|
|
@ -698,69 +698,35 @@ void Planner::calculate_volumetric_multipliers() { |
|
|
|
#endif // PLANNER_LEVELING
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Planner::_buffer_line |
|
|
|
* |
|
|
|
* Add a new linear movement to the buffer in axis units. |
|
|
|
* Planner::_buffer_steps |
|
|
|
* |
|
|
|
* Leveling and kinematics should be applied ahead of calling this. |
|
|
|
* Add a new linear movement to the buffer (in terms of steps). |
|
|
|
* |
|
|
|
* a,b,c,e - target positions in mm and/or degrees |
|
|
|
* target - target position in steps units |
|
|
|
* fr_mm_s - (target) speed of the move |
|
|
|
* extruder - target extruder |
|
|
|
*/ |
|
|
|
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) { |
|
|
|
|
|
|
|
// The target position of the tool in absolute steps
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
|
const long target[XYZE] = { |
|
|
|
LROUND(a * axis_steps_per_mm[X_AXIS]), |
|
|
|
LROUND(b * axis_steps_per_mm[Y_AXIS]), |
|
|
|
LROUND(c * axis_steps_per_mm[Z_AXIS]), |
|
|
|
LROUND(e * axis_steps_per_mm[E_AXIS_N]) |
|
|
|
}; |
|
|
|
|
|
|
|
// When changing extruders recalculate steps corresponding to the E position
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS) |
|
|
|
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { |
|
|
|
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]); |
|
|
|
last_extruder = extruder; |
|
|
|
} |
|
|
|
#endif |
|
|
|
void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uint8_t extruder) { |
|
|
|
|
|
|
|
const int32_t da = target[X_AXIS] - position[X_AXIS], |
|
|
|
db = target[Y_AXIS] - position[Y_AXIS], |
|
|
|
dc = target[Z_AXIS] - position[Z_AXIS]; |
|
|
|
|
|
|
|
/*
|
|
|
|
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s); |
|
|
|
SERIAL_CHAR(' '); |
|
|
|
#if IS_KINEMATIC |
|
|
|
SERIAL_ECHOPAIR("A:", a); |
|
|
|
SERIAL_ECHOPAIR(" (", da); |
|
|
|
SERIAL_ECHOPAIR(") B:", b); |
|
|
|
#else |
|
|
|
SERIAL_ECHOPAIR("X:", a); |
|
|
|
int32_t de = target[E_AXIS] - position[E_AXIS]; |
|
|
|
|
|
|
|
/* <-- add a slash to enable
|
|
|
|
SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s); |
|
|
|
SERIAL_ECHOPAIR(" A:", target[A_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" (", da); |
|
|
|
SERIAL_ECHOPAIR(") Y:", b); |
|
|
|
#endif |
|
|
|
SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" (", db); |
|
|
|
#if ENABLED(DELTA) |
|
|
|
SERIAL_ECHOPAIR(") C:", c); |
|
|
|
#else |
|
|
|
SERIAL_ECHOPAIR(") Z:", c); |
|
|
|
#endif |
|
|
|
SERIAL_ECHOLNPGM(" steps) C:", target[C_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" (", dc); |
|
|
|
SERIAL_CHAR(')'); |
|
|
|
SERIAL_EOL(); |
|
|
|
SERIAL_ECHOLNPGM(" steps) E:", target[E_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" (", de); |
|
|
|
SERIAL_ECHOLNPGM(" steps)"); |
|
|
|
//*/
|
|
|
|
|
|
|
|
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
|
|
|
if (DEBUGGING(DRYRUN)) |
|
|
|
position[E_AXIS] = target[E_AXIS]; |
|
|
|
|
|
|
|
int32_t de = target[E_AXIS] - position[E_AXIS]; |
|
|
|
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) |
|
|
|
if (de) { |
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION) |
|
|
@ -1067,6 +1033,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
// Segment time im micro seconds
|
|
|
|
uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(SLOWDOWN) |
|
|
|
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) { |
|
|
|
if (segment_time_us < min_segment_time_us) { |
|
|
@ -1305,7 +1272,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (moves_queued > 1 && !UNEAR_ZERO(previous_nominal_speed)) { |
|
|
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { |
|
|
|
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
|
|
|
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
|
|
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
|
|
|
@ -1417,9 +1384,79 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
|
|
|
|
recalculate(); |
|
|
|
|
|
|
|
} // _buffer_steps()
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Planner::_buffer_line |
|
|
|
* |
|
|
|
* Add a new linear movement to the buffer in axis units. |
|
|
|
* |
|
|
|
* Leveling and kinematics should be applied ahead of calling this. |
|
|
|
* |
|
|
|
* a,b,c,e - target positions in mm and/or degrees |
|
|
|
* fr_mm_s - (target) speed of the move |
|
|
|
* extruder - target extruder |
|
|
|
*/ |
|
|
|
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) { |
|
|
|
// When changing extruders recalculate steps corresponding to the E position
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS) |
|
|
|
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { |
|
|
|
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]); |
|
|
|
last_extruder = extruder; |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
// The target position of the tool in absolute steps
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
const int32_t target[XYZE] = { |
|
|
|
LROUND(a * axis_steps_per_mm[X_AXIS]), |
|
|
|
LROUND(b * axis_steps_per_mm[Y_AXIS]), |
|
|
|
LROUND(c * axis_steps_per_mm[Z_AXIS]), |
|
|
|
LROUND(e * axis_steps_per_mm[E_AXIS_N]) |
|
|
|
}; |
|
|
|
|
|
|
|
/* <-- add a slash to enable
|
|
|
|
SERIAL_ECHOPAIR(" _buffer_line FR:", fr_mm_s); |
|
|
|
#if IS_KINEMATIC |
|
|
|
SERIAL_ECHOPAIR(" A:", a); |
|
|
|
SERIAL_ECHOPAIR(" (", target[A_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" steps) B:", b); |
|
|
|
#else |
|
|
|
SERIAL_ECHOPAIR(" X:", a); |
|
|
|
SERIAL_ECHOPAIR(" (", target[X_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" steps) Y:", b); |
|
|
|
#endif |
|
|
|
SERIAL_ECHOPAIR(" (", target[Y_AXIS]); |
|
|
|
#if ENABLED(DELTA) |
|
|
|
SERIAL_ECHOPAIR(" steps) C:", c); |
|
|
|
#else |
|
|
|
SERIAL_ECHOPAIR(" steps) Z:", c); |
|
|
|
#endif |
|
|
|
SERIAL_ECHOPAIR(" (", target[Z_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" steps) E:", e); |
|
|
|
SERIAL_ECHOPAIR(" (", target[E_AXIS]); |
|
|
|
SERIAL_ECHOLNPGM(" steps)"); |
|
|
|
//*/
|
|
|
|
|
|
|
|
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
|
|
|
if (DEBUGGING(DRYRUN)) |
|
|
|
position[E_AXIS] = target[E_AXIS]; |
|
|
|
|
|
|
|
// Always split the first move in two so it can chain
|
|
|
|
if (!blocks_queued()) { |
|
|
|
DISABLE_STEPPER_DRIVER_INTERRUPT(); |
|
|
|
#define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1 |
|
|
|
const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) }; |
|
|
|
_buffer_steps(between, fr_mm_s, extruder); |
|
|
|
_buffer_steps(target, fr_mm_s, extruder); |
|
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT(); |
|
|
|
} |
|
|
|
else |
|
|
|
_buffer_steps(target, fr_mm_s, extruder); |
|
|
|
|
|
|
|
stepper.wake_up(); |
|
|
|
|
|
|
|
} // buffer_line()
|
|
|
|
} // _buffer_line()
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Directly set the planner XYZ position (and stepper positions) |
|
|
|