|
|
@ -1323,7 +1323,7 @@ inline bool code_value_bool() { return code_value_byte() > 0; } |
|
|
|
float code_value_temp_diff() { return code_value_float(); } |
|
|
|
#endif |
|
|
|
|
|
|
|
inline millis_t code_value_millis() { return code_value_ulong(); } |
|
|
|
FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); } |
|
|
|
inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; } |
|
|
|
|
|
|
|
bool code_seen(char code) { |
|
|
@ -1338,16 +1338,15 @@ bool code_seen(char code) { |
|
|
|
*/ |
|
|
|
bool get_target_extruder_from_command(int code) { |
|
|
|
if (code_seen('T')) { |
|
|
|
uint8_t t = code_value_byte(); |
|
|
|
if (t >= EXTRUDERS) { |
|
|
|
if (code_value_byte() >= EXTRUDERS) { |
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_CHAR('M'); |
|
|
|
SERIAL_ECHO(code); |
|
|
|
SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t); |
|
|
|
SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte()); |
|
|
|
SERIAL_EOL; |
|
|
|
return true; |
|
|
|
} |
|
|
|
target_extruder = t; |
|
|
|
target_extruder = code_value_byte(); |
|
|
|
} |
|
|
|
else |
|
|
|
target_extruder = active_extruder; |
|
|
@ -2545,10 +2544,8 @@ void gcode_get_destination() { |
|
|
|
else |
|
|
|
destination[i] = current_position[i]; |
|
|
|
} |
|
|
|
if (code_seen('F')) { |
|
|
|
float next_feedrate = code_value_linear_units(); |
|
|
|
if (next_feedrate > 0.0) feedrate = next_feedrate; |
|
|
|
} |
|
|
|
if (code_seen('F') && code_value_linear_units() > 0.0) |
|
|
|
feedrate = code_value_linear_units(); |
|
|
|
} |
|
|
|
|
|
|
|
void unknown_command_error() { |
|
|
@ -3160,7 +3157,6 @@ inline void gcode_G28() { |
|
|
|
} |
|
|
|
|
|
|
|
int8_t px, py; |
|
|
|
float z; |
|
|
|
|
|
|
|
switch (state) { |
|
|
|
case MeshReport: |
|
|
@ -3258,24 +3254,22 @@ inline void gcode_G28() { |
|
|
|
return; |
|
|
|
} |
|
|
|
if (code_seen('Z')) { |
|
|
|
z = code_value_axis_units(Z_AXIS); |
|
|
|
mbl.z_values[py][px] = code_value_axis_units(Z_AXIS); |
|
|
|
} |
|
|
|
else { |
|
|
|
SERIAL_PROTOCOLLNPGM("Z not entered."); |
|
|
|
return; |
|
|
|
} |
|
|
|
mbl.z_values[py][px] = z; |
|
|
|
break; |
|
|
|
|
|
|
|
case MeshSetZOffset: |
|
|
|
if (code_seen('Z')) { |
|
|
|
z = code_value_axis_units(Z_AXIS); |
|
|
|
mbl.z_offset = code_value_axis_units(Z_AXIS); |
|
|
|
} |
|
|
|
else { |
|
|
|
SERIAL_PROTOCOLLNPGM("Z not entered."); |
|
|
|
return; |
|
|
|
} |
|
|
|
mbl.z_offset = z; |
|
|
|
break; |
|
|
|
|
|
|
|
case MeshReset: |
|
|
@ -3807,15 +3801,12 @@ inline void gcode_G92() { |
|
|
|
#if ENABLED(ULTIPANEL) |
|
|
|
|
|
|
|
/**
|
|
|
|
* M0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
|
|
* M1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
|
|
* M0: Unconditional stop - Wait for user button press on LCD |
|
|
|
* M1: Conditional stop - Wait for user button press on LCD |
|
|
|
*/ |
|
|
|
inline void gcode_M0_M1() { |
|
|
|
char* args = current_command_args; |
|
|
|
|
|
|
|
uint8_t test_value = 12; |
|
|
|
SERIAL_ECHOPAIR("TEST", test_value); |
|
|
|
|
|
|
|
millis_t codenum = 0; |
|
|
|
bool hasP = false, hasS = false; |
|
|
|
if (code_seen('P')) { |
|
|
@ -4037,7 +4028,8 @@ inline void gcode_M31() { |
|
|
|
* S<byte> Pin status from 0 - 255 |
|
|
|
*/ |
|
|
|
inline void gcode_M42() { |
|
|
|
if (code_seen('S')) { |
|
|
|
if (!code_seen('S')) return; |
|
|
|
|
|
|
|
int pin_status = code_value_int(); |
|
|
|
if (pin_status < 0 || pin_status > 255) return; |
|
|
|
|
|
|
@ -4064,8 +4056,6 @@ inline void gcode_M42() { |
|
|
|
#endif |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
} // code_seen('S')
|
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) |
|
|
@ -4335,32 +4325,27 @@ inline void gcode_M104() { |
|
|
|
#endif |
|
|
|
|
|
|
|
if (code_seen('S')) { |
|
|
|
float temp = code_value_temp_abs(); |
|
|
|
thermalManager.setTargetHotend(temp, target_extruder); |
|
|
|
thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder); |
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) |
|
|
|
thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1); |
|
|
|
thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART) |
|
|
|
/**
|
|
|
|
* Stop the timer at the end of print, starting is managed by |
|
|
|
* 'heat and wait' M109. |
|
|
|
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot |
|
|
|
* stand by mode, for instance in a dual extruder setup, without affecting |
|
|
|
* the running print timer. |
|
|
|
*/ |
|
|
|
if (temp <= (EXTRUDE_MINTEMP)/2) { |
|
|
|
if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) { |
|
|
|
print_job_timer.stop(); |
|
|
|
LCD_MESSAGEPGM(WELCOME_MSG); |
|
|
|
} |
|
|
|
/**
|
|
|
|
* We do not check if the timer is already running because this check will |
|
|
|
* be done for us inside the Stopwatch::start() method thus a running timer |
|
|
|
* will not restart. |
|
|
|
*/ |
|
|
|
else print_job_timer.start(); |
|
|
|
#endif |
|
|
|
|
|
|
|
if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING); |
|
|
|
if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
@ -4518,11 +4503,10 @@ inline void gcode_M109() { |
|
|
|
|
|
|
|
bool no_wait_for_cooling = code_seen('S'); |
|
|
|
if (no_wait_for_cooling || code_seen('R')) { |
|
|
|
float temp = code_value_temp_abs(); |
|
|
|
thermalManager.setTargetHotend(temp, target_extruder); |
|
|
|
thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder); |
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) |
|
|
|
thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1); |
|
|
|
thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART) |
|
|
@ -4531,7 +4515,7 @@ inline void gcode_M109() { |
|
|
|
* stand by mode, for instance in a dual extruder setup, without affecting |
|
|
|
* the running print timer. |
|
|
|
*/ |
|
|
|
if (temp <= (EXTRUDE_MINTEMP)/2) { |
|
|
|
if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) { |
|
|
|
print_job_timer.stop(); |
|
|
|
LCD_MESSAGEPGM(WELCOME_MSG); |
|
|
|
} |
|
|
@ -4642,7 +4626,22 @@ inline void gcode_M109() { |
|
|
|
|
|
|
|
LCD_MESSAGEPGM(MSG_BED_HEATING); |
|
|
|
bool no_wait_for_cooling = code_seen('S'); |
|
|
|
if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs()); |
|
|
|
if (no_wait_for_cooling || code_seen('R')) { |
|
|
|
thermalManager.setTargetBed(code_value_temp_abs()); |
|
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART) |
|
|
|
if (code_value_temp_abs() > BED_MINTEMP) { |
|
|
|
/**
|
|
|
|
* We start the timer when 'heating and waiting' command arrives, LCD |
|
|
|
* functions never wait. Cooling down managed by extruders. |
|
|
|
* |
|
|
|
* We do not check if the timer is already running because this check will |
|
|
|
* be done for us inside the Stopwatch::start() method thus a running timer |
|
|
|
* will not restart. |
|
|
|
*/ |
|
|
|
print_job_timer.start(); |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0 |
|
|
|
millis_t residency_start_ms = 0; |
|
|
@ -5178,13 +5177,12 @@ inline void gcode_M200() { |
|
|
|
if (get_target_extruder_from_command(200)) return; |
|
|
|
|
|
|
|
if (code_seen('D')) { |
|
|
|
float diameter = code_value_linear_units(); |
|
|
|
// setting any extruder filament size disables volumetric on the assumption that
|
|
|
|
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
|
|
// for all extruders
|
|
|
|
volumetric_enabled = (diameter != 0.0); |
|
|
|
volumetric_enabled = (code_value_linear_units() != 0.0); |
|
|
|
if (volumetric_enabled) { |
|
|
|
filament_size[target_extruder] = diameter; |
|
|
|
filament_size[target_extruder] = code_value_linear_units(); |
|
|
|
// make sure all extruders have some sane value for the filament size
|
|
|
|
for (int i = 0; i < EXTRUDERS; i++) |
|
|
|
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; |
|
|
@ -5464,11 +5462,9 @@ inline void gcode_M220() { |
|
|
|
* M221: Set extrusion percentage (M221 T0 S95) |
|
|
|
*/ |
|
|
|
inline void gcode_M221() { |
|
|
|
if (code_seen('S')) { |
|
|
|
int sval = code_value_int(); |
|
|
|
if (get_target_extruder_from_command(221)) return; |
|
|
|
extruder_multiplier[target_extruder] = sval; |
|
|
|
} |
|
|
|
if (code_seen('S')) |
|
|
|
extruder_multiplier[target_extruder] = code_value_int(); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -5520,23 +5516,15 @@ inline void gcode_M226() { |
|
|
|
#if HAS_SERVOS |
|
|
|
|
|
|
|
/**
|
|
|
|
* M280: Get or set servo position. P<index> S<angle> |
|
|
|
* M280: Get or set servo position. P<index> [S<angle>] |
|
|
|
*/ |
|
|
|
inline void gcode_M280() { |
|
|
|
int servo_index = code_seen('P') ? code_value_int() : -1; |
|
|
|
int servo_position = 0; |
|
|
|
if (code_seen('S')) { |
|
|
|
servo_position = code_value_int(); |
|
|
|
if (servo_index >= 0 && servo_index < NUM_SERVOS) |
|
|
|
MOVE_SERVO(servo_index, servo_position); |
|
|
|
if (!code_seen('P')) return; |
|
|
|
int servo_index = code_value_int(); |
|
|
|
if (servo_index >= 0 && servo_index < NUM_SERVOS) { |
|
|
|
if (code_seen('S')) |
|
|
|
MOVE_SERVO(servo_index, code_value_int()); |
|
|
|
else { |
|
|
|
SERIAL_ERROR_START; |
|
|
|
SERIAL_ERROR("Servo "); |
|
|
|
SERIAL_ERROR(servo_index); |
|
|
|
SERIAL_ERRORLN(" out of range"); |
|
|
|
} |
|
|
|
} |
|
|
|
else if (servo_index >= 0) { |
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOPGM(" Servo "); |
|
|
|
SERIAL_ECHO(servo_index); |
|
|
@ -5544,6 +5532,13 @@ inline void gcode_M226() { |
|
|
|
SERIAL_ECHOLN(servo[servo_index].read()); |
|
|
|
} |
|
|
|
} |
|
|
|
else { |
|
|
|
SERIAL_ERROR_START; |
|
|
|
SERIAL_ERROR("Servo "); |
|
|
|
SERIAL_ERROR(servo_index); |
|
|
|
SERIAL_ERRORLN(" out of range"); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
#endif // HAS_SERVOS
|
|
|
|
|
|
|
@ -5794,12 +5789,10 @@ inline void gcode_M303() { |
|
|
|
* M365: SCARA calibration: Scaling factor, X, Y, Z axis |
|
|
|
*/ |
|
|
|
inline void gcode_M365() { |
|
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { |
|
|
|
if (code_seen(axis_codes[i])) { |
|
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) |
|
|
|
if (code_seen(axis_codes[i])) |
|
|
|
axis_scaling[i] = code_value_float(); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
#endif // SCARA
|
|
|
|
|
|
|
@ -8053,7 +8046,7 @@ void idle( |
|
|
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) { |
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR) |
|
|
|
if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING)) |
|
|
|
if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING)) |
|
|
|
handle_filament_runout(); |
|
|
|
#endif |
|
|
|
|
|
|
|