|
@ -7831,76 +7831,59 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
|
|
|
|
|
|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
|
|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
|
|
void mesh_buffer_line(float x, float y, float z, const float e, float fr_mm_s, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { |
|
|
void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { |
|
|
if (!mbl.active()) { |
|
|
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)), |
|
|
planner.buffer_line(x, y, z, e, fr_mm_s, extruder); |
|
|
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)), |
|
|
set_current_to_destination(); |
|
|
cx2 = mbl.cell_index_x(RAW_POSITION(destination[X_AXIS], X_AXIS)), |
|
|
return; |
|
|
cy2 = mbl.cell_index_y(RAW_POSITION(destination[Y_AXIS], Y_AXIS)); |
|
|
} |
|
|
NOMORE(cx1, MESH_NUM_X_POINTS - 2); |
|
|
int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)), |
|
|
NOMORE(cy1, MESH_NUM_Y_POINTS - 2); |
|
|
pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)), |
|
|
NOMORE(cx2, MESH_NUM_X_POINTS - 2); |
|
|
cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)), |
|
|
NOMORE(cy2, MESH_NUM_Y_POINTS - 2); |
|
|
cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS)); |
|
|
|
|
|
NOMORE(pcx, MESH_NUM_X_POINTS - 2); |
|
|
if (cx1 == cx2 && cy1 == cy2) { |
|
|
NOMORE(pcy, MESH_NUM_Y_POINTS - 2); |
|
|
|
|
|
NOMORE(cx, MESH_NUM_X_POINTS - 2); |
|
|
|
|
|
NOMORE(cy, MESH_NUM_Y_POINTS - 2); |
|
|
|
|
|
if (pcx == cx && pcy == cy) { |
|
|
|
|
|
// Start and end on same mesh square
|
|
|
// Start and end on same mesh square
|
|
|
planner.buffer_line(x, y, z, e, fr_mm_s, extruder); |
|
|
line_to_destination(fr_mm_m); |
|
|
set_current_to_destination(); |
|
|
set_current_to_destination(); |
|
|
return; |
|
|
return; |
|
|
} |
|
|
} |
|
|
float nx, ny, nz, ne, normalized_dist; |
|
|
|
|
|
if (cx > pcx && TEST(x_splits, cx)) { |
|
|
#define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) |
|
|
nx = mbl.get_probe_x(cx) + home_offset[X_AXIS]; |
|
|
|
|
|
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); |
|
|
float normalized_dist, end[NUM_AXIS]; |
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
|
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; |
|
|
// Split at the left/front border of the right/top square
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); |
|
|
CBI(x_splits, cx); |
|
|
if (cx2 != cx1 && TEST(x_splits, gcx)) { |
|
|
} |
|
|
memcpy(end, destination, sizeof(end)); |
|
|
else if (cx < pcx && TEST(x_splits, pcx)) { |
|
|
destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS]; |
|
|
nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS]; |
|
|
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); |
|
|
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); |
|
|
destination[Y_AXIS] = MBL_SEGMENT_END(Y); |
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
CBI(x_splits, gcx); |
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; |
|
|
} |
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
else if (cy2 != cy1 && TEST(y_splits, gcy)) { |
|
|
CBI(x_splits, pcx); |
|
|
memcpy(end, destination, sizeof(end)); |
|
|
} |
|
|
destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS]; |
|
|
else if (cy > pcy && TEST(y_splits, cy)) { |
|
|
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); |
|
|
ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS]; |
|
|
destination[X_AXIS] = MBL_SEGMENT_END(X); |
|
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); |
|
|
CBI(y_splits, gcy); |
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
|
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; |
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
|
|
CBI(y_splits, cy); |
|
|
|
|
|
} |
|
|
|
|
|
else if (cy < pcy && TEST(y_splits, pcy)) { |
|
|
|
|
|
ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS]; |
|
|
|
|
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); |
|
|
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
|
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; |
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
|
|
CBI(y_splits, pcy); |
|
|
|
|
|
} |
|
|
} |
|
|
else { |
|
|
else { |
|
|
// Already split on a border
|
|
|
// Already split on a border
|
|
|
planner.buffer_line(x, y, z, e, fr_mm_s, extruder); |
|
|
line_to_destination(fr_mm_m); |
|
|
set_current_to_destination(); |
|
|
set_current_to_destination(); |
|
|
return; |
|
|
return; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
destination[Z_AXIS] = MBL_SEGMENT_END(Z); |
|
|
|
|
|
destination[E_AXIS] = MBL_SEGMENT_END(E); |
|
|
|
|
|
|
|
|
// Do the split and look for more borders
|
|
|
// Do the split and look for more borders
|
|
|
destination[X_AXIS] = nx; |
|
|
mesh_line_to_destination(fr_mm_m, x_splits, y_splits); |
|
|
destination[Y_AXIS] = ny; |
|
|
|
|
|
destination[Z_AXIS] = nz; |
|
|
// Restore destination from stack
|
|
|
destination[E_AXIS] = ne; |
|
|
memcpy(destination, end, sizeof(end)); |
|
|
mesh_buffer_line(nx, ny, nz, ne, fr_mm_s, extruder, x_splits, y_splits); |
|
|
mesh_line_to_destination(fr_mm_m, x_splits, y_splits); |
|
|
destination[X_AXIS] = x; |
|
|
|
|
|
destination[Y_AXIS] = y; |
|
|
|
|
|
destination[Z_AXIS] = z; |
|
|
|
|
|
destination[E_AXIS] = e; |
|
|
|
|
|
mesh_buffer_line(x, y, z, e, fr_mm_s, extruder, x_splits, y_splits); |
|
|
|
|
|
} |
|
|
} |
|
|
#endif // MESH_BED_LEVELING
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
@ -7997,11 +7980,13 @@ void mesh_buffer_line(float x, float y, float z, const float e, float fr_mm_s, c |
|
|
} |
|
|
} |
|
|
else { |
|
|
else { |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder); |
|
|
if (mbl.active()) { |
|
|
|
|
|
mesh_line_to_destination(MMM_SCALED(feedrate_mm_m)); |
|
|
return false; |
|
|
return false; |
|
|
#else |
|
|
} |
|
|
line_to_destination(MMM_SCALED(feedrate_mm_m)); |
|
|
else |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
line_to_destination(MMM_SCALED(feedrate_mm_m)); |
|
|
} |
|
|
} |
|
|
return true; |
|
|
return true; |
|
|
} |
|
|
} |
|
|