + void goTo(long pos); + void goTo_DIR(byte dir, long pos); + void goUntil(byte act, byte dir, unsigned long spd); + boolean isBusy(); + void releaseSW(byte act, byte dir); + float getSpeed(); + long getPos(); + void setMark(); + void setMark(long value); + void resetPos(); + void resetDev(); + void softStop(); + void hardStop(); + void softFree(); + void free(); + int getStatus(); + void SetParam(byte param, unsigned long value); + + private: + long convert(unsigned long val); + unsigned long GetParam(byte param); + unsigned long AccCalc(float stepsPerSecPerSec); + unsigned long DecCalc(float stepsPerSecPerSec); + unsigned long MaxSpdCalc(float stepsPerSec); + unsigned long MinSpdCalc(float stepsPerSec); + unsigned long FSCalc(float stepsPerSec); + unsigned long IntSpdCalc(float stepsPerSec); + unsigned long SpdCalc(float stepsPerSec); + unsigned long Param(unsigned long value, byte bit_len); + byte Xfer(byte data); + int _SSPin; +}; + +#endif diff --git a/ArduinoAddons/Arduino_1.x.x/libraries/L6470/keywords.txt b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/keywords.txt new file mode 100644 index 0000000000..7caa3d019d --- /dev/null +++ b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/keywords.txt @@ -0,0 +1,53 @@ +####################################################### +# keywords.txt - keywords file for the L6470 library +# +# ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics +# Library by Adam Meyer of bildr Aug 18th 2012 +# +# Released as MIT license +####################################################### + +####################################### +# Datatypes (KEYWORD1) +####################################### + +L6470 KEYWORD1 + +####################################### +# Methods and Functions (KEYWORD2) +####################################### + +L6470 KEYWORD2 +init KEYWORD2 +setMicroSteps KEYWORD2 +setCurrent KEYWORD2 +setMaxSpeed KEYWORD2 +setMinSpeed KEYWORD2 +setAcc KEYWORD2 +setDec KEYWORD2 +setOverCurrent KEYWORD2 +setThresholdSpeed KEYWORD2 +setStallCurrent KEYWORD2 +ParamHandler KEYWORD2 +SetLowSpeedOpt KEYWORD2 +run KEYWORD2 +Step_Clock KEYWORD2 +goHome KEYWORD2 +goMark KEYWORD2 +move KEYWORD2 +goTo KEYWORD2 +goTo_DIR KEYWORD2 +goUntil KEYWORD2 +isBusy KEYWORD2 +releaseSW KEYWORD2 +resetPos KEYWORD2 +resetDev KEYWORD2 +softStop KEYWORD2 +hardStop KEYWORD2 +softHiZ KEYWORD2 +hardHiZ KEYWORD2 +getStatus KEYWORD2 + +####################################### +# Constants (LITERAL1) +####################################### \ No newline at end of file diff --git a/Marlin/Configuration_adv.h b/Marlin/Configuration_adv.h index 66c50ea29a..e0a9ec2605 100644 --- a/Marlin/Configuration_adv.h +++ b/Marlin/Configuration_adv.h @@ -467,61 +467,135 @@ const unsigned int dropsegments=5; //everything with less than this number of st * you need to import the TMC26XStepper library into the arduino IDE for this ******************************************************************************/ -#define HAVE_TMCDRIVER +//#define HAVE_TMCDRIVER #ifdef HAVE_TMCDRIVER - #define X_IS_TMC - #define X_MAX_CURRENT 2000 //in mA +// #define X_IS_TMC + #define X_MAX_CURRENT 1000 //in mA #define X_SENSE_RESISTOR 91 //in mOhms #define X_MICROSTEPS 16 //number of microsteps // #define X2_IS_TMC - #define X2_MAX_CURRENT 2000 //in mA + #define X2_MAX_CURRENT 1000 //in mA #define X2_SENSE_RESISTOR 91 //in mOhms #define X2_MICROSTEPS 16 //number of microsteps - #define Y_IS_TMC - #define Y_MAX_CURRENT 2000 //in mA +// #define Y_IS_TMC + #define Y_MAX_CURRENT 1000 //in mA #define Y_SENSE_RESISTOR 91 //in mOhms #define Y_MICROSTEPS 16 //number of microsteps // #define Y2_IS_TMC - #define Y2_MAX_CURRENT 2000 //in mA + #define Y2_MAX_CURRENT 1000 //in mA #define Y2_SENSE_RESISTOR 91 //in mOhms #define Y2_MICROSTEPS 16 //number of microsteps - #define Z_IS_TMC - #define Z_MAX_CURRENT 2000 //in mA +// #define Z_IS_TMC + #define Z_MAX_CURRENT 1000 //in mA #define Z_SENSE_RESISTOR 91 //in mOhms #define Z_MICROSTEPS 16 //number of microsteps // #define Z2_IS_TMC - #define Z2_MAX_CURRENT 2000 //in mA + #define Z2_MAX_CURRENT 1000 //in mA #define Z2_SENSE_RESISTOR 91 //in mOhms #define Z2_MICROSTEPS 16 //number of microsteps - #define E0_IS_TMC - #define E0_MAX_CURRENT 2000 //in mA +// #define E0_IS_TMC + #define E0_MAX_CURRENT 1000 //in mA #define E0_SENSE_RESISTOR 91 //in mOhms #define E0_MICROSTEPS 16 //number of microsteps - #define E1_IS_TMC - #define E1_MAX_CURRENT 2000 //in mA +// #define E1_IS_TMC + #define E1_MAX_CURRENT 1000 //in mA #define E1_SENSE_RESISTOR 91 //in mOhms #define E1_MICROSTEPS 16 //number of microsteps // #define E2_IS_TMC - #define E2_MAX_CURRENT 2000 //in mA + #define E2_MAX_CURRENT 1000 //in mA #define E2_SENSE_RESISTOR 91 //in mOhms #define E2_MICROSTEPS 16 //number of microsteps // #define E3_IS_TMC - #define E3_MAX_CURRENT 2000 //in mA + #define E3_MAX_CURRENT 1000 //in mA #define E3_SENSE_RESISTOR 91 //in mOhms #define E3_MICROSTEPS 16 //number of microsteps #endif +/******************************************************************************\ + * enable this section if you have L6470 motor drivers. + * you need to import the L6470 library into the arduino IDE for this + ******************************************************************************/ + +//#define HAVE_L6470DRIVER +#ifdef HAVE_L6470DRIVER + +// #define X_IS_L6470 + #define X_MICROSTEPS 16 //number of microsteps + #define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define X2_IS_L6470 + #define X2_MICROSTEPS 16 //number of microsteps + #define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define Y_IS_L6470 + #define Y_MICROSTEPS 16 //number of microsteps + #define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define Y2_IS_L6470 + #define Y2_MICROSTEPS 16 //number of microsteps + #define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define Z_IS_L6470 + #define Z_MICROSTEPS 16 //number of microsteps + #define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define Z2_IS_L6470 + #define Z2_MICROSTEPS 16 //number of microsteps + #define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define E0_IS_L6470 + #define E0_MICROSTEPS 16 //number of microsteps + #define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define E1_IS_L6470 + #define E1_MICROSTEPS 16 //number of microsteps + #define E1_MICROSTEPS 16 //number of microsteps + #define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define E2_IS_L6470 + #define E2_MICROSTEPS 16 //number of microsteps + #define E2_MICROSTEPS 16 //number of microsteps + #define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define E3_IS_L6470 + #define E3_MICROSTEPS 16 //number of microsteps + #define E3_MICROSTEPS 16 //number of microsteps + #define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +#endif + + //=========================================================================== //============================= Define Defines ============================ //=========================================================================== diff --git a/Marlin/Marlin.ino b/Marlin/Marlin.ino index 302fb3cf66..7b0c790694 100644 --- a/Marlin/Marlin.ino +++ b/Marlin/Marlin.ino @@ -59,3 +59,8 @@ #include #include #endif + +#ifdef HAVE_L6470DRIVER + #include + #include +#endif diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index 0419c48619..4331af3770 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -842,6 +842,11 @@ void st_init() #ifdef HAVE_TMCDRIVER tmc_init(); #endif + // initialise L6470 Steppers + #ifdef HAVE_L6470DRIVER + L6470_init(); + #endif + //Initialize Dir Pins #if defined(X_DIR_PIN) && X_DIR_PIN > -1 diff --git a/Marlin/stepper_indirection.cpp b/Marlin/stepper_indirection.cpp index 4c722d3696..03c4a3c48a 100644 --- a/Marlin/stepper_indirection.cpp +++ b/Marlin/stepper_indirection.cpp @@ -103,4 +103,122 @@ void tmc_init() stepperE3.start(); #endif } -#endif \ No newline at end of file +#endif + +// L6470 Driver objects and inits + +#ifdef HAVE_L6470DRIVER +#include +#include +#endif + +// L6470 Stepper objects +#ifdef X_IS_L6470 + L6470 stepperX(X_ENABLE_PIN); +#endif +#ifdef X2_IS_L6470 + L6470 stepperX2(X2_ENABLE_PIN); +#endif +#ifdef Y_IS_L6470 + L6470 stepperY(Y_ENABLE_PIN); +#endif +#ifdef Y2_IS_L6470 + L6470 stepperY2(Y2_ENABLE_PIN); +#endif +#ifdef Z_IS_L6470 + L6470 stepperZ(Z_ENABLE_PIN); +#endif +#ifdef Z2_IS_L6470 + L6470 stepperZ2(Z2_ENABLE_PIN); +#endif +#ifdef E0_IS_L6470 + L6470 stepperE0(E0_ENABLE_PIN); +#endif +#ifdef E1_IS_L6470 + L6470 stepperE1(E1_ENABLE_PIN); +#endif +#ifdef E2_IS_L6470 + L6470 stepperE2(E2_ENABLE_PIN); +#endif +#ifdef E3_IS_L6470 + L6470 stepperE3(E3_ENABLE_PIN); +#endif + + +// init routine +#ifdef HAVE_L6470DRIVER +void L6470_init() +{ +#ifdef X_IS_L6470 + stepperX.init(X_K_VAL); + stepperX.softFree(); + stepperX.setMicroSteps(X_MICROSTEPS); + stepperX.setOverCurrent(X_OVERCURRENT); //set overcurrent protection + stepperX.setStallCurrent(X_STALLCURRENT); +#endif +#ifdef X2_IS_L6470 + stepperX2.init(X2_K_VAL); + stepperX2.softFree(); + stepperX2.setMicroSteps(X2_MICROSTEPS); + stepperX2.setOverCurrent(X2_OVERCURRENT); //set overcurrent protection + stepperX2.setStallCurrent(X2_STALLCURRENT); +#endif +#ifdef Y_IS_L6470 + stepperY.init(Y_K_VAL); + stepperY.softFree(); + stepperY.setMicroSteps(Y_MICROSTEPS); + stepperY.setOverCurrent(Y_OVERCURRENT); //set overcurrent protection + stepperY.setStallCurrent(Y_STALLCURRENT); +#endif +#ifdef Y2_IS_L6470 + stepperY2.init(Y2_K_VAL); + stepperY2.softFree(); + stepperY2.setMicroSteps(Y2_MICROSTEPS); + stepperY2.setOverCurrent(Y2_OVERCURRENT); //set overcurrent protection + stepperY2.setStallCurrent(Y2_STALLCURRENT); +#endif +#ifdef Z_IS_L6470 + stepperZ.init(Z_K_VAL); + stepperZ.softFree(); + stepperZ.setMicroSteps(Z_MICROSTEPS); + stepperZ.setOverCurrent(Z_OVERCURRENT); //set overcurrent protection + stepperZ.setStallCurrent(Z_STALLCURRENT); +#endif +#ifdef Z2_IS_L6470 + stepperZ2.init(Z2_K_VAL); + stepperZ2.softFree(); + stepperZ2.setMicroSteps(Z2_MICROSTEPS); + stepperZ2.setOverCurrent(Z2_OVERCURRENT); //set overcurrent protection + stepperZ2.setStallCurrent(Z2_STALLCURRENT); +#endif +#ifdef E0_IS_L6470 + stepperE0.init(E0_K_VAL); + stepperE0.softFree(); + stepperE0.setMicroSteps(E0_MICROSTEPS); + stepperE0.setOverCurrent(E0_OVERCURRENT); //set overcurrent protection + stepperE0.setStallCurrent(E0_STALLCURRENT); +#endif +#ifdef E1_IS_L6470 + stepperE1.init(E1_K_VAL); + stepperE1.softFree(); + stepperE1.setMicroSteps(E1_MICROSTEPS); + stepperE1.setOverCurrent(E1_OVERCURRENT); //set overcurrent protection + stepperE1.setStallCurrent(E1_STALLCURRENT); +#endif +#ifdef E2_IS_L6470 + stepperE2.init(E2_K_VAL); + stepperE2.softFree(); + stepperE2.setMicroSteps(E2_MICROSTEPS); + stepperE2.setOverCurrent(E2_OVERCURRENT); //set overcurrent protection + stepperE2.setStallCurrent(E2_STALLCURRENT); +#endif +#ifdef E3_IS_L6470 + stepperE3.init(E3_K_VAL); + stepperE3.softFree(); + stepperE3.setMicroSteps(E3_MICROSTEPS); + stepperE3.setOverCurrent(E3_OVERCURRENT); //set overcurrent protection + stepperE3.setStallCurrent(E3_STALLCURRENT); +#endif +} +#endif + diff --git a/Marlin/stepper_indirection.h b/Marlin/stepper_indirection.h index 6b226b74b6..408fccbec4 100644 --- a/Marlin/stepper_indirection.h +++ b/Marlin/stepper_indirection.h @@ -160,38 +160,9 @@ #include #include -#ifdef X_IS_TMC - extern TMC26XStepper stepperX; -#endif -#ifdef X2_IS_TMC - extern TMC26XStepper stepperX2; -#endif -#ifdef Y_IS_TMC - extern TMC26XStepper stepperY; -#endif -#ifdef Y2_IS_TMC - extern TMC26XStepper stepperY2; -#endif -#ifdef Z_IS_TMC - extern TMC26XStepper stepperZ; -#endif -#ifdef Z2_IS_TMC - extern TMC26XStepper stepperZ2; -#endif -#ifdef E0_IS_TMC - extern TMC26XStepper stepperE0; -#endif -#ifdef E1_IS_TMC - extern TMC26XStepper stepperE1; -#endif -#ifdef E2_IS_TMC - extern TMC26XStepper stepperE2; -#endif -#ifdef E3_IS_TMC - extern TMC26XStepper stepperE3; -#endif void tmc_init(); #ifdef X_IS_TMC + extern TMC26XStepper stepperX; #undef X_ENABLE_INIT #define X_ENABLE_INIT ((void)0) @@ -200,8 +171,10 @@ #undef X_ENABLE_READ #define X_ENABLE_READ stepperX.isEnabled() + #endif #ifdef X2_IS_TMC + extern TMC26XStepper stepperX2; #undef X2_ENABLE_INIT #define X2_ENABLE_INIT ((void)0) @@ -212,6 +185,7 @@ #define X2_ENABLE_READ stepperX2.isEnabled() #endif #ifdef Y_IS_TMC + extern TMC26XStepper stepperY; #undef Y_ENABLE_INIT #define Y_ENABLE_INIT ((void)0) @@ -222,6 +196,7 @@ #define Y_ENABLE_READ stepperY.isEnabled() #endif #ifdef Y2_IS_TMC + extern TMC26XStepper stepperY2; #undef Y2_ENABLE_INIT #define Y2_ENABLE_INIT ((void)0) @@ -232,6 +207,7 @@ #define Y2_ENABLE_READ stepperY2.isEnabled() #endif #ifdef Z_IS_TMC + extern TMC26XStepper stepperZ; #undef Z_ENABLE_INIT #define Z_ENABLE_INIT ((void)0) @@ -242,6 +218,7 @@ #define Z_ENABLE_READ stepperZ.isEnabled() #endif #ifdef Z2_IS_TMC + extern TMC26XStepper stepperZ2; #undef Z2_ENABLE_INIT #define Z2_ENABLE_INIT ((void)0) @@ -252,6 +229,7 @@ #define Z2_ENABLE_READ stepperZ2.isEnabled() #endif #ifdef E0_IS_TMC + extern TMC26XStepper stepperE0; #undef E0_ENABLE_INIT #define E0_ENABLE_INIT ((void)0) @@ -262,6 +240,7 @@ #define E0_ENABLE_READ stepperE0.isEnabled() #endif #ifdef E1_IS_TMC + extern TMC26XStepper stepperE1; #undef E1_ENABLE_INIT #define E1_ENABLE_INIT ((void)0) @@ -272,6 +251,7 @@ #define E1_ENABLE_READ stepperE1.isEnabled() #endif #ifdef E2_IS_TMC + extern TMC26XStepper stepperE2; #undef E2_ENABLE_INIT #define E2_ENABLE_INIT ((void)0) @@ -282,6 +262,7 @@ #define E2_ENABLE_READ stepperE2.isEnabled() #endif #ifdef E3_IS_TMC + extern TMC26XStepper stepperE3; #undef E3_ENABLE_INIT #define E3_ENABLE_INIT ((void)0) @@ -291,6 +272,221 @@ #undef E3_ENABLE_READ #define E3_ENABLE_READ stepperE3.isEnabled() #endif -#endif +#endif // HAVE_TMCDRIVER + +////////////////////////////////// +// Pin redefines for L6470 drivers. +// L640 drivers have step on normal pins, but dir and everything else via SPI +////////////////////////////////// +#ifdef HAVE_L6470DRIVER + +#include +#include + + void L6470_init(); +#ifdef X_IS_L6470 + extern L6470 stepperX; + #undef X_ENABLE_INIT + #define X_ENABLE_INIT ((void)0) + + #undef X_ENABLE_WRITE + #define X_ENABLE_WRITE(STATE) {if(STATE) stepperX.Step_Clock(stepperX.getStatus() & STATUS_HIZ); else stepperX.softFree();} + + #undef X_ENABLE_READ + #define X_ENABLE_READ (stepperX.getStatus() & STATUS_HIZ) + + #undef X_DIR_INIT + #define X_DIR_INIT ((void)0) + + #undef X_DIR_WRITE + #define X_DIR_WRITE(STATE) stepperX.Step_Clock(STATE) + + #undef X_DIR_READ + #define X_DIR_READ (stepperX.getStatus() & STATUS_DIR) + +#endif +#ifdef X2_IS_L6470 + extern L6470 stepperX2; + #undef X2_ENABLE_INIT + #define X2_ENABLE_INIT ((void)0) + + #undef X2_ENABLE_WRITE + #define X2_ENABLE_WRITE(STATE) (if(STATE) stepperX2.Step_Clock(stepperX2.getStatus() & STATUS_HIZ); else stepperX2.softFree();) + + #undef X2_ENABLE_READ + #define X2_ENABLE_READ (stepperX2.getStatus() & STATUS_HIZ) + + #undef X2_DIR_INIT + #define X2_DIR_INIT ((void)0) + + #undef X2_DIR_WRITE + #define X2_DIR_WRITE(STATE) stepperX2.Step_Clock(STATE) + + #undef X2_DIR_READ + #define X2_DIR_READ (stepperX2.getStatus() & STATUS_DIR) +#endif +#ifdef Y_IS_L6470 + extern L6470 stepperY; + #undef Y_ENABLE_INIT + #define Y_ENABLE_INIT ((void)0) + + #undef Y_ENABLE_WRITE + #define Y_ENABLE_WRITE(STATE) (if(STATE) stepperY.Step_Clock(stepperY.getStatus() & STATUS_HIZ); else stepperY.softFree();) + + #undef Y_ENABLE_READ + #define Y_ENABLE_READ (stepperY.getStatus() & STATUS_HIZ) + + #undef Y_DIR_INIT + #define Y_DIR_INIT ((void)0) + + #undef Y_DIR_WRITE + #define Y_DIR_WRITE(STATE) stepperY.Step_Clock(STATE) + + #undef Y_DIR_READ + #define Y_DIR_READ (stepperY.getStatus() & STATUS_DIR) #endif +#ifdef Y2_IS_L6470 + extern L6470 stepperY2; + #undef Y2_ENABLE_INIT + #define Y2_ENABLE_INIT ((void)0) + + #undef Y2_ENABLE_WRITE + #define Y2_ENABLE_WRITE(STATE) (if(STATE) stepperY2.Step_Clock(stepperY2.getStatus() & STATUS_HIZ); else stepperY2.softFree();) + + #undef Y2_ENABLE_READ + #define Y2_ENABLE_READ (stepperY2.getStatus() & STATUS_HIZ) + + #undef Y2_DIR_INIT + #define Y2_DIR_INIT ((void)0) + + #undef Y2_DIR_WRITE + #define Y2_DIR_WRITE(STATE) stepperY2.Step_Clock(STATE) + + #undef Y2_DIR_READ + #define Y2_DIR_READ (stepperY2.getStatus() & STATUS_DIR) +#endif +#ifdef Z_IS_L6470 + extern L6470 stepperZ; + #undef Z_ENABLE_INIT + #define Z_ENABLE_INIT ((void)0) + + #undef Z_ENABLE_WRITE + #define Z_ENABLE_WRITE(STATE) (if(STATE) stepperZ.Step_Clock(stepperZ.getStatus() & STATUS_HIZ); else stepperZ.softFree();) + + #undef Z_ENABLE_READ + #define Z_ENABLE_READ (stepperZ.getStatus() & STATUS_HIZ) + + #undef Z_DIR_INIT + #define Z_DIR_INIT ((void)0) + + #undef Z_DIR_WRITE + #define Z_DIR_WRITE(STATE) stepperZ.Step_Clock(STATE) + + #undef Y_DIR_READ + #define Y_DIR_READ (stepperZ.getStatus() & STATUS_DIR) +#endif +#ifdef Z2_IS_L6470 + extern L6470 stepperZ2; + #undef Z2_ENABLE_INIT + #define Z2_ENABLE_INIT ((void)0) + + #undef Z2_ENABLE_WRITE + #define Z2_ENABLE_WRITE(STATE) (if(STATE) stepperZ2.Step_Clock(stepperZ2.getStatus() & STATUS_HIZ); else stepperZ2.softFree();) + + #undef Z2_ENABLE_READ + #define Z2_ENABLE_READ (stepperZ2.getStatus() & STATUS_HIZ) + + #undef Z2_DIR_INIT + #define Z2_DIR_INIT ((void)0) + + #undef Z2_DIR_WRITE + #define Z2_DIR_WRITE(STATE) stepperZ2.Step_Clock(STATE) + + #undef Y2_DIR_READ + #define Y2_DIR_READ (stepperZ2.getStatus() & STATUS_DIR) +#endif +#ifdef E0_IS_L6470 + extern L6470 stepperE0; + #undef E0_ENABLE_INIT + #define E0_ENABLE_INIT ((void)0) + + #undef E0_ENABLE_WRITE + #define E0_ENABLE_WRITE(STATE) (if(STATE) stepperE0.Step_Clock(stepperE0.getStatus() & STATUS_HIZ); else stepperE0.softFree();) + + #undef E0_ENABLE_READ + #define E0_ENABLE_READ (stepperE0.getStatus() & STATUS_HIZ) + + #undef E0_DIR_INIT + #define E0_DIR_INIT ((void)0) + + #undef E0_DIR_WRITE + #define E0_DIR_WRITE(STATE) stepperE0.Step_Clock(STATE) + + #undef E0_DIR_READ + #define E0_DIR_READ (stepperE0.getStatus() & STATUS_DIR) +#endif +#ifdef E1_IS_L6470 + extern L6470 stepperE1; + #undef E1_ENABLE_INIT + #define E1_ENABLE_INIT ((void)0) + + #undef E1_ENABLE_WRITE + #define E1_ENABLE_WRITE(STATE) (if(STATE) stepperE1.Step_Clock(stepperE1.getStatus() & STATUS_HIZ); else stepperE1.softFree();) + + #undef E1_ENABLE_READ + #define E1_ENABLE_READ (stepperE1.getStatus() & STATUS_HIZ) + + #undef E1_DIR_INIT + #define E1_DIR_INIT ((void)0) + + #undef E1_DIR_WRITE + #define E1_DIR_WRITE(STATE) stepperE1.Step_Clock(STATE) + + #undef E1_DIR_READ + #define E1_DIR_READ (stepperE1.getStatus() & STATUS_DIR) +#endif +#ifdef E2_IS_L6470 + extern L6470 stepperE2; + #undef E2_ENABLE_INIT + #define E2_ENABLE_INIT ((void)0) + + #undef E2_ENABLE_WRITE + #define E2_ENABLE_WRITE(STATE) (if(STATE) stepperE2.Step_Clock(stepperE2.getStatus() & STATUS_HIZ); else stepperE2.softFree();) + + #undef E2_ENABLE_READ + #define E2_ENABLE_READ (stepperE2.getStatus() & STATUS_HIZ) + + #undef E2_DIR_INIT + #define E2_DIR_INIT ((void)0) + + #undef E2_DIR_WRITE + #define E2_DIR_WRITE(STATE) stepperE2.Step_Clock(STATE) + + #undef E2_DIR_READ + #define E2_DIR_READ (stepperE2.getStatus() & STATUS_DIR) +#endif +#ifdef E3_IS_L6470 + extern L6470 stepperE3; + #undef E3_ENABLE_INIT + #define E3_ENABLE_INIT ((void)0) + + #undef E3_ENABLE_WRITE + #define E3_ENABLE_WRITE(STATE) (if(STATE) stepperE3.Step_Clock(stepperE3.getStatus() & STATUS_HIZ); else stepperE3.softFree();) + + #undef E3_ENABLE_READ + #define E3_ENABLE_READ (stepperE3.getStatus() & STATUS_HIZ) + + #undef E3_DIR_INIT + #define E3_DIR_INIT ((void)0) + + #undef E3_DIR_WRITE + #define E3_DIR_WRITE(STATE) stepperE3.Step_Clock(STATE) + + #undef E3_DIR_READ + #define E3_DIR_READ (stepperE3.getStatus() & STATUS_DIR) +#endif + +#endif //HAVE_L6470DRIVER + +#endif // STEPPER_INDIRECTION_H \ No newline at end of file