|
@ -47,18 +47,16 @@ |
|
|
* as possible to determine if this is the case. If this move is within the same cell, we will |
|
|
* as possible to determine if this is the case. If this move is within the same cell, we will |
|
|
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave |
|
|
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave |
|
|
*/ |
|
|
*/ |
|
|
const float start[XYZE] = { |
|
|
#if ENABLED(SKEW_CORRECTION) |
|
|
current_position[X_AXIS], |
|
|
// For skew correction just adjust the destination point and we're done
|
|
|
current_position[Y_AXIS], |
|
|
float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] }, |
|
|
current_position[Z_AXIS], |
|
|
end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] }; |
|
|
current_position[E_AXIS] |
|
|
planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]); |
|
|
}, |
|
|
planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]); |
|
|
end[XYZE] = { |
|
|
#else |
|
|
destination[X_AXIS], |
|
|
const float (&start)[XYZE] = current_position, |
|
|
destination[Y_AXIS], |
|
|
(&end)[XYZE] = destination; |
|
|
destination[Z_AXIS], |
|
|
#endif |
|
|
destination[E_AXIS] |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
const int cell_start_xi = get_cell_index_x(start[X_AXIS]), |
|
|
const int cell_start_xi = get_cell_index_x(start[X_AXIS]), |
|
|
cell_start_yi = get_cell_index_y(start[Y_AXIS]), |
|
|
cell_start_yi = get_cell_index_y(start[Y_AXIS]), |
|
@ -66,10 +64,10 @@ |
|
|
cell_dest_yi = get_cell_index_y(end[Y_AXIS]); |
|
|
cell_dest_yi = get_cell_index_y(end[Y_AXIS]); |
|
|
|
|
|
|
|
|
if (g26_debug_flag) { |
|
|
if (g26_debug_flag) { |
|
|
SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]); |
|
|
SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]); |
|
|
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); |
|
|
SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]); |
|
|
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); |
|
|
SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]); |
|
|
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); |
|
|
SERIAL_ECHOPAIR(", ee=", destination[E_AXIS]); |
|
|
SERIAL_CHAR(')'); |
|
|
SERIAL_CHAR(')'); |
|
|
SERIAL_EOL(); |
|
|
SERIAL_EOL(); |
|
|
debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()")); |
|
|
debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()")); |
|
@ -416,12 +414,19 @@ |
|
|
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
|
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
|
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
|
|
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float (&raw)[XYZE], const float &fr) { |
|
|
inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) { |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SKEW_CORRECTION) |
|
|
|
|
|
float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] }; |
|
|
|
|
|
planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); |
|
|
|
|
|
#else |
|
|
|
|
|
const float (&raw)[XYZE] = in_raw; |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
|
|
|
|
|
|
DELTA_RAW_IK(); |
|
|
DELTA_RAW_IK(); |
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder); |
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder); |
|
|
|
|
|
|
|
|
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
|
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
|
|
|
|
|
|
@ -434,11 +439,11 @@ |
|
|
scara_oldB = delta[B_AXIS]; |
|
|
scara_oldB = delta[B_AXIS]; |
|
|
float s_feedrate = max(adiff, bdiff) * scara_feed_factor; |
|
|
float s_feedrate = max(adiff, bdiff) * scara_feed_factor; |
|
|
|
|
|
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder); |
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder); |
|
|
|
|
|
|
|
|
#else // CARTESIAN
|
|
|
#else // CARTESIAN
|
|
|
|
|
|
|
|
|
planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder); |
|
|
planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder); |
|
|
|
|
|
|
|
|
#endif |
|
|
#endif |
|
|
} |
|
|
} |
|
@ -461,7 +466,7 @@ |
|
|
* Returns true if did NOT move, false if moved (requires current_position update). |
|
|
* Returns true if did NOT move, false if moved (requires current_position update). |
|
|
*/ |
|
|
*/ |
|
|
|
|
|
|
|
|
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float rtarget[XYZE], const float &feedrate) { |
|
|
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) { |
|
|
|
|
|
|
|
|
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
return true; // did not move, so current_position still accurate
|
|
|
return true; // did not move, so current_position still accurate
|
|
|