|
|
@ -7610,13 +7610,14 @@ inline void gcode_M205() { |
|
|
|
/**
|
|
|
|
* M665: Set delta configurations |
|
|
|
* |
|
|
|
* H = diagonal rod // AC-version
|
|
|
|
* H = delta height |
|
|
|
* L = diagonal rod |
|
|
|
* R = delta radius |
|
|
|
* S = segments per second |
|
|
|
* A = Alpha (Tower 1) diagonal rod trim |
|
|
|
* B = Beta (Tower 2) diagonal rod trim |
|
|
|
* C = Gamma (Tower 3) diagonal rod trim |
|
|
|
* B = delta calibration radius |
|
|
|
* X = Alpha (Tower 1) angle trim |
|
|
|
* Y = Beta (Tower 2) angle trim |
|
|
|
* Z = Rotate A and B by this angle |
|
|
|
*/ |
|
|
|
inline void gcode_M665() { |
|
|
|
if (code_seen('H')) { |
|
|
@ -7628,11 +7629,11 @@ inline void gcode_M205() { |
|
|
|
if (code_seen('R')) delta_radius = code_value_linear_units(); |
|
|
|
if (code_seen('S')) delta_segments_per_second = code_value_float(); |
|
|
|
if (code_seen('B')) delta_calibration_radius = code_value_float(); |
|
|
|
if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units(); |
|
|
|
if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units(); |
|
|
|
if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_float(); |
|
|
|
if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_float(); |
|
|
|
if (code_seen('Z')) { // rotate all 3 axis for Z = 0
|
|
|
|
delta_tower_angle_trim[A_AXIS] -= code_value_linear_units(); |
|
|
|
delta_tower_angle_trim[B_AXIS] -= code_value_linear_units(); |
|
|
|
delta_tower_angle_trim[A_AXIS] -= code_value_float(); |
|
|
|
delta_tower_angle_trim[B_AXIS] -= code_value_float(); |
|
|
|
} |
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod); |
|
|
|
} |
|
|
@ -11235,32 +11236,36 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { |
|
|
|
* Returns true if the caller didn't update current_position. |
|
|
|
*/ |
|
|
|
inline bool prepare_move_to_destination_cartesian() { |
|
|
|
// Do not use feedrate_percentage for E or Z only moves
|
|
|
|
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) { |
|
|
|
line_to_destination(); |
|
|
|
} |
|
|
|
else { |
|
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
|
if (mbl.active()) { |
|
|
|
mesh_line_to_destination(MMS_SCALED(feedrate_mm_s)); |
|
|
|
return true; |
|
|
|
} |
|
|
|
else |
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL) |
|
|
|
if (ubl.state.active) { |
|
|
|
ubl_line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); |
|
|
|
return true; |
|
|
|
} |
|
|
|
else |
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
|
if (planner.abl_enabled) { |
|
|
|
bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s)); |
|
|
|
return true; |
|
|
|
} |
|
|
|
else |
|
|
|
#endif |
|
|
|
line_to_destination(MMS_SCALED(feedrate_mm_s)); |
|
|
|
} |
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|
|
|
const float fr_scaled = MMS_SCALED(feedrate_mm_s); |
|
|
|
if (ubl.state.active) { |
|
|
|
ubl_line_to_destination_cartesian(fr_scaled, active_extruder); |
|
|
|
return true; |
|
|
|
} |
|
|
|
else |
|
|
|
line_to_destination(fr_scaled); |
|
|
|
#else |
|
|
|
// Do not use feedrate_percentage for E or Z only moves
|
|
|
|
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) |
|
|
|
line_to_destination(); |
|
|
|
else { |
|
|
|
const float fr_scaled = MMS_SCALED(feedrate_mm_s); |
|
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
|
if (mbl.active()) { |
|
|
|
mesh_line_to_destination(fr_scaled); |
|
|
|
return true; |
|
|
|
} |
|
|
|
else |
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
|
if (planner.abl_enabled) { |
|
|
|
bilinear_line_to_destination(fr_scaled); |
|
|
|
return true; |
|
|
|
} |
|
|
|
else |
|
|
|
#endif |
|
|
|
line_to_destination(fr_scaled); |
|
|
|
} |
|
|
|
#endif |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|