Browse Source

Adding Melzi board

these are the files needed to support the Melzi board
pull/1/head
Bo Herrmannsen 10 years ago
parent
commit
1ba7c31395
  1. 20
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/boards.txt
  2. 1090
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/bootloaders/atmega644p/ATmegaBOOT.c
  3. 117
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/bootloaders/atmega644p/ATmegaBOOT_1284P.hex
  4. 56
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/bootloaders/atmega644p/Makefile
  5. 215
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Arduino.h
  6. 239
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/CDC.cpp
  7. 26
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Client.h
  8. 520
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/HID.cpp
  9. 519
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/HardwareSerial.cpp
  10. 115
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/HardwareSerial.h
  11. 56
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/IPAddress.cpp
  12. 76
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/IPAddress.h
  13. 23
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Platform.h
  14. 268
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Print.cpp
  15. 81
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Print.h
  16. 40
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Printable.h
  17. 9
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Server.h
  18. 270
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Stream.cpp
  19. 96
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Stream.h
  20. 616
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Tone.cpp
  21. 196
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/USBAPI.h
  22. 684
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/USBCore.cpp
  23. 303
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/USBCore.h
  24. 63
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/USBDesc.h
  25. 88
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Udp.h
  26. 168
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WCharacter.h
  27. 322
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WInterrupts.c
  28. 60
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WMath.cpp
  29. 645
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WString.cpp
  30. 205
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WString.h
  31. 515
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/binary.h
  32. 20
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/main.cpp
  33. 18
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/new.cpp
  34. 22
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/new.h
  35. 324
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring.c
  36. 282
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_analog.c
  37. 178
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_digital.c
  38. 71
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_private.h
  39. 69
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_pulse.c
  40. 55
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_shift.c
  41. 286
      ArduinoAddons/Arduino_1.x.x/hardware/Melzi/variants/standard/pins_arduino.h

20
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/boards.txt

@ -0,0 +1,20 @@
##############################################################
atmega1284.name=Melzi W/ ATmega1284p 16mhz
atmega1284.upload.protocol=arduino
atmega1284.upload.maximum_size=129024
atmega1284.upload.speed=57600
atmega1284.bootloader.low_fuses=0xD6
atmega1284.bootloader.high_fuses=0xD4
atmega1284.bootloader.extended_fuses=0xFD
atmega1284.bootloader.path=atmega644p
atmega1284.bootloader.file=ATmegaBOOT_1284P.hex
atmega1284.bootloader.unlock_bits=0x3F
atmega1284.bootloader.lock_bits=0x0F
atmega1284.build.mcu=atmega1284p
atmega1284.build.f_cpu=16000000L
atmega1284.build.core=arduino
atmega1284.build.variant=standard

1090
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/bootloaders/atmega644p/ATmegaBOOT.c

File diff suppressed because it is too large

117
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/bootloaders/atmega644p/ATmegaBOOT_1284P.hex

@ -0,0 +1,117 @@
:020000021000EC
:10F800000C9446FC0C9465FC0C9465FC0C9465FC13
:10F810000C9465FC0C9465FC0C9465FC0C9465FCE4
:10F820000C9465FC0C9465FC0C9465FC0C9465FCD4
:10F830000C9465FC0C9465FC0C9465FC0C9465FCC4
:10F840000C9465FC0C9465FC0C9465FC0C9465FCB4
:10F850000C9465FC0C9465FC0C9465FC0C9465FCA4
:10F860000C9465FC0C9465FC0C9465FC0C9465FC94
:10F870000C9465FC0C9465FC0C9465FC0C9465FC84
:10F880000C9465FC0C9465FC0C9465FC11241FBE63
:10F89000CFEFD0E4DEBFCDBF11E0A0E0B1E0E6E005
:10F8A000FFEF01E00BBF02C007900D92A230B1073D
:10F8B000D9F712E0A2E0B1E001C01D92AD30B1076E
:10F8C000E1F70E945FFD0C9481FF0C9400FC909185
:10F8D0000201913039F49091C00095FFFCCF8093E4
:10F8E000C6000895923031F49091C80095FFFCCF86
:10F8F0008093CE0008951F93982F95959595959593
:10F900009595905D182F1F701A3014F0195A01C088
:10F91000105D892F0E9467FC812F0E9467FC1F9158
:10F920000895EF92FF920F931F938091020181300F
:10F93000F1F4EE24FF24870113C00894E11CF11CAC
:10F94000011D111D81E0E81682E1F8068AE708072B
:10F9500080E0180728F0E0910401F0910501099575
:10F960008091C00087FFE9CF8091C60021C082301E
:10F97000F1F4EE24FF24870113C00894E11CF11C6C
:10F98000011D111D81E0E81682E1F8068AE70807EB
:10F9900080E0180728F0E0910401F0910501099535
:10F9A0008091C80087FFE9CF8091CE0001C080E040
:10F9B0001F910F91FF90EF9008951F930E9491FC6B
:10F9C000182F0E9467FC113614F0175503C010332E
:10F9D0000CF01053812F1F9108951F930E94DDFC9E
:10F9E000182F0E94DDFC1295107F810F1F91089542
:10F9F0009091020112C0913039F42091C00027FF8C
:10FA0000FCCF2091C60008C0923031F42091C8008C
:10FA100027FFFCCF2091CE008150882361F7089505
:10FA20001F93182F0E9491FC803251F484E10E94B0
:10FA300067FC812F0E9467FC80E10E9467FC0CC07C
:10FA4000809103018F5F80930301853029F4E09159
:10FA50000401F091050109951F9108950E9491FC00
:10FA6000803239F484E10E9467FC80E10E9467FCE7
:10FA70000895809103018F5F80930301853029F4FD
:10FA8000E0910401F09105010995089515C0289AA7
:10FA90002FEF31EE44E0215030404040E1F700C00C
:10FAA000000028982FEF31EE44E0215030404040D4
:10FAB000E1F700C000008150882349F70895BF9204
:10FAC000CF92DF92EF92FF920F931F93CF93DF932A
:10FAD00094B714BE8091600088618093600010929A
:10FAE000600091FD05C0E0910401F09105010995C8
:10FAF00081E08093020180E18093C4001092C500F0
:10FB00001092C00086E08093C20088E18093C1001B
:10FB1000209A84E00E9446FDBB24B3940E9491FC8D
:10FB2000803309F441C08133E1F40E9491FC8032BA
:10FB300009F0C3C184E10E9467FC81E40E9467FC74
:10FB400086E50E9467FC82E50E9467FC80E20E94D5
:10FB500067FC89E40E9467FC83E50E9467FC80E5FE
:10FB600029C1803439F40E9491FC8638E8F00E9463
:10FB700091FC1AC0813499F40E9491FC803811F4F0
:10FB800082E098C1813811F481E094C1823811F487
:10FB900080E190C1883909F08CC183E08BC1823447
:10FBA00031F484E10E94F8FC0E942EFDB7CF853429
:10FBB00011F485E0F7CF8035B9F38235A9F38135AB
:10FBC00031F40E942EFD88E080936000FFCF8535E0
:10FBD00049F40E9491FC809306010E9491FC80935D
:10FBE0000701E2CF8635C9F40E9491FC803389F485
:10FBF0000E9491FC0E9491FC082F0E9491FC00231E
:10FC000011F48EE157C1013011F487E953C185E049
:10FC100051C183E00E94F8FC4CC1843609F0D0C089
:10FC20000E9491FC809309020E9491FC809308023B
:10FC300080910C028E7F80930C020E9491FC85348F
:10FC400029F480910C02816080930C0258E0C52E4B
:10FC500051E0D52E760100E010E007C00E9491FC33
:10FC6000F70181937F010F5F1F4F809108029091F0
:10FC700009020817190790F30E9491FC803209F0DD
:10FC80001CC180910C0280FF29C0809106019091D7
:10FC90000701880F991F909307018093060100E0E8
:10FCA00010E014C0F60161916F01809106019091FE
:10FCB00007010E9473FF8091060190910701019650
:10FCC00090930701809306010F5F1F4F80910802F8
:10FCD000909109020817190728F36BC0809107015A
:10FCE000880F880B8B2180930B028BBF80910601BC
:10FCF00090910701880F991F909307018093060147
:10FD00008091080280FF09C0809108029091090249
:10FD100001969093090280930802F894F999FECF16
:10FD20001127E0910601F0910701C8E0D1E0809130
:10FD3000080290910902103091F40091570001706F
:10FD40000130D9F303E000935700E8950091570084
:10FD500001700130D9F301E100935700E895099053
:10FD600019900091570001700130D9F301E0009320
:10FD70005700E8951395103898F011270091570017
:10FD800001700130D9F305E000935700E895009128
:10FD9000570001700130D9F301E100935700E89555
:10FDA0003296029709F0C7CF103011F00296E5CFD6
:10FDB000112484E10E9467FC80E10E9467FCAECEC2
:10FDC000843709F063C00E9491FC809309020E946D
:10FDD00091FC809308028091060190910701209187
:10FDE0000C0297FF02C0226001C02D7F20930C02FD
:10FDF000880F991F90930701809306010E9491FC40
:10FE000020910C02853411F4216001C02E7F2093D3
:10FE10000C020E9491FC803209F080CE84E10E94A5
:10FE200067FC00E010E02AC080910C0280FF07C050
:10FE300080910601909107010E946BFF12C0E09132
:10FE40000601F091070181FD02C084910AC0CF0133
:10FE5000A0E0B0E080509040AF4FBF4FABBFFC017F
:10FE600087910E9467FC809106019091070101969D
:10FE700090930701809306010F5F1F4F8091080246
:10FE8000909109020817190778F296CF853779F40F
:10FE90000E9491FC803289F484E10E9467FC8EE12B
:10FEA0000E9467FC87E90E9467FC85E083CF863764
:10FEB00021F480E00E9410FD31CE809103018F5F1C
:10FEC00080930301853009F029CEE0910401F0917F
:10FED0000501099523CEF999FECF92BD81BDF89A0F
:10FEE000992780B50895262FF999FECF1FBA92BDA4
:10FEF00081BD20BD0FB6F894FA9AF99A0FBE01960B
:06FF00000895F894FFCF04
:02FF0600800079
:040000031000F800F1
:00000001FF

56
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/bootloaders/atmega644p/Makefile

@ -0,0 +1,56 @@
# Makefile for ATmegaBOOT
# E.Lins, 18.7.2005
# $Id$
# program name should not be changed...
PROGRAM = ATmegaBOOT_1284P
# enter the target CPU frequency
AVR_FREQ = 16000000L
MCU_TARGET = atmega1284p
LDSECTION = --section-start=.text=0x1F800
OBJ = $(PROGRAM).o
OPTIMIZE = -Os
DEFS = -DWATCHDOG_MODS -DBAUD_RATE=57600
LIBS =
CC = avr-gcc
# Override is only needed by avr-lib build system.
override CFLAGS = -Wall $(OPTIMIZE) -mmcu=$(MCU_TARGET) -DF_CPU=$(AVR_FREQ) $(DEFS)
override LDFLAGS = -Wl,$(LDSECTION)
#override LDFLAGS = -Wl,-Map,$(PROGRAM).map,$(LDSECTION)
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
all: CFLAGS += '-DMAX_TIME_COUNT=16000000L>>1' -DADABOOT
all: $(PROGRAM).hex
$(PROGRAM).hex: $(PROGRAM).elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@
$(PROGRAM).elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS)
$(OBJ): ATmegaBOOT.c
avr-gcc $(CFLAGS) $(LDFLAGS) -c -Wall -mmcu=$(MCU_TARGET) ATmegaBOOT.c -o $(PROGRAM).o
%.lst: %.elf
$(OBJDUMP) -h -S $< > $@
%.srec: %.elf
$(OBJCOPY) -j .text -j .data -O srec $< $@
%.bin: %.elf
$(OBJCOPY) -j .text -j .data -O binary $< $@
clean:
rm -rf *.o *.elf *.lst *.map *.sym *.lss *.eep *.srec *.bin *.hex

215
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Arduino.h

@ -0,0 +1,215 @@
#ifndef Arduino_h
#define Arduino_h
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <avr/pgmspace.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "binary.h"
#ifdef __cplusplus
extern "C"{
#endif
#define HIGH 0x1
#define LOW 0x0
#define INPUT 0x0
#define OUTPUT 0x1
#define INPUT_PULLUP 0x2
#define true 0x1
#define false 0x0
#define PI 3.1415926535897932384626433832795
#define HALF_PI 1.5707963267948966192313216916398
#define TWO_PI 6.283185307179586476925286766559
#define DEG_TO_RAD 0.017453292519943295769236907684886
#define RAD_TO_DEG 57.295779513082320876798154814105
#define SERIAL 0x0
#define DISPLAY 0x1
#define LSBFIRST 0
#define MSBFIRST 1
#define CHANGE 1
#define FALLING 2
#define RISING 3
#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) || defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
#define DEFAULT 0
#define EXTERNAL 1
#define INTERNAL 2
#else
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__)
#define INTERNAL1V1 2
#define INTERNAL2V56 3
#else
#define INTERNAL 3
#endif
#define DEFAULT 1
#define EXTERNAL 0
#endif
// undefine stdlib's abs if encountered
#ifdef abs
#undef abs
#endif
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(x) ((x)>0?(x):-(x))
#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
#define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
#define radians(deg) ((deg)*DEG_TO_RAD)
#define degrees(rad) ((rad)*RAD_TO_DEG)
#define sq(x) ((x)*(x))
#define interrupts() sei()
#define noInterrupts() cli()
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
#define clockCyclesToMicroseconds(a) ( (a) / clockCyclesPerMicrosecond() )
#define microsecondsToClockCycles(a) ( (a) * clockCyclesPerMicrosecond() )
#define lowByte(w) ((uint8_t) ((w) & 0xff))
#define highByte(w) ((uint8_t) ((w) >> 8))
#define bitRead(value, bit) (((value) >> (bit)) & 0x01)
#define bitSet(value, bit) ((value) |= (1UL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))
#define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) : bitClear(value, bit))
typedef unsigned int word;
#define bit(b) (1UL << (b))
typedef uint8_t boolean;
typedef uint8_t byte;
void init(void);
void pinMode(uint8_t, uint8_t);
void digitalWrite(uint8_t, uint8_t);
int digitalRead(uint8_t);
int analogRead(uint8_t);
void analogReference(uint8_t mode);
void analogWrite(uint8_t, int);
unsigned long millis(void);
unsigned long micros(void);
void delay(unsigned long);
void delayMicroseconds(unsigned int us);
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout);
void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val);
uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder);
void attachInterrupt(uint8_t, void (*)(void), int mode);
void detachInterrupt(uint8_t);
void setup(void);
void loop(void);
// Get the bit location within the hardware port of the given virtual pin.
// This comes from the pins_*.c file for the active board configuration.
#define analogInPinToBit(P) (P)
// On the ATmega1280, the addresses of some of the port registers are
// greater than 255, so we can't store them in uint8_t's.
extern const uint16_t PROGMEM port_to_mode_PGM[];
extern const uint16_t PROGMEM port_to_input_PGM[];
extern const uint16_t PROGMEM port_to_output_PGM[];
extern const uint8_t PROGMEM digital_pin_to_port_PGM[];
// extern const uint8_t PROGMEM digital_pin_to_bit_PGM[];
extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[];
extern const uint8_t PROGMEM digital_pin_to_timer_PGM[];
// Get the bit location within the hardware port of the given virtual pin.
// This comes from the pins_*.c file for the active board configuration.
//
// These perform slightly better as macros compared to inline functions
//
#define digitalPinToPort(P) ( pgm_read_byte( digital_pin_to_port_PGM + (P) ) )
#define digitalPinToBitMask(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM + (P) ) )
#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
#define analogInPinToBit(P) (P)
#define portOutputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_output_PGM + (P))) )
#define portInputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_input_PGM + (P))) )
#define portModeRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_mode_PGM + (P))) )
#define NOT_A_PIN 0
#define NOT_A_PORT 0
#ifdef ARDUINO_MAIN
#define PA 1
#define PB 2
#define PC 3
#define PD 4
#define PE 5
#define PF 6
#define PG 7
#define PH 8
#define PJ 10
#define PK 11
#define PL 12
#endif
#define NOT_ON_TIMER 0
#define TIMER0A 1
#define TIMER0B 2
#define TIMER1A 3
#define TIMER1B 4
#define TIMER2 5
#define TIMER2A 6
#define TIMER2B 7
#define TIMER3A 8
#define TIMER3B 9
#define TIMER3C 10
#define TIMER4A 11
#define TIMER4B 12
#define TIMER4C 13
#define TIMER4D 14
#define TIMER5A 15
#define TIMER5B 16
#define TIMER5C 17
#ifdef __cplusplus
} // extern "C"
#endif
#ifdef __cplusplus
#include "WCharacter.h"
#include "WString.h"
#include "HardwareSerial.h"
uint16_t makeWord(uint16_t w);
uint16_t makeWord(byte h, byte l);
#define word(...) makeWord(__VA_ARGS__)
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout = 1000000L);
void tone(uint8_t _pin, unsigned int frequency, unsigned long duration = 0);
void noTone(uint8_t _pin);
// WMath prototypes
long random(long);
long random(long, long);
void randomSeed(unsigned int);
long map(long, long, long, long, long);
#endif
#include "pins_arduino.h"
#endif

239
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/CDC.cpp

@ -0,0 +1,239 @@
/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "Platform.h"
#include "USBAPI.h"
#include <avr/wdt.h>
#if defined(USBCON)
#ifdef CDC_ENABLED
#if (RAMEND < 1000)
#define SERIAL_BUFFER_SIZE 16
#else
#define SERIAL_BUFFER_SIZE 64
#endif
struct ring_buffer
{
unsigned char buffer[SERIAL_BUFFER_SIZE];
volatile int head;
volatile int tail;
};
ring_buffer cdc_rx_buffer = { { 0 }, 0, 0};
typedef struct
{
u32 dwDTERate;
u8 bCharFormat;
u8 bParityType;
u8 bDataBits;
u8 lineState;
} LineInfo;
static volatile LineInfo _usbLineInfo = { 57600, 0x00, 0x00, 0x00, 0x00 };
#define WEAK __attribute__ ((weak))
extern const CDCDescriptor _cdcInterface PROGMEM;
const CDCDescriptor _cdcInterface =
{
D_IAD(0,2,CDC_COMMUNICATION_INTERFACE_CLASS,CDC_ABSTRACT_CONTROL_MODEL,1),
// CDC communication interface
D_INTERFACE(CDC_ACM_INTERFACE,1,CDC_COMMUNICATION_INTERFACE_CLASS,CDC_ABSTRACT_CONTROL_MODEL,0),
D_CDCCS(CDC_HEADER,0x10,0x01), // Header (1.10 bcd)
D_CDCCS(CDC_CALL_MANAGEMENT,1,1), // Device handles call management (not)
D_CDCCS4(CDC_ABSTRACT_CONTROL_MANAGEMENT,6), // SET_LINE_CODING, GET_LINE_CODING, SET_CONTROL_LINE_STATE supported
D_CDCCS(CDC_UNION,CDC_ACM_INTERFACE,CDC_DATA_INTERFACE), // Communication interface is master, data interface is slave 0
D_ENDPOINT(USB_ENDPOINT_IN (CDC_ENDPOINT_ACM),USB_ENDPOINT_TYPE_INTERRUPT,0x10,0x40),
// CDC data interface
D_INTERFACE(CDC_DATA_INTERFACE,2,CDC_DATA_INTERFACE_CLASS,0,0),
D_ENDPOINT(USB_ENDPOINT_OUT(CDC_ENDPOINT_OUT),USB_ENDPOINT_TYPE_BULK,0x40,0),
D_ENDPOINT(USB_ENDPOINT_IN (CDC_ENDPOINT_IN ),USB_ENDPOINT_TYPE_BULK,0x40,0)
};
int WEAK CDC_GetInterface(u8* interfaceNum)
{
interfaceNum[0] += 2; // uses 2
return USB_SendControl(TRANSFER_PGM,&_cdcInterface,sizeof(_cdcInterface));
}
bool WEAK CDC_Setup(Setup& setup)
{
u8 r = setup.bRequest;
u8 requestType = setup.bmRequestType;
if (REQUEST_DEVICETOHOST_CLASS_INTERFACE == requestType)
{
if (CDC_GET_LINE_CODING == r)
{
USB_SendControl(0,(void*)&_usbLineInfo,7);
return true;
}
}
if (REQUEST_HOSTTODEVICE_CLASS_INTERFACE == requestType)
{
if (CDC_SET_LINE_CODING == r)
{
USB_RecvControl((void*)&_usbLineInfo,7);
return true;
}
if (CDC_SET_CONTROL_LINE_STATE == r)
{
_usbLineInfo.lineState = setup.wValueL;
// auto-reset into the bootloader is triggered when the port, already
// open at 1200 bps, is closed. this is the signal to start the watchdog
// with a relatively long period so it can finish housekeeping tasks
// like servicing endpoints before the sketch ends
if (1200 == _usbLineInfo.dwDTERate) {
// We check DTR state to determine if host port is open (bit 0 of lineState).
if ((_usbLineInfo.lineState & 0x01) == 0) {
*(uint16_t *)0x0800 = 0x7777;
wdt_enable(WDTO_120MS);
} else {
// Most OSs do some intermediate steps when configuring ports and DTR can
// twiggle more than once before stabilizing.
// To avoid spurious resets we set the watchdog to 250ms and eventually
// cancel if DTR goes back high.
wdt_disable();
wdt_reset();
*(uint16_t *)0x0800 = 0x0;
}
}
return true;
}
}
return false;
}
int _serialPeek = -1;
void Serial_::begin(uint16_t baud_count)
{
}
void Serial_::end(void)
{
}
void Serial_::accept(void)
{
ring_buffer *buffer = &cdc_rx_buffer;
int i = (unsigned int)(buffer->head+1) % SERIAL_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
// while we have room to store a byte
while (i != buffer->tail) {
int c = USB_Recv(CDC_RX);
if (c == -1)
break; // no more data
buffer->buffer[buffer->head] = c;
buffer->head = i;
i = (unsigned int)(buffer->head+1) % SERIAL_BUFFER_SIZE;
}
}
int Serial_::available(void)
{
ring_buffer *buffer = &cdc_rx_buffer;
return (unsigned int)(SERIAL_BUFFER_SIZE + buffer->head - buffer->tail) % SERIAL_BUFFER_SIZE;
}
int Serial_::peek(void)
{
ring_buffer *buffer = &cdc_rx_buffer;
if (buffer->head == buffer->tail) {
return -1;
} else {
return buffer->buffer[buffer->tail];
}
}
int Serial_::read(void)
{
ring_buffer *buffer = &cdc_rx_buffer;
// if the head isn't ahead of the tail, we don't have any characters
if (buffer->head == buffer->tail) {
return -1;
} else {
unsigned char c = buffer->buffer[buffer->tail];
buffer->tail = (unsigned int)(buffer->tail + 1) % SERIAL_BUFFER_SIZE;
return c;
}
}
void Serial_::flush(void)
{
USB_Flush(CDC_TX);
}
size_t Serial_::write(uint8_t c)
{
/* only try to send bytes if the high-level CDC connection itself
is open (not just the pipe) - the OS should set lineState when the port
is opened and clear lineState when the port is closed.
bytes sent before the user opens the connection or after
the connection is closed are lost - just like with a UART. */
// TODO - ZE - check behavior on different OSes and test what happens if an
// open connection isn't broken cleanly (cable is yanked out, host dies
// or locks up, or host virtual serial port hangs)
if (_usbLineInfo.lineState > 0) {
int r = USB_Send(CDC_TX,&c,1);
if (r > 0) {
return r;
} else {
setWriteError();
return 0;
}
}
setWriteError();
return 0;
}
// This operator is a convenient way for a sketch to check whether the
// port has actually been configured and opened by the host (as opposed
// to just being connected to the host). It can be used, for example, in
// setup() before printing to ensure that an application on the host is
// actually ready to receive and display the data.
// We add a short delay before returning to fix a bug observed by Federico
// where the port is configured (lineState != 0) but not quite opened.
Serial_::operator bool() {
bool result = false;
if (_usbLineInfo.lineState > 0)
result = true;
delay(10);
return result;
}
Serial_ Serial;
#endif
#endif /* if defined(USBCON) */

26
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Client.h

@ -0,0 +1,26 @@
#ifndef client_h
#define client_h
#include "Print.h"
#include "Stream.h"
#include "IPAddress.h"
class Client : public Stream {
public:
virtual int connect(IPAddress ip, uint16_t port) =0;
virtual int connect(const char *host, uint16_t port) =0;
virtual size_t write(uint8_t) =0;
virtual size_t write(const uint8_t *buf, size_t size) =0;
virtual int available() = 0;
virtual int read() = 0;
virtual int read(uint8_t *buf, size_t size) = 0;
virtual int peek() = 0;
virtual void flush() = 0;
virtual void stop() = 0;
virtual uint8_t connected() = 0;
virtual operator bool() = 0;
protected:
uint8_t* rawIPAddress(IPAddress& addr) { return addr.raw_address(); };
};
#endif

520
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/HID.cpp

@ -0,0 +1,520 @@
/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "Platform.h"
#include "USBAPI.h"
#include "USBDesc.h"
#if defined(USBCON)
#ifdef HID_ENABLED
//#define RAWHID_ENABLED
// Singletons for mouse and keyboard
Mouse_ Mouse;
Keyboard_ Keyboard;
//================================================================================
//================================================================================
// HID report descriptor
#define LSB(_x) ((_x) & 0xFF)
#define MSB(_x) ((_x) >> 8)
#define RAWHID_USAGE_PAGE 0xFFC0
#define RAWHID_USAGE 0x0C00
#define RAWHID_TX_SIZE 64
#define RAWHID_RX_SIZE 64
extern const u8 _hidReportDescriptor[] PROGMEM;
const u8 _hidReportDescriptor[] = {
// Mouse
0x05, 0x01, // USAGE_PAGE (Generic Desktop) // 54
0x09, 0x02, // USAGE (Mouse)
0xa1, 0x01, // COLLECTION (Application)
0x09, 0x01, // USAGE (Pointer)
0xa1, 0x00, // COLLECTION (Physical)
0x85, 0x01, // REPORT_ID (1)
0x05, 0x09, // USAGE_PAGE (Button)
0x19, 0x01, // USAGE_MINIMUM (Button 1)
0x29, 0x03, // USAGE_MAXIMUM (Button 3)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x95, 0x03, // REPORT_COUNT (3)
0x75, 0x01, // REPORT_SIZE (1)
0x81, 0x02, // INPUT (Data,Var,Abs)
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x05, // REPORT_SIZE (5)
0x81, 0x03, // INPUT (Cnst,Var,Abs)
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x30, // USAGE (X)
0x09, 0x31, // USAGE (Y)
0x09, 0x38, // USAGE (Wheel)
0x15, 0x81, // LOGICAL_MINIMUM (-127)
0x25, 0x7f, // LOGICAL_MAXIMUM (127)
0x75, 0x08, // REPORT_SIZE (8)
0x95, 0x03, // REPORT_COUNT (3)
0x81, 0x06, // INPUT (Data,Var,Rel)
0xc0, // END_COLLECTION
0xc0, // END_COLLECTION
// Keyboard
0x05, 0x01, // USAGE_PAGE (Generic Desktop) // 47
0x09, 0x06, // USAGE (Keyboard)
0xa1, 0x01, // COLLECTION (Application)
0x85, 0x02, // REPORT_ID (2)
0x05, 0x07, // USAGE_PAGE (Keyboard)
0x19, 0xe0, // USAGE_MINIMUM (Keyboard LeftControl)
0x29, 0xe7, // USAGE_MAXIMUM (Keyboard Right GUI)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x75, 0x01, // REPORT_SIZE (1)
0x95, 0x08, // REPORT_COUNT (8)
0x81, 0x02, // INPUT (Data,Var,Abs)
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x08, // REPORT_SIZE (8)
0x81, 0x03, // INPUT (Cnst,Var,Abs)
0x95, 0x06, // REPORT_COUNT (6)
0x75, 0x08, // REPORT_SIZE (8)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x65, // LOGICAL_MAXIMUM (101)
0x05, 0x07, // USAGE_PAGE (Keyboard)
0x19, 0x00, // USAGE_MINIMUM (Reserved (no event indicated))
0x29, 0x65, // USAGE_MAXIMUM (Keyboard Application)
0x81, 0x00, // INPUT (Data,Ary,Abs)
0xc0, // END_COLLECTION
#if RAWHID_ENABLED
// RAW HID
0x06, LSB(RAWHID_USAGE_PAGE), MSB(RAWHID_USAGE_PAGE), // 30
0x0A, LSB(RAWHID_USAGE), MSB(RAWHID_USAGE),
0xA1, 0x01, // Collection 0x01
0x85, 0x03, // REPORT_ID (3)
0x75, 0x08, // report size = 8 bits
0x15, 0x00, // logical minimum = 0
0x26, 0xFF, 0x00, // logical maximum = 255
0x95, 64, // report count TX
0x09, 0x01, // usage
0x81, 0x02, // Input (array)
0x95, 64, // report count RX
0x09, 0x02, // usage
0x91, 0x02, // Output (array)
0xC0 // end collection
#endif
};
extern const HIDDescriptor _hidInterface PROGMEM;
const HIDDescriptor _hidInterface =
{
D_INTERFACE(HID_INTERFACE,1,3,0,0),
D_HIDREPORT(sizeof(_hidReportDescriptor)),
D_ENDPOINT(USB_ENDPOINT_IN (HID_ENDPOINT_INT),USB_ENDPOINT_TYPE_INTERRUPT,0x40,0x01)
};
//================================================================================
//================================================================================
// Driver
u8 _hid_protocol = 1;
u8 _hid_idle = 1;
#define WEAK __attribute__ ((weak))
int WEAK HID_GetInterface(u8* interfaceNum)
{
interfaceNum[0] += 1; // uses 1
return USB_SendControl(TRANSFER_PGM,&_hidInterface,sizeof(_hidInterface));
}
int WEAK HID_GetDescriptor(int i)
{
return USB_SendControl(TRANSFER_PGM,_hidReportDescriptor,sizeof(_hidReportDescriptor));
}
void WEAK HID_SendReport(u8 id, const void* data, int len)
{
USB_Send(HID_TX, &id, 1);
USB_Send(HID_TX | TRANSFER_RELEASE,data,len);
}
bool WEAK HID_Setup(Setup& setup)
{
u8 r = setup.bRequest;
u8 requestType = setup.bmRequestType;
if (REQUEST_DEVICETOHOST_CLASS_INTERFACE == requestType)
{
if (HID_GET_REPORT == r)
{
//HID_GetReport();
return true;
}
if (HID_GET_PROTOCOL == r)
{
//Send8(_hid_protocol); // TODO
return true;
}
}
if (REQUEST_HOSTTODEVICE_CLASS_INTERFACE == requestType)
{
if (HID_SET_PROTOCOL == r)
{
_hid_protocol = setup.wValueL;
return true;
}
if (HID_SET_IDLE == r)
{
_hid_idle = setup.wValueL;
return true;
}
}
return false;
}
//================================================================================
//================================================================================
// Mouse
Mouse_::Mouse_(void) : _buttons(0)
{
}
void Mouse_::begin(void)
{
}
void Mouse_::end(void)
{
}
void Mouse_::click(uint8_t b)
{
_buttons = b;
move(0,0,0);
_buttons = 0;
move(0,0,0);
}
void Mouse_::move(signed char x, signed char y, signed char wheel)
{
u8 m[4];
m[0] = _buttons;
m[1] = x;
m[2] = y;
m[3] = wheel;
HID_SendReport(1,m,4);
}
void Mouse_::buttons(uint8_t b)
{
if (b != _buttons)
{
_buttons = b;
move(0,0,0);
}
}
void Mouse_::press(uint8_t b)
{
buttons(_buttons | b);
}
void Mouse_::release(uint8_t b)
{
buttons(_buttons & ~b);
}
bool Mouse_::isPressed(uint8_t b)
{
if ((b & _buttons) > 0)
return true;
return false;
}
//================================================================================
//================================================================================
// Keyboard
Keyboard_::Keyboard_(void)
{
}
void Keyboard_::begin(void)
{
}
void Keyboard_::end(void)
{
}
void Keyboard_::sendReport(KeyReport* keys)
{
HID_SendReport(2,keys,sizeof(KeyReport));
}
extern
const uint8_t _asciimap[128] PROGMEM;
#define SHIFT 0x80
const uint8_t _asciimap[128] =
{
0x00, // NUL
0x00, // SOH
0x00, // STX
0x00, // ETX
0x00, // EOT
0x00, // ENQ
0x00, // ACK
0x00, // BEL
0x2a, // BS Backspace
0x2b, // TAB Tab
0x28, // LF Enter
0x00, // VT
0x00, // FF
0x00, // CR
0x00, // SO
0x00, // SI
0x00, // DEL
0x00, // DC1
0x00, // DC2
0x00, // DC3
0x00, // DC4
0x00, // NAK
0x00, // SYN
0x00, // ETB
0x00, // CAN
0x00, // EM
0x00, // SUB
0x00, // ESC
0x00, // FS
0x00, // GS
0x00, // RS
0x00, // US
0x2c, // ' '
0x1e|SHIFT, // !
0x34|SHIFT, // "
0x20|SHIFT, // #
0x21|SHIFT, // $
0x22|SHIFT, // %
0x24|SHIFT, // &
0x34, // '
0x26|SHIFT, // (
0x27|SHIFT, // )
0x25|SHIFT, // *
0x2e|SHIFT, // +
0x36, // ,
0x2d, // -
0x37, // .
0x38, // /
0x27, // 0
0x1e, // 1
0x1f, // 2
0x20, // 3
0x21, // 4
0x22, // 5
0x23, // 6
0x24, // 7
0x25, // 8
0x26, // 9
0x33|SHIFT, // :
0x33, // ;
0x36|SHIFT, // <
0x2e, // =
0x37|SHIFT, // >
0x38|SHIFT, // ?
0x1f|SHIFT, // @
0x04|SHIFT, // A
0x05|SHIFT, // B
0x06|SHIFT, // C
0x07|SHIFT, // D
0x08|SHIFT, // E
0x09|SHIFT, // F
0x0a|SHIFT, // G
0x0b|SHIFT, // H
0x0c|SHIFT, // I
0x0d|SHIFT, // J
0x0e|SHIFT, // K
0x0f|SHIFT, // L
0x10|SHIFT, // M
0x11|SHIFT, // N
0x12|SHIFT, // O
0x13|SHIFT, // P
0x14|SHIFT, // Q
0x15|SHIFT, // R
0x16|SHIFT, // S
0x17|SHIFT, // T
0x18|SHIFT, // U
0x19|SHIFT, // V
0x1a|SHIFT, // W
0x1b|SHIFT, // X
0x1c|SHIFT, // Y
0x1d|SHIFT, // Z
0x2f, // [
0x31, // bslash
0x30, // ]
0x23|SHIFT, // ^
0x2d|SHIFT, // _
0x35, // `
0x04, // a
0x05, // b
0x06, // c
0x07, // d
0x08, // e
0x09, // f
0x0a, // g
0x0b, // h
0x0c, // i
0x0d, // j
0x0e, // k
0x0f, // l
0x10, // m
0x11, // n
0x12, // o
0x13, // p
0x14, // q
0x15, // r
0x16, // s
0x17, // t
0x18, // u
0x19, // v
0x1a, // w
0x1b, // x
0x1c, // y
0x1d, // z
0x2f|SHIFT, //
0x31|SHIFT, // |
0x30|SHIFT, // }
0x35|SHIFT, // ~
0 // DEL
};
uint8_t USBPutChar(uint8_t c);
// press() adds the specified key (printing, non-printing, or modifier)
// to the persistent key report and sends the report. Because of the way
// USB HID works, the host acts like the key remains pressed until we
// call release(), releaseAll(), or otherwise clear the report and resend.
size_t Keyboard_::press(uint8_t k)
{
uint8_t i;
if (k >= 136) { // it's a non-printing key (not a modifier)
k = k - 136;
} else if (k >= 128) { // it's a modifier key
_keyReport.modifiers |= (1<<(k-128));
k = 0;
} else { // it's a printing key
k = pgm_read_byte(_asciimap + k);
if (!k) {
setWriteError();
return 0;
}
if (k & 0x80) { // it's a capital letter or other character reached with shift
_keyReport.modifiers |= 0x02; // the left shift modifier
k &= 0x7F;
}
}
// Add k to the key report only if it's not already present
// and if there is an empty slot.
if (_keyReport.keys[0] != k && _keyReport.keys[1] != k &&
_keyReport.keys[2] != k && _keyReport.keys[3] != k &&
_keyReport.keys[4] != k && _keyReport.keys[5] != k) {
for (i=0; i<6; i++) {
if (_keyReport.keys[i] == 0x00) {
_keyReport.keys[i] = k;
break;
}
}
if (i == 6) {
setWriteError();
return 0;
}
}
sendReport(&_keyReport);
return 1;
}
// release() takes the specified key out of the persistent key report and
// sends the report. This tells the OS the key is no longer pressed and that
// it shouldn't be repeated any more.
size_t Keyboard_::release(uint8_t k)
{
uint8_t i;
if (k >= 136) { // it's a non-printing key (not a modifier)
k = k - 136;
} else if (k >= 128) { // it's a modifier key
_keyReport.modifiers &= ~(1<<(k-128));
k = 0;
} else { // it's a printing key
k = pgm_read_byte(_asciimap + k);
if (!k) {
return 0;
}
if (k & 0x80) { // it's a capital letter or other character reached with shift
_keyReport.modifiers &= ~(0x02); // the left shift modifier
k &= 0x7F;
}
}
// Test the key report to see if k is present. Clear it if it exists.
// Check all positions in case the key is present more than once (which it shouldn't be)
for (i=0; i<6; i++) {
if (0 != k && _keyReport.keys[i] == k) {
_keyReport.keys[i] = 0x00;
}
}
sendReport(&_keyReport);
return 1;
}
void Keyboard_::releaseAll(void)
{
_keyReport.keys[0] = 0;
_keyReport.keys[1] = 0;
_keyReport.keys[2] = 0;
_keyReport.keys[3] = 0;
_keyReport.keys[4] = 0;
_keyReport.keys[5] = 0;
_keyReport.modifiers = 0;
sendReport(&_keyReport);
}
size_t Keyboard_::write(uint8_t c)
{
uint8_t p = press(c); // Keydown
uint8_t r = release(c); // Keyup
return (p); // just return the result of press() since release() almost always returns 1
}
#endif
#endif /* if defined(USBCON) */

519
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/HardwareSerial.cpp

@ -0,0 +1,519 @@
/*
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
#include "wiring_private.h"
// this next line disables the entire HardwareSerial.cpp,
// this is so I can support Attiny series and any other chip without a uart
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)
#include "HardwareSerial.h"
/*
* on ATmega8, the uart and its bits are not numbered, so there is no "TXC0"
* definition.
*/
#if !defined(TXC0)
#if defined(TXC)
#define TXC0 TXC
#elif defined(TXC1)
// Some devices have uart1 but no uart0
#define TXC0 TXC1
#else
#error TXC0 not definable in HardwareSerial.h
#endif
#endif
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which head is the index of the location
// to which to write the next incoming character and tail is the index of the
// location from which to read.
#if (RAMEND < 1000)
#define SERIAL_BUFFER_SIZE 16
#else
#define SERIAL_BUFFER_SIZE 64
#endif
struct ring_buffer
{
unsigned char buffer[SERIAL_BUFFER_SIZE];
volatile unsigned int head;
volatile unsigned int tail;
};
#if defined(USBCON)
ring_buffer rx_buffer = { { 0 }, 0, 0};
ring_buffer tx_buffer = { { 0 }, 0, 0};
#endif
#if defined(UBRRH) || defined(UBRR0H)
ring_buffer rx_buffer = { { 0 }, 0, 0 };
ring_buffer tx_buffer = { { 0 }, 0, 0 };
#endif
#if defined(UBRR1H)
ring_buffer rx_buffer1 = { { 0 }, 0, 0 };
ring_buffer tx_buffer1 = { { 0 }, 0, 0 };
#endif
#if defined(UBRR2H)
ring_buffer rx_buffer2 = { { 0 }, 0, 0 };
ring_buffer tx_buffer2 = { { 0 }, 0, 0 };
#endif
#if defined(UBRR3H)
ring_buffer rx_buffer3 = { { 0 }, 0, 0 };
ring_buffer tx_buffer3 = { { 0 }, 0, 0 };
#endif
inline void store_char(unsigned char c, ring_buffer *buffer)
{
int i = (unsigned int)(buffer->head + 1) % SERIAL_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != buffer->tail) {
buffer->buffer[buffer->head] = c;
buffer->head = i;
}
}
#if !defined(USART0_RX_vect) && defined(USART1_RX_vect)
// do nothing - on the 32u4 the first USART is USART1
#else
#if !defined(USART_RX_vect) && !defined(SIG_USART0_RECV) && \
!defined(SIG_UART0_RECV) && !defined(USART0_RX_vect) && \
!defined(SIG_UART_RECV)
#error "Don't know what the Data Received vector is called for the first UART"
#else
void serialEvent() __attribute__((weak));
void serialEvent() {}
#define serialEvent_implemented
#if defined(USART_RX_vect)
SIGNAL(USART_RX_vect)
#elif defined(SIG_USART0_RECV)
SIGNAL(SIG_USART0_RECV)
#elif defined(SIG_UART0_RECV)
SIGNAL(SIG_UART0_RECV)
#elif defined(USART0_RX_vect)
SIGNAL(USART0_RX_vect)
#elif defined(SIG_UART_RECV)
SIGNAL(SIG_UART_RECV)
#endif
{
#if defined(UDR0)
if (bit_is_clear(UCSR0A, UPE0)) {
unsigned char c = UDR0;
store_char(c, &rx_buffer);
} else {
unsigned char c = UDR0;
};
#elif defined(UDR)
if (bit_is_clear(UCSRA, PE)) {
unsigned char c = UDR;
store_char(c, &rx_buffer);
} else {
unsigned char c = UDR;
};
#else
#error UDR not defined
#endif
}
#endif
#endif
#if defined(USART1_RX_vect)
void serialEvent1() __attribute__((weak));
void serialEvent1() {}
#define serialEvent1_implemented
SIGNAL(USART1_RX_vect)
{
if (bit_is_clear(UCSR1A, UPE1)) {
unsigned char c = UDR1;
store_char(c, &rx_buffer1);
} else {
unsigned char c = UDR1;
};
}
#elif defined(SIG_USART1_RECV)
#error SIG_USART1_RECV
#endif
#if defined(USART2_RX_vect) && defined(UDR2)
void serialEvent2() __attribute__((weak));
void serialEvent2() {}
#define serialEvent2_implemented
SIGNAL(USART2_RX_vect)
{
if (bit_is_clear(UCSR2A, UPE2)) {
unsigned char c = UDR2;
store_char(c, &rx_buffer2);
} else {
unsigned char c = UDR2;
};
}
#elif defined(SIG_USART2_RECV)
#error SIG_USART2_RECV
#endif
#if defined(USART3_RX_vect) && defined(UDR3)
void serialEvent3() __attribute__((weak));
void serialEvent3() {}
#define serialEvent3_implemented
SIGNAL(USART3_RX_vect)
{
if (bit_is_clear(UCSR3A, UPE3)) {
unsigned char c = UDR3;
store_char(c, &rx_buffer3);
} else {
unsigned char c = UDR3;
};
}
#elif defined(SIG_USART3_RECV)
#error SIG_USART3_RECV
#endif
void serialEventRun(void)
{
#ifdef serialEvent_implemented
if (Serial.available()) serialEvent();
#endif
#ifdef serialEvent1_implemented
if (Serial1.available()) serialEvent1();
#endif
#ifdef serialEvent2_implemented
if (Serial2.available()) serialEvent2();
#endif
#ifdef serialEvent3_implemented
if (Serial3.available()) serialEvent3();
#endif
}
#if !defined(USART0_UDRE_vect) && defined(USART1_UDRE_vect)
// do nothing - on the 32u4 the first USART is USART1
#else
#if !defined(UART0_UDRE_vect) && !defined(UART_UDRE_vect) && !defined(USART0_UDRE_vect) && !defined(USART_UDRE_vect)
#error "Don't know what the Data Register Empty vector is called for the first UART"
#else
#if defined(UART0_UDRE_vect)
ISR(UART0_UDRE_vect)
#elif defined(UART_UDRE_vect)
ISR(UART_UDRE_vect)
#elif defined(USART0_UDRE_vect)
ISR(USART0_UDRE_vect)
#elif defined(USART_UDRE_vect)
ISR(USART_UDRE_vect)
#endif
{
if (tx_buffer.head == tx_buffer.tail) {
// Buffer empty, so disable interrupts
#if defined(UCSR0B)
cbi(UCSR0B, UDRIE0);
#else
cbi(UCSRB, UDRIE);
#endif
}
else {
// There is more data in the output buffer. Send the next byte
unsigned char c = tx_buffer.buffer[tx_buffer.tail];
tx_buffer.tail = (tx_buffer.tail + 1) % SERIAL_BUFFER_SIZE;
#if defined(UDR0)
UDR0 = c;
#elif defined(UDR)
UDR = c;
#else
#error UDR not defined
#endif
}
}
#endif
#endif
#ifdef USART1_UDRE_vect
ISR(USART1_UDRE_vect)
{
if (tx_buffer1.head == tx_buffer1.tail) {
// Buffer empty, so disable interrupts
cbi(UCSR1B, UDRIE1);
}
else {
// There is more data in the output buffer. Send the next byte
unsigned char c = tx_buffer1.buffer[tx_buffer1.tail];
tx_buffer1.tail = (tx_buffer1.tail + 1) % SERIAL_BUFFER_SIZE;
UDR1 = c;
}
}
#endif
#ifdef USART2_UDRE_vect
ISR(USART2_UDRE_vect)
{
if (tx_buffer2.head == tx_buffer2.tail) {
// Buffer empty, so disable interrupts
cbi(UCSR2B, UDRIE2);
}
else {
// There is more data in the output buffer. Send the next byte
unsigned char c = tx_buffer2.buffer[tx_buffer2.tail];
tx_buffer2.tail = (tx_buffer2.tail + 1) % SERIAL_BUFFER_SIZE;
UDR2 = c;
}
}
#endif
#ifdef USART3_UDRE_vect
ISR(USART3_UDRE_vect)
{
if (tx_buffer3.head == tx_buffer3.tail) {
// Buffer empty, so disable interrupts
cbi(UCSR3B, UDRIE3);
}
else {
// There is more data in the output buffer. Send the next byte
unsigned char c = tx_buffer3.buffer[tx_buffer3.tail];
tx_buffer3.tail = (tx_buffer3.tail + 1) % SERIAL_BUFFER_SIZE;
UDR3 = c;
}
}
#endif
// Constructors ////////////////////////////////////////////////////////////////
HardwareSerial::HardwareSerial(ring_buffer *rx_buffer, ring_buffer *tx_buffer,
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *ucsrc, volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udrie, uint8_t u2x)
{
_rx_buffer = rx_buffer;
_tx_buffer = tx_buffer;
_ubrrh = ubrrh;
_ubrrl = ubrrl;
_ucsra = ucsra;
_ucsrb = ucsrb;
_ucsrc = ucsrc;
_udr = udr;
_rxen = rxen;
_txen = txen;
_rxcie = rxcie;
_udrie = udrie;
_u2x = u2x;
}
// Public Methods //////////////////////////////////////////////////////////////
void HardwareSerial::begin(unsigned long baud)
{
uint16_t baud_setting;
bool use_u2x = true;
#if F_CPU == 16000000UL
// hardcoded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards and the firmware on the 8U2
// on the Uno and Mega 2560.
if (baud == 57600) {
use_u2x = false;
}
#endif
try_again:
if (use_u2x) {
*_ucsra = 1 << _u2x;
baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else {
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
if ((baud_setting > 4095) && use_u2x)
{
use_u2x = false;
goto try_again;
}
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
transmitting = false;
sbi(*_ucsrb, _rxen);
sbi(*_ucsrb, _txen);
sbi(*_ucsrb, _rxcie);
cbi(*_ucsrb, _udrie);
}
void HardwareSerial::begin(unsigned long baud, byte config)
{
uint16_t baud_setting;
uint8_t current_config;
bool use_u2x = true;
#if F_CPU == 16000000UL
// hardcoded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards and the firmware on the 8U2
// on the Uno and Mega 2560.
if (baud == 57600) {
use_u2x = false;
}
#endif
try_again:
if (use_u2x) {
*_ucsra = 1 << _u2x;
baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else {
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
if ((baud_setting > 4095) && use_u2x)
{
use_u2x = false;
goto try_again;
}
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
//set the data bits, parity, and stop bits
#if defined(__AVR_ATmega8__)
config |= 0x80; // select UCSRC register (shared with UBRRH)
#endif
*_ucsrc = config;
sbi(*_ucsrb, _rxen);
sbi(*_ucsrb, _txen);
sbi(*_ucsrb, _rxcie);
cbi(*_ucsrb, _udrie);
}
void HardwareSerial::end()
{
// wait for transmission of outgoing data
while (_tx_buffer->head != _tx_buffer->tail)
;
cbi(*_ucsrb, _rxen);
cbi(*_ucsrb, _txen);
cbi(*_ucsrb, _rxcie);
cbi(*_ucsrb, _udrie);
// clear any received data
_rx_buffer->head = _rx_buffer->tail;
}
int HardwareSerial::available(void)
{
return (unsigned int)(SERIAL_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % SERIAL_BUFFER_SIZE;
}
int HardwareSerial::peek(void)
{
if (_rx_buffer->head == _rx_buffer->tail) {
return -1;
} else {
return _rx_buffer->buffer[_rx_buffer->tail];
}
}
int HardwareSerial::read(void)
{
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer->head == _rx_buffer->tail) {
return -1;
} else {
unsigned char c = _rx_buffer->buffer[_rx_buffer->tail];
_rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % SERIAL_BUFFER_SIZE;
return c;
}
}
void HardwareSerial::flush()
{
// UDR is kept full while the buffer is not empty, so TXC triggers when EMPTY && SENT
while (transmitting && ! (*_ucsra & _BV(TXC0)));
transmitting = false;
}
size_t HardwareSerial::write(uint8_t c)
{
int i = (_tx_buffer->head + 1) % SERIAL_BUFFER_SIZE;
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit
// ???: return 0 here instead?
while (i == _tx_buffer->tail)
;
_tx_buffer->buffer[_tx_buffer->head] = c;
_tx_buffer->head = i;
sbi(*_ucsrb, _udrie);
// clear the TXC bit -- "can be cleared by writing a one to its bit location"
transmitting = true;
sbi(*_ucsra, TXC0);
return 1;
}
HardwareSerial::operator bool() {
return true;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
#if defined(UBRRH) && defined(UBRRL)
HardwareSerial Serial(&rx_buffer, &tx_buffer, &UBRRH, &UBRRL, &UCSRA, &UCSRB, &UCSRC, &UDR, RXEN, TXEN, RXCIE, UDRIE, U2X);
#elif defined(UBRR0H) && defined(UBRR0L)
HardwareSerial Serial(&rx_buffer, &tx_buffer, &UBRR0H, &UBRR0L, &UCSR0A, &UCSR0B, &UCSR0C, &UDR0, RXEN0, TXEN0, RXCIE0, UDRIE0, U2X0);
#elif defined(USBCON)
// do nothing - Serial object and buffers are initialized in CDC code
#else
#error no serial port defined (port 0)
#endif
#if defined(UBRR1H)
HardwareSerial Serial1(&rx_buffer1, &tx_buffer1, &UBRR1H, &UBRR1L, &UCSR1A, &UCSR1B, &UCSR1C, &UDR1, RXEN1, TXEN1, RXCIE1, UDRIE1, U2X1);
#endif
#if defined(UBRR2H)
HardwareSerial Serial2(&rx_buffer2, &tx_buffer2, &UBRR2H, &UBRR2L, &UCSR2A, &UCSR2B, &UCSR2C, &UDR2, RXEN2, TXEN2, RXCIE2, UDRIE2, U2X2);
#endif
#if defined(UBRR3H)
HardwareSerial Serial3(&rx_buffer3, &tx_buffer3, &UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UCSR3C, &UDR3, RXEN3, TXEN3, RXCIE3, UDRIE3, U2X3);
#endif
#endif // whole file

115
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/HardwareSerial.h

@ -0,0 +1,115 @@
/*
HardwareSerial.h - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
*/
#ifndef HardwareSerial_h
#define HardwareSerial_h
#include <inttypes.h>
#include "Stream.h"
struct ring_buffer;
class HardwareSerial : public Stream
{
private:
ring_buffer *_rx_buffer;
ring_buffer *_tx_buffer;
volatile uint8_t *_ubrrh;
volatile uint8_t *_ubrrl;
volatile uint8_t *_ucsra;
volatile uint8_t *_ucsrb;
volatile uint8_t *_ucsrc;
volatile uint8_t *_udr;
uint8_t _rxen;
uint8_t _txen;
uint8_t _rxcie;
uint8_t _udrie;
uint8_t _u2x;
bool transmitting;
public:
HardwareSerial(ring_buffer *rx_buffer, ring_buffer *tx_buffer,
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *ucsrc, volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udrie, uint8_t u2x);
void begin(unsigned long);
void begin(unsigned long, uint8_t);
void end();
virtual int available(void);
virtual int peek(void);
virtual int read(void);
virtual void flush(void);
virtual size_t write(uint8_t);
inline size_t write(unsigned long n) { return write((uint8_t)n); }
inline size_t write(long n) { return write((uint8_t)n); }
inline size_t write(unsigned int n) { return write((uint8_t)n); }
inline size_t write(int n) { return write((uint8_t)n); }
using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool();
};
// Define config for Serial.begin(baud, config);
#define SERIAL_5N1 0x00
#define SERIAL_6N1 0x02
#define SERIAL_7N1 0x04
#define SERIAL_8N1 0x06
#define SERIAL_5N2 0x08
#define SERIAL_6N2 0x0A
#define SERIAL_7N2 0x0C
#define SERIAL_8N2 0x0E
#define SERIAL_5E1 0x20
#define SERIAL_6E1 0x22
#define SERIAL_7E1 0x24
#define SERIAL_8E1 0x26
#define SERIAL_5E2 0x28
#define SERIAL_6E2 0x2A
#define SERIAL_7E2 0x2C
#define SERIAL_8E2 0x2E
#define SERIAL_5O1 0x30
#define SERIAL_6O1 0x32
#define SERIAL_7O1 0x34
#define SERIAL_8O1 0x36
#define SERIAL_5O2 0x38
#define SERIAL_6O2 0x3A
#define SERIAL_7O2 0x3C
#define SERIAL_8O2 0x3E
#if defined(UBRRH) || defined(UBRR0H)
extern HardwareSerial Serial;
#elif defined(USBCON)
#include "USBAPI.h"
// extern HardwareSerial Serial_;
#endif
#if defined(UBRR1H)
extern HardwareSerial Serial1;
#endif
#if defined(UBRR2H)
extern HardwareSerial Serial2;
#endif
#if defined(UBRR3H)
extern HardwareSerial Serial3;
#endif
extern void serialEventRun(void) __attribute__((weak));
#endif

56
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/IPAddress.cpp

@ -0,0 +1,56 @@
#include <Arduino.h>
#include <IPAddress.h>
IPAddress::IPAddress()
{
memset(_address, 0, sizeof(_address));
}
IPAddress::IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet)
{
_address[0] = first_octet;
_address[1] = second_octet;
_address[2] = third_octet;
_address[3] = fourth_octet;
}
IPAddress::IPAddress(uint32_t address)
{
memcpy(_address, &address, sizeof(_address));
}
IPAddress::IPAddress(const uint8_t *address)
{
memcpy(_address, address, sizeof(_address));
}
IPAddress& IPAddress::operator=(const uint8_t *address)
{
memcpy(_address, address, sizeof(_address));
return *this;
}
IPAddress& IPAddress::operator=(uint32_t address)
{
memcpy(_address, (const uint8_t *)&address, sizeof(_address));
return *this;
}
bool IPAddress::operator==(const uint8_t* addr)
{
return memcmp(addr, _address, sizeof(_address)) == 0;
}
size_t IPAddress::printTo(Print& p) const
{
size_t n = 0;
for (int i =0; i < 3; i++)
{
n += p.print(_address[i], DEC);
n += p.print('.');
}
n += p.print(_address[3], DEC);
return n;
}

76
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/IPAddress.h

@ -0,0 +1,76 @@
/*
*
* MIT License:
* Copyright (c) 2011 Adrian McEwen
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* adrianm@mcqn.com 1/1/2011
*/
#ifndef IPAddress_h
#define IPAddress_h
#include <Printable.h>
// A class to make it easier to handle and pass around IP addresses
class IPAddress : public Printable {
private:
uint8_t _address[4]; // IPv4 address
// Access the raw byte array containing the address. Because this returns a pointer
// to the internal structure rather than a copy of the address this function should only
// be used when you know that the usage of the returned uint8_t* will be transient and not
// stored.
uint8_t* raw_address() { return _address; };
public:
// Constructors
IPAddress();
IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet);
IPAddress(uint32_t address);
IPAddress(const uint8_t *address);
// Overloaded cast operator to allow IPAddress objects to be used where a pointer
// to a four-byte uint8_t array is expected
operator uint32_t() { return *((uint32_t*)_address); };
bool operator==(const IPAddress& addr) { return (*((uint32_t*)_address)) == (*((uint32_t*)addr._address)); };
bool operator==(const uint8_t* addr);
// Overloaded index operator to allow getting and setting individual octets of the address
uint8_t operator[](int index) const { return _address[index]; };
uint8_t& operator[](int index) { return _address[index]; };
// Overloaded copy operators to allow initialisation of IPAddress objects from other types
IPAddress& operator=(const uint8_t *address);
IPAddress& operator=(uint32_t address);
virtual size_t printTo(Print& p) const;
friend class EthernetClass;
friend class UDP;
friend class Client;
friend class Server;
friend class DhcpClass;
friend class DNSClient;
};
const IPAddress INADDR_NONE(0,0,0,0);
#endif

23
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Platform.h

@ -0,0 +1,23 @@
#ifndef __PLATFORM_H__
#define __PLATFORM_H__
#include <inttypes.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <util/delay.h>
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned long u32;
#include "Arduino.h"
#if defined(USBCON)
#include "USBDesc.h"
#include "USBCore.h"
#include "USBAPI.h"
#endif /* if defined(USBCON) */
#endif

268
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Print.cpp

@ -0,0 +1,268 @@
/*
Print.cpp - Base class that provides print() and println()
Copyright (c) 2008 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "Arduino.h"
#include "Print.h"
// Public Methods //////////////////////////////////////////////////////////////
/* default implementation: may be overridden */
size_t Print::write(const uint8_t *buffer, size_t size)
{
size_t n = 0;
while (size--) {
n += write(*buffer++);
}
return n;
}
size_t Print::print(const __FlashStringHelper *ifsh)
{
const char PROGMEM *p = (const char PROGMEM *)ifsh;
size_t n = 0;
while (1) {
unsigned char c = pgm_read_byte(p++);
if (c == 0) break;
n += write(c);
}
return n;
}
size_t Print::print(const String &s)
{
size_t n = 0;
for (uint16_t i = 0; i < s.length(); i++) {
n += write(s[i]);
}
return n;
}
size_t Print::print(const char str[])
{
return write(str);
}
size_t Print::print(char c)
{
return write(c);
}
size_t Print::print(unsigned char b, int base)
{
return print((unsigned long) b, base);
}
size_t Print::print(int n, int base)
{
return print((long) n, base);
}
size_t Print::print(unsigned int n, int base)
{
return print((unsigned long) n, base);
}
size_t Print::print(long n, int base)
{
if (base == 0) {
return write(n);
} else if (base == 10) {
if (n < 0) {
int t = print('-');
n = -n;
return printNumber(n, 10) + t;
}
return printNumber(n, 10);
} else {
return printNumber(n, base);
}
}
size_t Print::print(unsigned long n, int base)
{
if (base == 0) return write(n);
else return printNumber(n, base);
}
size_t Print::print(double n, int digits)
{
return printFloat(n, digits);
}
size_t Print::println(const __FlashStringHelper *ifsh)
{
size_t n = print(ifsh);
n += println();
return n;
}
size_t Print::print(const Printable& x)
{
return x.printTo(*this);
}
size_t Print::println(void)
{
size_t n = print('\r');
n += print('\n');
return n;
}
size_t Print::println(const String &s)
{
size_t n = print(s);
n += println();
return n;
}
size_t Print::println(const char c[])
{
size_t n = print(c);
n += println();
return n;
}
size_t Print::println(char c)
{
size_t n = print(c);
n += println();
return n;
}
size_t Print::println(unsigned char b, int base)
{
size_t n = print(b, base);
n += println();
return n;
}
size_t Print::println(int num, int base)
{
size_t n = print(num, base);
n += println();
return n;
}
size_t Print::println(unsigned int num, int base)
{
size_t n = print(num, base);
n += println();
return n;
}
size_t Print::println(long num, int base)
{
size_t n = print(num, base);
n += println();
return n;
}
size_t Print::println(unsigned long num, int base)
{
size_t n = print(num, base);
n += println();
return n;
}
size_t Print::println(double num, int digits)
{
size_t n = print(num, digits);
n += println();
return n;
}
size_t Print::println(const Printable& x)
{
size_t n = print(x);
n += println();
return n;
}
// Private Methods /////////////////////////////////////////////////////////////
size_t Print::printNumber(unsigned long n, uint8_t base) {
char buf[8 * sizeof(long) + 1]; // Assumes 8-bit chars plus zero byte.
char *str = &buf[sizeof(buf) - 1];
*str = '\0';
// prevent crash if called with base == 1
if (base < 2) base = 10;
do {
unsigned long m = n;
n /= base;
char c = m - base * n;
*--str = c < 10 ? c + '0' : c + 'A' - 10;
} while(n);
return write(str);
}
size_t Print::printFloat(double number, uint8_t digits)
{
size_t n = 0;
if (isnan(number)) return print("nan");
if (isinf(number)) return print("inf");
if (number > 4294967040.0) return print ("ovf"); // constant determined empirically
if (number <-4294967040.0) return print ("ovf"); // constant determined empirically
// Handle negative numbers
if (number < 0.0)
{
n += print('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i=0; i<digits; ++i)
rounding /= 10.0;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
n += print(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits > 0) {
n += print(".");
}
// Extract digits from the remainder one at a time
while (digits-- > 0)
{
remainder *= 10.0;
int toPrint = int(remainder);
n += print(toPrint);
remainder -= toPrint;
}
return n;
}

81
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Print.h

@ -0,0 +1,81 @@
/*
Print.h - Base class that provides print() and println()
Copyright (c) 2008 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef Print_h
#define Print_h
#include <inttypes.h>
#include <stdio.h> // for size_t
#include "WString.h"
#include "Printable.h"
#define DEC 10
#define HEX 16
#define OCT 8
#define BIN 2
class Print
{
private:
int write_error;
size_t printNumber(unsigned long, uint8_t);
size_t printFloat(double, uint8_t);
protected:
void setWriteError(int err = 1) { write_error = err; }
public:
Print() : write_error(0) {}
int getWriteError() { return write_error; }
void clearWriteError() { setWriteError(0); }
virtual size_t write(uint8_t) = 0;
size_t write(const char *str) {
if (str == NULL) return 0;
return write((const uint8_t *)str, strlen(str));
}
virtual size_t write(const uint8_t *buffer, size_t size);
size_t print(const __FlashStringHelper *);
size_t print(const String &);
size_t print(const char[]);
size_t print(char);
size_t print(unsigned char, int = DEC);
size_t print(int, int = DEC);
size_t print(unsigned int, int = DEC);
size_t print(long, int = DEC);
size_t print(unsigned long, int = DEC);
size_t print(double, int = 2);
size_t print(const Printable&);
size_t println(const __FlashStringHelper *);
size_t println(const String &s);
size_t println(const char[]);
size_t println(char);
size_t println(unsigned char, int = DEC);
size_t println(int, int = DEC);
size_t println(unsigned int, int = DEC);
size_t println(long, int = DEC);
size_t println(unsigned long, int = DEC);
size_t println(double, int = 2);
size_t println(const Printable&);
size_t println(void);
};
#endif

40
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Printable.h

@ -0,0 +1,40 @@
/*
Printable.h - Interface class that allows printing of complex types
Copyright (c) 2011 Adrian McEwen. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef Printable_h
#define Printable_h
#include <new.h>
class Print;
/** The Printable class provides a way for new classes to allow themselves to be printed.
By deriving from Printable and implementing the printTo method, it will then be possible
for users to print out instances of this class by passing them into the usual
Print::print and Print::println methods.
*/
class Printable
{
public:
virtual size_t printTo(Print& p) const = 0;
};
#endif

9
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Server.h

@ -0,0 +1,9 @@
#ifndef server_h
#define server_h
class Server : public Print {
public:
virtual void begin() =0;
};
#endif

270
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Stream.cpp

@ -0,0 +1,270 @@
/*
Stream.cpp - adds parsing methods to Stream class
Copyright (c) 2008 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Created July 2011
parsing functions based on TextFinder library by Michael Margolis
*/
#include "Arduino.h"
#include "Stream.h"
#define PARSE_TIMEOUT 1000 // default number of milli-seconds to wait
#define NO_SKIP_CHAR 1 // a magic char not found in a valid ASCII numeric field
// private method to read stream with timeout
int Stream::timedRead()
{
int c;
_startMillis = millis();
do {
c = read();
if (c >= 0) return c;
} while(millis() - _startMillis < _timeout);
return -1; // -1 indicates timeout
}
// private method to peek stream with timeout
int Stream::timedPeek()
{
int c;
_startMillis = millis();
do {
c = peek();
if (c >= 0) return c;
} while(millis() - _startMillis < _timeout);
return -1; // -1 indicates timeout
}
// returns peek of the next digit in the stream or -1 if timeout
// discards non-numeric characters
int Stream::peekNextDigit()
{
int c;
while (1) {
c = timedPeek();
if (c < 0) return c; // timeout
if (c == '-') return c;
if (c >= '0' && c <= '9') return c;
read(); // discard non-numeric
}
}
// Public Methods
//////////////////////////////////////////////////////////////
void Stream::setTimeout(unsigned long timeout) // sets the maximum number of milliseconds to wait
{
_timeout = timeout;
}
// find returns true if the target string is found
bool Stream::find(char *target)
{
return findUntil(target, NULL);
}
// reads data from the stream until the target string of given length is found
// returns true if target string is found, false if timed out
bool Stream::find(char *target, size_t length)
{
return findUntil(target, length, NULL, 0);
}
// as find but search ends if the terminator string is found
bool Stream::findUntil(char *target, char *terminator)
{
return findUntil(target, strlen(target), terminator, strlen(terminator));
}
// reads data from the stream until the target string of the given length is found
// search terminated if the terminator string is found
// returns true if target string is found, false if terminated or timed out
bool Stream::findUntil(char *target, size_t targetLen, char *terminator, size_t termLen)
{
size_t index = 0; // maximum target string length is 64k bytes!
size_t termIndex = 0;
int c;
if( *target == 0)
return true; // return true if target is a null string
while( (c = timedRead()) > 0){
if(c != target[index])
index = 0; // reset index if any char does not match
if( c == target[index]){
//////Serial.print("found "); Serial.write(c); Serial.print("index now"); Serial.println(index+1);
if(++index >= targetLen){ // return true if all chars in the target match
return true;
}
}
if(termLen > 0 && c == terminator[termIndex]){
if(++termIndex >= termLen)
return false; // return false if terminate string found before target string
}
else
termIndex = 0;
}
return false;
}
// returns the first valid (long) integer value from the current position.
// initial characters that are not digits (or the minus sign) are skipped
// function is terminated by the first character that is not a digit.
long Stream::parseInt()
{
return parseInt(NO_SKIP_CHAR); // terminate on first non-digit character (or timeout)
}
// as above but a given skipChar is ignored
// this allows format characters (typically commas) in values to be ignored
long Stream::parseInt(char skipChar)
{
boolean isNegative = false;
long value = 0;
int c;
c = peekNextDigit();
// ignore non numeric leading characters
if(c < 0)
return 0; // zero returned if timeout
do{
if(c == skipChar)
; // ignore this charactor
else if(c == '-')
isNegative = true;
else if(c >= '0' && c <= '9') // is c a digit?
value = value * 10 + c - '0';
read(); // consume the character we got with peek
c = timedPeek();
}
while( (c >= '0' && c <= '9') || c == skipChar );
if(isNegative)
value = -value;
return value;
}
// as parseInt but returns a floating point value
float Stream::parseFloat()
{
return parseFloat(NO_SKIP_CHAR);
}
// as above but the given skipChar is ignored
// this allows format characters (typically commas) in values to be ignored
float Stream::parseFloat(char skipChar){
boolean isNegative = false;
boolean isFraction = false;
long value = 0;
char c;
float fraction = 1.0;
c = peekNextDigit();
// ignore non numeric leading characters
if(c < 0)
return 0; // zero returned if timeout
do{
if(c == skipChar)
; // ignore
else if(c == '-')
isNegative = true;
else if (c == '.')
isFraction = true;
else if(c >= '0' && c <= '9') { // is c a digit?
value = value * 10 + c - '0';
if(isFraction)
fraction *= 0.1;
}
read(); // consume the character we got with peek
c = timedPeek();
}
while( (c >= '0' && c <= '9') || c == '.' || c == skipChar );
if(isNegative)
value = -value;
if(isFraction)
return value * fraction;
else
return value;
}
// read characters from stream into buffer
// terminates if length characters have been read, or timeout (see setTimeout)
// returns the number of characters placed in the buffer
// the buffer is NOT null terminated.
//
size_t Stream::readBytes(char *buffer, size_t length)
{
size_t count = 0;
while (count < length) {
int c = timedRead();
if (c < 0) break;
*buffer++ = (char)c;
count++;
}
return count;
}
// as readBytes with terminator character
// terminates if length characters have been read, timeout, or if the terminator character detected
// returns the number of characters placed in the buffer (0 means no valid data found)
size_t Stream::readBytesUntil(char terminator, char *buffer, size_t length)
{
if (length < 1) return 0;
size_t index = 0;
while (index < length) {
int c = timedRead();
if (c < 0 || c == terminator) break;
*buffer++ = (char)c;
index++;
}
return index; // return number of characters, not including null terminator
}
String Stream::readString()
{
String ret;
int c = timedRead();
while (c >= 0)
{
ret += (char)c;
c = timedRead();
}
return ret;
}
String Stream::readStringUntil(char terminator)
{
String ret;
int c = timedRead();
while (c >= 0 && c != terminator)
{
ret += (char)c;
c = timedRead();
}
return ret;
}

96
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Stream.h

@ -0,0 +1,96 @@
/*
Stream.h - base class for character-based streams.
Copyright (c) 2010 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
parsing functions based on TextFinder library by Michael Margolis
*/
#ifndef Stream_h
#define Stream_h
#include <inttypes.h>
#include "Print.h"
// compatability macros for testing
/*
#define getInt() parseInt()
#define getInt(skipChar) parseInt(skipchar)
#define getFloat() parseFloat()
#define getFloat(skipChar) parseFloat(skipChar)
#define getString( pre_string, post_string, buffer, length)
readBytesBetween( pre_string, terminator, buffer, length)
*/
class Stream : public Print
{
private:
unsigned long _timeout; // number of milliseconds to wait for the next char before aborting timed read
unsigned long _startMillis; // used for timeout measurement
int timedRead(); // private method to read stream with timeout
int timedPeek(); // private method to peek stream with timeout
int peekNextDigit(); // returns the next numeric digit in the stream or -1 if timeout
public:
virtual int available() = 0;
virtual int read() = 0;
virtual int peek() = 0;
virtual void flush() = 0;
Stream() {_timeout=1000;}
// parsing methods
void setTimeout(unsigned long timeout); // sets maximum milliseconds to wait for stream data, default is 1 second
bool find(char *target); // reads data from the stream until the target string is found
// returns true if target string is found, false if timed out (see setTimeout)
bool find(char *target, size_t length); // reads data from the stream until the target string of given length is found
// returns true if target string is found, false if timed out
bool findUntil(char *target, char *terminator); // as find but search ends if the terminator string is found
bool findUntil(char *target, size_t targetLen, char *terminate, size_t termLen); // as above but search ends if the terminate string is found
long parseInt(); // returns the first valid (long) integer value from the current position.
// initial characters that are not digits (or the minus sign) are skipped
// integer is terminated by the first character that is not a digit.
float parseFloat(); // float version of parseInt
size_t readBytes( char *buffer, size_t length); // read chars from stream into buffer
// terminates if length characters have been read or timeout (see setTimeout)
// returns the number of characters placed in the buffer (0 means no valid data found)
size_t readBytesUntil( char terminator, char *buffer, size_t length); // as readBytes with terminator character
// terminates if length characters have been read, timeout, or if the terminator character detected
// returns the number of characters placed in the buffer (0 means no valid data found)
// Arduino String functions to be added here
String readString();
String readStringUntil(char terminator);
protected:
long parseInt(char skipChar); // as above but the given skipChar is ignored
// as above but the given skipChar is ignored
// this allows format characters (typically commas) in values to be ignored
float parseFloat(char skipChar); // as above but the given skipChar is ignored
};
#endif

616
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Tone.cpp

@ -0,0 +1,616 @@
/* Tone.cpp
A Tone Generator Library
Written by Brett Hagman
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Version Modified By Date Comments
------- ----------- -------- --------
0001 B Hagman 09/08/02 Initial coding
0002 B Hagman 09/08/18 Multiple pins
0003 B Hagman 09/08/18 Moved initialization from constructor to begin()
0004 B Hagman 09/09/26 Fixed problems with ATmega8
0005 B Hagman 09/11/23 Scanned prescalars for best fit on 8 bit timers
09/11/25 Changed pin toggle method to XOR
09/11/25 Fixed timer0 from being excluded
0006 D Mellis 09/12/29 Replaced objects with functions
0007 M Sproul 10/08/29 Changed #ifdefs from cpu to register
0008 S Kanemoto 12/06/22 Fixed for Leonardo by @maris_HY
*************************************************/
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include "Arduino.h"
#include "pins_arduino.h"
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__)
#define TCCR2A TCCR2
#define TCCR2B TCCR2
#define COM2A1 COM21
#define COM2A0 COM20
#define OCR2A OCR2
#define TIMSK2 TIMSK
#define OCIE2A OCIE2
#define TIMER2_COMPA_vect TIMER2_COMP_vect
#define TIMSK1 TIMSK
#endif
// timerx_toggle_count:
// > 0 - duration specified
// = 0 - stopped
// < 0 - infinitely (until stop() method called, or new play() called)
#if !defined(__AVR_ATmega8__)
volatile long timer0_toggle_count;
volatile uint8_t *timer0_pin_port;
volatile uint8_t timer0_pin_mask;
#endif
volatile long timer1_toggle_count;
volatile uint8_t *timer1_pin_port;
volatile uint8_t timer1_pin_mask;
volatile long timer2_toggle_count;
volatile uint8_t *timer2_pin_port;
volatile uint8_t timer2_pin_mask;
#if defined(TIMSK3)
volatile long timer3_toggle_count;
volatile uint8_t *timer3_pin_port;
volatile uint8_t timer3_pin_mask;
#endif
#if defined(TIMSK4)
volatile long timer4_toggle_count;
volatile uint8_t *timer4_pin_port;
volatile uint8_t timer4_pin_mask;
#endif
#if defined(TIMSK5)
volatile long timer5_toggle_count;
volatile uint8_t *timer5_pin_port;
volatile uint8_t timer5_pin_mask;
#endif
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define AVAILABLE_TONE_PINS 1
#define USE_TIMER2
const uint8_t PROGMEM tone_pin_to_timer_PGM[] = { 2 /*, 3, 4, 5, 1, 0 */ };
static uint8_t tone_pins[AVAILABLE_TONE_PINS] = { 255 /*, 255, 255, 255, 255, 255 */ };
#elif defined(__AVR_ATmega8__)
#define AVAILABLE_TONE_PINS 1
#define USE_TIMER2
const uint8_t PROGMEM tone_pin_to_timer_PGM[] = { 2 /*, 1 */ };
static uint8_t tone_pins[AVAILABLE_TONE_PINS] = { 255 /*, 255 */ };
#elif defined(__AVR_ATmega32U4__)
#define AVAILABLE_TONE_PINS 1
#define USE_TIMER3
const uint8_t PROGMEM tone_pin_to_timer_PGM[] = { 3 /*, 1 */ };
static uint8_t tone_pins[AVAILABLE_TONE_PINS] = { 255 /*, 255 */ };
#else
#define AVAILABLE_TONE_PINS 1
#define USE_TIMER2
// Leave timer 0 to last.
const uint8_t PROGMEM tone_pin_to_timer_PGM[] = { 2 /*, 1, 0 */ };
static uint8_t tone_pins[AVAILABLE_TONE_PINS] = { 255 /*, 255, 255 */ };
#endif
static int8_t toneBegin(uint8_t _pin)
{
int8_t _timer = -1;
// if we're already using the pin, the timer should be configured.
for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {
if (tone_pins[i] == _pin) {
return pgm_read_byte(tone_pin_to_timer_PGM + i);
}
}
// search for an unused timer.
for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {
if (tone_pins[i] == 255) {
tone_pins[i] = _pin;
_timer = pgm_read_byte(tone_pin_to_timer_PGM + i);
break;
}
}
if (_timer != -1)
{
// Set timer specific stuff
// All timers in CTC mode
// 8 bit timers will require changing prescalar values,
// whereas 16 bit timers are set to either ck/1 or ck/64 prescalar
switch (_timer)
{
#if defined(TCCR0A) && defined(TCCR0B)
case 0:
// 8 bit timer
TCCR0A = 0;
TCCR0B = 0;
bitWrite(TCCR0A, WGM01, 1);
bitWrite(TCCR0B, CS00, 1);
timer0_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer0_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR1A) && defined(TCCR1B) && defined(WGM12)
case 1:
// 16 bit timer
TCCR1A = 0;
TCCR1B = 0;
bitWrite(TCCR1B, WGM12, 1);
bitWrite(TCCR1B, CS10, 1);
timer1_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer1_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR2A) && defined(TCCR2B)
case 2:
// 8 bit timer
TCCR2A = 0;
TCCR2B = 0;
bitWrite(TCCR2A, WGM21, 1);
bitWrite(TCCR2B, CS20, 1);
timer2_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer2_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR3A) && defined(TCCR3B) && defined(TIMSK3)
case 3:
// 16 bit timer
TCCR3A = 0;
TCCR3B = 0;
bitWrite(TCCR3B, WGM32, 1);
bitWrite(TCCR3B, CS30, 1);
timer3_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer3_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR4A) && defined(TCCR4B) && defined(TIMSK4)
case 4:
// 16 bit timer
TCCR4A = 0;
TCCR4B = 0;
#if defined(WGM42)
bitWrite(TCCR4B, WGM42, 1);
#elif defined(CS43)
#warning this may not be correct
// atmega32u4
bitWrite(TCCR4B, CS43, 1);
#endif
bitWrite(TCCR4B, CS40, 1);
timer4_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer4_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR5A) && defined(TCCR5B) && defined(TIMSK5)
case 5:
// 16 bit timer
TCCR5A = 0;
TCCR5B = 0;
bitWrite(TCCR5B, WGM52, 1);
bitWrite(TCCR5B, CS50, 1);
timer5_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer5_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
}
}
return _timer;
}
// frequency (in hertz) and duration (in milliseconds).
void tone(uint8_t _pin, unsigned int frequency, unsigned long duration)
{
uint8_t prescalarbits = 0b001;
long toggle_count = 0;
uint32_t ocr = 0;
int8_t _timer;
_timer = toneBegin(_pin);
if (_timer >= 0)
{
// Set the pinMode as OUTPUT
pinMode(_pin, OUTPUT);
// if we are using an 8 bit timer, scan through prescalars to find the best fit
if (_timer == 0 || _timer == 2)
{
ocr = F_CPU / frequency / 2 - 1;
prescalarbits = 0b001; // ck/1: same for both timers
if (ocr > 255)
{
ocr = F_CPU / frequency / 2 / 8 - 1;
prescalarbits = 0b010; // ck/8: same for both timers
if (_timer == 2 && ocr > 255)
{
ocr = F_CPU / frequency / 2 / 32 - 1;
prescalarbits = 0b011;
}
if (ocr > 255)
{
ocr = F_CPU / frequency / 2 / 64 - 1;
prescalarbits = _timer == 0 ? 0b011 : 0b100;
if (_timer == 2 && ocr > 255)
{
ocr = F_CPU / frequency / 2 / 128 - 1;
prescalarbits = 0b101;
}
if (ocr > 255)
{
ocr = F_CPU / frequency / 2 / 256 - 1;
prescalarbits = _timer == 0 ? 0b100 : 0b110;
if (ocr > 255)
{
// can't do any better than /1024
ocr = F_CPU / frequency / 2 / 1024 - 1;
prescalarbits = _timer == 0 ? 0b101 : 0b111;
}
}
}
}
#if defined(TCCR0B)
if (_timer == 0)
{
TCCR0B = prescalarbits;
}
else
#endif
#if defined(TCCR2B)
{
TCCR2B = prescalarbits;
}
#else
{
// dummy place holder to make the above ifdefs work
}
#endif
}
else
{
// two choices for the 16 bit timers: ck/1 or ck/64
ocr = F_CPU / frequency / 2 - 1;
prescalarbits = 0b001;
if (ocr > 0xffff)
{
ocr = F_CPU / frequency / 2 / 64 - 1;
prescalarbits = 0b011;
}
if (_timer == 1)
{
#if defined(TCCR1B)
TCCR1B = (TCCR1B & 0b11111000) | prescalarbits;
#endif
}
#if defined(TCCR3B)
else if (_timer == 3)
TCCR3B = (TCCR3B & 0b11111000) | prescalarbits;
#endif
#if defined(TCCR4B)
else if (_timer == 4)
TCCR4B = (TCCR4B & 0b11111000) | prescalarbits;
#endif
#if defined(TCCR5B)
else if (_timer == 5)
TCCR5B = (TCCR5B & 0b11111000) | prescalarbits;
#endif
}
// Calculate the toggle count
if (duration > 0)
{
toggle_count = 2 * frequency * duration / 1000;
}
else
{
toggle_count = -1;
}
// Set the OCR for the given timer,
// set the toggle count,
// then turn on the interrupts
switch (_timer)
{
#if defined(OCR0A) && defined(TIMSK0) && defined(OCIE0A)
case 0:
OCR0A = ocr;
timer0_toggle_count = toggle_count;
bitWrite(TIMSK0, OCIE0A, 1);
break;
#endif
case 1:
#if defined(OCR1A) && defined(TIMSK1) && defined(OCIE1A)
OCR1A = ocr;
timer1_toggle_count = toggle_count;
bitWrite(TIMSK1, OCIE1A, 1);
#elif defined(OCR1A) && defined(TIMSK) && defined(OCIE1A)
// this combination is for at least the ATmega32
OCR1A = ocr;
timer1_toggle_count = toggle_count;
bitWrite(TIMSK, OCIE1A, 1);
#endif
break;
#if defined(OCR2A) && defined(TIMSK2) && defined(OCIE2A)
case 2:
OCR2A = ocr;
timer2_toggle_count = toggle_count;
bitWrite(TIMSK2, OCIE2A, 1);
break;
#endif
#if defined(TIMSK3)
case 3:
OCR3A = ocr;
timer3_toggle_count = toggle_count;
bitWrite(TIMSK3, OCIE3A, 1);
break;
#endif
#if defined(TIMSK4)
case 4:
OCR4A = ocr;
timer4_toggle_count = toggle_count;
bitWrite(TIMSK4, OCIE4A, 1);
break;
#endif
#if defined(OCR5A) && defined(TIMSK5) && defined(OCIE5A)
case 5:
OCR5A = ocr;
timer5_toggle_count = toggle_count;
bitWrite(TIMSK5, OCIE5A, 1);
break;
#endif
}
}
}
// XXX: this function only works properly for timer 2 (the only one we use
// currently). for the others, it should end the tone, but won't restore
// proper PWM functionality for the timer.
void disableTimer(uint8_t _timer)
{
switch (_timer)
{
case 0:
#if defined(TIMSK0)
TIMSK0 = 0;
#elif defined(TIMSK)
TIMSK = 0; // atmega32
#endif
break;
#if defined(TIMSK1) && defined(OCIE1A)
case 1:
bitWrite(TIMSK1, OCIE1A, 0);
break;
#endif
case 2:
#if defined(TIMSK2) && defined(OCIE2A)
bitWrite(TIMSK2, OCIE2A, 0); // disable interrupt
#endif
#if defined(TCCR2A) && defined(WGM20)
TCCR2A = (1 << WGM20);
#endif
#if defined(TCCR2B) && defined(CS22)
TCCR2B = (TCCR2B & 0b11111000) | (1 << CS22);
#endif
#if defined(OCR2A)
OCR2A = 0;
#endif
break;
#if defined(TIMSK3)
case 3:
TIMSK3 = 0;
break;
#endif
#if defined(TIMSK4)
case 4:
TIMSK4 = 0;
break;
#endif
#if defined(TIMSK5)
case 5:
TIMSK5 = 0;
break;
#endif
}
}
void noTone(uint8_t _pin)
{
int8_t _timer = -1;
for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {
if (tone_pins[i] == _pin) {
_timer = pgm_read_byte(tone_pin_to_timer_PGM + i);
tone_pins[i] = 255;
}
}
disableTimer(_timer);
digitalWrite(_pin, 0);
}
#ifdef USE_TIMER0
ISR(TIMER0_COMPA_vect)
{
if (timer0_toggle_count != 0)
{
// toggle the pin
*timer0_pin_port ^= timer0_pin_mask;
if (timer0_toggle_count > 0)
timer0_toggle_count--;
}
else
{
disableTimer(0);
*timer0_pin_port &= ~(timer0_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER1
ISR(TIMER1_COMPA_vect)
{
if (timer1_toggle_count != 0)
{
// toggle the pin
*timer1_pin_port ^= timer1_pin_mask;
if (timer1_toggle_count > 0)
timer1_toggle_count--;
}
else
{
disableTimer(1);
*timer1_pin_port &= ~(timer1_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER2
ISR(TIMER2_COMPA_vect)
{
if (timer2_toggle_count != 0)
{
// toggle the pin
*timer2_pin_port ^= timer2_pin_mask;
if (timer2_toggle_count > 0)
timer2_toggle_count--;
}
else
{
// need to call noTone() so that the tone_pins[] entry is reset, so the
// timer gets initialized next time we call tone().
// XXX: this assumes timer 2 is always the first one used.
noTone(tone_pins[0]);
// disableTimer(2);
// *timer2_pin_port &= ~(timer2_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER3
ISR(TIMER3_COMPA_vect)
{
if (timer3_toggle_count != 0)
{
// toggle the pin
*timer3_pin_port ^= timer3_pin_mask;
if (timer3_toggle_count > 0)
timer3_toggle_count--;
}
else
{
disableTimer(3);
*timer3_pin_port &= ~(timer3_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER4
ISR(TIMER4_COMPA_vect)
{
if (timer4_toggle_count != 0)
{
// toggle the pin
*timer4_pin_port ^= timer4_pin_mask;
if (timer4_toggle_count > 0)
timer4_toggle_count--;
}
else
{
disableTimer(4);
*timer4_pin_port &= ~(timer4_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER5
ISR(TIMER5_COMPA_vect)
{
if (timer5_toggle_count != 0)
{
// toggle the pin
*timer5_pin_port ^= timer5_pin_mask;
if (timer5_toggle_count > 0)
timer5_toggle_count--;
}
else
{
disableTimer(5);
*timer5_pin_port &= ~(timer5_pin_mask); // keep pin low after stop
}
}
#endif

196
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/USBAPI.h

@ -0,0 +1,196 @@
#ifndef __USBAPI__
#define __USBAPI__
#if defined(USBCON)
//================================================================================
//================================================================================
// USB
class USBDevice_
{
public:
USBDevice_();
bool configured();
void attach();
void detach(); // Serial port goes down too...
void poll();
};
extern USBDevice_ USBDevice;
//================================================================================
//================================================================================
// Serial over CDC (Serial1 is the physical port)
class Serial_ : public Stream
{
private:
ring_buffer *_cdc_rx_buffer;
public:
void begin(uint16_t baud_count);
void end(void);
virtual int available(void);
virtual void accept(void);
virtual int peek(void);
virtual int read(void);
virtual void flush(void);
virtual size_t write(uint8_t);
using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool();
};
extern Serial_ Serial;
//================================================================================
//================================================================================
// Mouse
#define MOUSE_LEFT 1
#define MOUSE_RIGHT 2
#define MOUSE_MIDDLE 4
#define MOUSE_ALL (MOUSE_LEFT | MOUSE_RIGHT | MOUSE_MIDDLE)
class Mouse_
{
private:
uint8_t _buttons;
void buttons(uint8_t b);
public:
Mouse_(void);
void begin(void);
void end(void);
void click(uint8_t b = MOUSE_LEFT);
void move(signed char x, signed char y, signed char wheel = 0);
void press(uint8_t b = MOUSE_LEFT); // press LEFT by default
void release(uint8_t b = MOUSE_LEFT); // release LEFT by default
bool isPressed(uint8_t b = MOUSE_LEFT); // check LEFT by default
};
extern Mouse_ Mouse;
//================================================================================
//================================================================================
// Keyboard
#define KEY_LEFT_CTRL 0x80
#define KEY_LEFT_SHIFT 0x81
#define KEY_LEFT_ALT 0x82
#define KEY_LEFT_GUI 0x83
#define KEY_RIGHT_CTRL 0x84
#define KEY_RIGHT_SHIFT 0x85
#define KEY_RIGHT_ALT 0x86
#define KEY_RIGHT_GUI 0x87
#define KEY_UP_ARROW 0xDA
#define KEY_DOWN_ARROW 0xD9
#define KEY_LEFT_ARROW 0xD8
#define KEY_RIGHT_ARROW 0xD7
#define KEY_BACKSPACE 0xB2
#define KEY_TAB 0xB3
#define KEY_RETURN 0xB0
#define KEY_ESC 0xB1
#define KEY_INSERT 0xD1
#define KEY_DELETE 0xD4
#define KEY_PAGE_UP 0xD3
#define KEY_PAGE_DOWN 0xD6
#define KEY_HOME 0xD2
#define KEY_END 0xD5
#define KEY_CAPS_LOCK 0xC1
#define KEY_F1 0xC2
#define KEY_F2 0xC3
#define KEY_F3 0xC4
#define KEY_F4 0xC5
#define KEY_F5 0xC6
#define KEY_F6 0xC7
#define KEY_F7 0xC8
#define KEY_F8 0xC9
#define KEY_F9 0xCA
#define KEY_F10 0xCB
#define KEY_F11 0xCC
#define KEY_F12 0xCD
// Low level key report: up to 6 keys and shift, ctrl etc at once
typedef struct
{
uint8_t modifiers;
uint8_t reserved;
uint8_t keys[6];
} KeyReport;
class Keyboard_ : public Print
{
private:
KeyReport _keyReport;
void sendReport(KeyReport* keys);
public:
Keyboard_(void);
void begin(void);
void end(void);
virtual size_t write(uint8_t k);
virtual size_t press(uint8_t k);
virtual size_t release(uint8_t k);
virtual void releaseAll(void);
};
extern Keyboard_ Keyboard;
//================================================================================
//================================================================================
// Low level API
typedef struct
{
uint8_t bmRequestType;
uint8_t bRequest;
uint8_t wValueL;
uint8_t wValueH;
uint16_t wIndex;
uint16_t wLength;
} Setup;
//================================================================================
//================================================================================
// HID 'Driver'
int HID_GetInterface(uint8_t* interfaceNum);
int HID_GetDescriptor(int i);
bool HID_Setup(Setup& setup);
void HID_SendReport(uint8_t id, const void* data, int len);
//================================================================================
//================================================================================
// MSC 'Driver'
int MSC_GetInterface(uint8_t* interfaceNum);
int MSC_GetDescriptor(int i);
bool MSC_Setup(Setup& setup);
bool MSC_Data(uint8_t rx,uint8_t tx);
//================================================================================
//================================================================================
// CSC 'Driver'
int CDC_GetInterface(uint8_t* interfaceNum);
int CDC_GetDescriptor(int i);
bool CDC_Setup(Setup& setup);
//================================================================================
//================================================================================
#define TRANSFER_PGM 0x80
#define TRANSFER_RELEASE 0x40
#define TRANSFER_ZERO 0x20
int USB_SendControl(uint8_t flags, const void* d, int len);
int USB_RecvControl(void* d, int len);
uint8_t USB_Available(uint8_t ep);
int USB_Send(uint8_t ep, const void* data, int len); // blocking
int USB_Recv(uint8_t ep, void* data, int len); // non-blocking
int USB_Recv(uint8_t ep); // non-blocking
void USB_Flush(uint8_t ep);
#endif
#endif /* if defined(USBCON) */

684
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/USBCore.cpp

@ -0,0 +1,684 @@
/* Copyright (c) 2010, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "Platform.h"
#include "USBAPI.h"
#include "USBDesc.h"
#if defined(USBCON)
#define EP_TYPE_CONTROL 0x00
#define EP_TYPE_BULK_IN 0x81
#define EP_TYPE_BULK_OUT 0x80
#define EP_TYPE_INTERRUPT_IN 0xC1
#define EP_TYPE_INTERRUPT_OUT 0xC0
#define EP_TYPE_ISOCHRONOUS_IN 0x41
#define EP_TYPE_ISOCHRONOUS_OUT 0x40
/** Pulse generation counters to keep track of the number of milliseconds remaining for each pulse type */
#define TX_RX_LED_PULSE_MS 100
volatile u8 TxLEDPulse; /**< Milliseconds remaining for data Tx LED pulse */
volatile u8 RxLEDPulse; /**< Milliseconds remaining for data Rx LED pulse */
//==================================================================
//==================================================================
extern const u16 STRING_LANGUAGE[] PROGMEM;
extern const u16 STRING_IPRODUCT[] PROGMEM;
extern const u16 STRING_IMANUFACTURER[] PROGMEM;
extern const DeviceDescriptor USB_DeviceDescriptor PROGMEM;
extern const DeviceDescriptor USB_DeviceDescriptorA PROGMEM;
const u16 STRING_LANGUAGE[2] = {
(3<<8) | (2+2),
0x0409 // English
};
const u16 STRING_IPRODUCT[17] = {
(3<<8) | (2+2*16),
#if USB_PID == 0x8036
'A','r','d','u','i','n','o',' ','L','e','o','n','a','r','d','o'
#elif USB_PID == 0x8037
'A','r','d','u','i','n','o',' ','M','i','c','r','o',' ',' ',' '
#elif USB_PID == 0x803C
'A','r','d','u','i','n','o',' ','E','s','p','l','o','r','a',' '
#elif USB_PID == 0x9208
'L','i','l','y','P','a','d','U','S','B',' ',' ',' ',' ',' ',' '
#else
'U','S','B',' ','I','O',' ','B','o','a','r','d',' ',' ',' ',' '
#endif
};
const u16 STRING_IMANUFACTURER[12] = {
(3<<8) | (2+2*11),
#if USB_VID == 0x2341
'A','r','d','u','i','n','o',' ','L','L','C'
#elif USB_VID == 0x1b4f
'S','p','a','r','k','F','u','n',' ',' ',' '
#else
'U','n','k','n','o','w','n',' ',' ',' ',' '
#endif
};
#ifdef CDC_ENABLED
#define DEVICE_CLASS 0x02
#else
#define DEVICE_CLASS 0x00
#endif
// DEVICE DESCRIPTOR
const DeviceDescriptor USB_DeviceDescriptor =
D_DEVICE(0x00,0x00,0x00,64,USB_VID,USB_PID,0x100,IMANUFACTURER,IPRODUCT,0,1);
const DeviceDescriptor USB_DeviceDescriptorA =
D_DEVICE(DEVICE_CLASS,0x00,0x00,64,USB_VID,USB_PID,0x100,IMANUFACTURER,IPRODUCT,0,1);
//==================================================================
//==================================================================
volatile u8 _usbConfiguration = 0;
static inline void WaitIN(void)
{
while (!(UEINTX & (1<<TXINI)));
}
static inline void ClearIN(void)
{
UEINTX = ~(1<<TXINI);
}
static inline void WaitOUT(void)
{
while (!(UEINTX & (1<<RXOUTI)))
;
}
static inline u8 WaitForINOrOUT()
{
while (!(UEINTX & ((1<<TXINI)|(1<<RXOUTI))))
;
return (UEINTX & (1<<RXOUTI)) == 0;
}
static inline void ClearOUT(void)
{
UEINTX = ~(1<<RXOUTI);
}
void Recv(volatile u8* data, u8 count)
{
while (count--)
*data++ = UEDATX;
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
}
static inline u8 Recv8()
{
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
return UEDATX;
}
static inline void Send8(u8 d)
{
UEDATX = d;
}
static inline void SetEP(u8 ep)
{
UENUM = ep;
}
static inline u8 FifoByteCount()
{
return UEBCLX;
}
static inline u8 ReceivedSetupInt()
{
return UEINTX & (1<<RXSTPI);
}
static inline void ClearSetupInt()
{
UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
}
static inline void Stall()
{
UECONX = (1<<STALLRQ) | (1<<EPEN);
}
static inline u8 ReadWriteAllowed()
{
return UEINTX & (1<<RWAL);
}
static inline u8 Stalled()
{
return UEINTX & (1<<STALLEDI);
}
static inline u8 FifoFree()
{
return UEINTX & (1<<FIFOCON);
}
static inline void ReleaseRX()
{
UEINTX = 0x6B; // FIFOCON=0 NAKINI=1 RWAL=1 NAKOUTI=0 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=1
}
static inline void ReleaseTX()
{
UEINTX = 0x3A; // FIFOCON=0 NAKINI=0 RWAL=1 NAKOUTI=1 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=0
}
static inline u8 FrameNumber()
{
return UDFNUML;
}
//==================================================================
//==================================================================
u8 USBGetConfiguration(void)
{
return _usbConfiguration;
}
#define USB_RECV_TIMEOUT
class LockEP
{
u8 _sreg;
public:
LockEP(u8 ep) : _sreg(SREG)
{
cli();
SetEP(ep & 7);
}
~LockEP()
{
SREG = _sreg;
}
};
// Number of bytes, assumes a rx endpoint
u8 USB_Available(u8 ep)
{
LockEP lock(ep);
return FifoByteCount();
}
// Non Blocking receive
// Return number of bytes read
int USB_Recv(u8 ep, void* d, int len)
{
if (!_usbConfiguration || len < 0)
return -1;
LockEP lock(ep);
u8 n = FifoByteCount();
len = min(n,len);
n = len;
u8* dst = (u8*)d;
while (n--)
*dst++ = Recv8();
if (len && !FifoByteCount()) // release empty buffer
ReleaseRX();
return len;
}
// Recv 1 byte if ready
int USB_Recv(u8 ep)
{
u8 c;
if (USB_Recv(ep,&c,1) != 1)
return -1;
return c;
}
// Space in send EP
u8 USB_SendSpace(u8 ep)
{
LockEP lock(ep);
if (!ReadWriteAllowed())
return 0;
return 64 - FifoByteCount();
}
// Blocking Send of data to an endpoint
int USB_Send(u8 ep, const void* d, int len)
{
if (!_usbConfiguration)
return -1;
int r = len;
const u8* data = (const u8*)d;
u8 zero = ep & TRANSFER_ZERO;
u8 timeout = 250; // 250ms timeout on send? TODO
while (len)
{
u8 n = USB_SendSpace(ep);
if (n == 0)
{
if (!(--timeout))
return -1;
delay(1);
continue;
}
if (n > len)
n = len;
len -= n;
{
LockEP lock(ep);
if (ep & TRANSFER_ZERO)
{
while (n--)
Send8(0);
}
else if (ep & TRANSFER_PGM)
{
while (n--)
Send8(pgm_read_byte(data++));
}
else
{
while (n--)
Send8(*data++);
}
if (!ReadWriteAllowed() || ((len == 0) && (ep & TRANSFER_RELEASE))) // Release full buffer
ReleaseTX();
}
}
TXLED1; // light the TX LED
TxLEDPulse = TX_RX_LED_PULSE_MS;
return r;
}
extern const u8 _initEndpoints[] PROGMEM;
const u8 _initEndpoints[] =
{
0,
#ifdef CDC_ENABLED
EP_TYPE_INTERRUPT_IN, // CDC_ENDPOINT_ACM
EP_TYPE_BULK_OUT, // CDC_ENDPOINT_OUT
EP_TYPE_BULK_IN, // CDC_ENDPOINT_IN
#endif
#ifdef HID_ENABLED
EP_TYPE_INTERRUPT_IN // HID_ENDPOINT_INT
#endif
};
#define EP_SINGLE_64 0x32 // EP0
#define EP_DOUBLE_64 0x36 // Other endpoints
static
void InitEP(u8 index, u8 type, u8 size)
{
UENUM = index;
UECONX = 1;
UECFG0X = type;
UECFG1X = size;
}
static
void InitEndpoints()
{
for (u8 i = 1; i < sizeof(_initEndpoints); i++)
{
UENUM = i;
UECONX = 1;
UECFG0X = pgm_read_byte(_initEndpoints+i);
UECFG1X = EP_DOUBLE_64;
}
UERST = 0x7E; // And reset them
UERST = 0;
}
// Handle CLASS_INTERFACE requests
static
bool ClassInterfaceRequest(Setup& setup)
{
u8 i = setup.wIndex;
#ifdef CDC_ENABLED
if (CDC_ACM_INTERFACE == i)
return CDC_Setup(setup);
#endif
#ifdef HID_ENABLED
if (HID_INTERFACE == i)
return HID_Setup(setup);
#endif
return false;
}
int _cmark;
int _cend;
void InitControl(int end)
{
SetEP(0);
_cmark = 0;
_cend = end;
}
static
bool SendControl(u8 d)
{
if (_cmark < _cend)
{
if (!WaitForINOrOUT())
return false;
Send8(d);
if (!((_cmark + 1) & 0x3F))
ClearIN(); // Fifo is full, release this packet
}
_cmark++;
return true;
};
// Clipped by _cmark/_cend
int USB_SendControl(u8 flags, const void* d, int len)
{
int sent = len;
const u8* data = (const u8*)d;
bool pgm = flags & TRANSFER_PGM;
while (len--)
{
u8 c = pgm ? pgm_read_byte(data++) : *data++;
if (!SendControl(c))
return -1;
}
return sent;
}
// Does not timeout or cross fifo boundaries
// Will only work for transfers <= 64 bytes
// TODO
int USB_RecvControl(void* d, int len)
{
WaitOUT();
Recv((u8*)d,len);
ClearOUT();
return len;
}
int SendInterfaces()
{
int total = 0;
u8 interfaces = 0;
#ifdef CDC_ENABLED
total = CDC_GetInterface(&interfaces);
#endif
#ifdef HID_ENABLED
total += HID_GetInterface(&interfaces);
#endif
return interfaces;
}
// Construct a dynamic configuration descriptor
// This really needs dynamic endpoint allocation etc
// TODO
static
bool SendConfiguration(int maxlen)
{
// Count and measure interfaces
InitControl(0);
int interfaces = SendInterfaces();
ConfigDescriptor config = D_CONFIG(_cmark + sizeof(ConfigDescriptor),interfaces);
// Now send them
InitControl(maxlen);
USB_SendControl(0,&config,sizeof(ConfigDescriptor));
SendInterfaces();
return true;
}
u8 _cdcComposite = 0;
static
bool SendDescriptor(Setup& setup)
{
u8 t = setup.wValueH;
if (USB_CONFIGURATION_DESCRIPTOR_TYPE == t)
return SendConfiguration(setup.wLength);
InitControl(setup.wLength);
#ifdef HID_ENABLED
if (HID_REPORT_DESCRIPTOR_TYPE == t)
return HID_GetDescriptor(t);
#endif
u8 desc_length = 0;
const u8* desc_addr = 0;
if (USB_DEVICE_DESCRIPTOR_TYPE == t)
{
if (setup.wLength == 8)
_cdcComposite = 1;
desc_addr = _cdcComposite ? (const u8*)&USB_DeviceDescriptorA : (const u8*)&USB_DeviceDescriptor;
}
else if (USB_STRING_DESCRIPTOR_TYPE == t)
{
if (setup.wValueL == 0)
desc_addr = (const u8*)&STRING_LANGUAGE;
else if (setup.wValueL == IPRODUCT)
desc_addr = (const u8*)&STRING_IPRODUCT;
else if (setup.wValueL == IMANUFACTURER)
desc_addr = (const u8*)&STRING_IMANUFACTURER;
else
return false;
}
if (desc_addr == 0)
return false;
if (desc_length == 0)
desc_length = pgm_read_byte(desc_addr);
USB_SendControl(TRANSFER_PGM,desc_addr,desc_length);
return true;
}
// Endpoint 0 interrupt
ISR(USB_COM_vect)
{
SetEP(0);
if (!ReceivedSetupInt())
return;
Setup setup;
Recv((u8*)&setup,8);
ClearSetupInt();
u8 requestType = setup.bmRequestType;
if (requestType & REQUEST_DEVICETOHOST)
WaitIN();
else
ClearIN();
bool ok = true;
if (REQUEST_STANDARD == (requestType & REQUEST_TYPE))
{
// Standard Requests
u8 r = setup.bRequest;
if (GET_STATUS == r)
{
Send8(0); // TODO
Send8(0);
}
else if (CLEAR_FEATURE == r)
{
}
else if (SET_FEATURE == r)
{
}
else if (SET_ADDRESS == r)
{
WaitIN();
UDADDR = setup.wValueL | (1<<ADDEN);
}
else if (GET_DESCRIPTOR == r)
{
ok = SendDescriptor(setup);
}
else if (SET_DESCRIPTOR == r)
{
ok = false;
}
else if (GET_CONFIGURATION == r)
{
Send8(1);
}
else if (SET_CONFIGURATION == r)
{
if (REQUEST_DEVICE == (requestType & REQUEST_RECIPIENT))
{
InitEndpoints();
_usbConfiguration = setup.wValueL;
} else
ok = false;
}
else if (GET_INTERFACE == r)
{
}
else if (SET_INTERFACE == r)
{
}
}
else
{
InitControl(setup.wLength); // Max length of transfer
ok = ClassInterfaceRequest(setup);
}
if (ok)
ClearIN();
else
{
Stall();
}
}
void USB_Flush(u8 ep)
{
SetEP(ep);
if (FifoByteCount())
ReleaseTX();
}
// General interrupt
ISR(USB_GEN_vect)
{
u8 udint = UDINT;
UDINT = 0;
// End of Reset
if (udint & (1<<EORSTI))
{
InitEP(0,EP_TYPE_CONTROL,EP_SINGLE_64); // init ep0
_usbConfiguration = 0; // not configured yet
UEIENX = 1 << RXSTPE; // Enable interrupts for ep0
}
// Start of Frame - happens every millisecond so we use it for TX and RX LED one-shot timing, too
if (udint & (1<<SOFI))
{
#ifdef CDC_ENABLED
USB_Flush(CDC_TX); // Send a tx frame if found
if (USB_Available(CDC_RX)) // Handle received bytes (if any)
Serial.accept();
#endif
// check whether the one-shot period has elapsed. if so, turn off the LED
if (TxLEDPulse && !(--TxLEDPulse))
TXLED0;
if (RxLEDPulse && !(--RxLEDPulse))
RXLED0;
}
}
// VBUS or counting frames
// Any frame counting?
u8 USBConnected()
{
u8 f = UDFNUML;
delay(3);
return f != UDFNUML;
}
//=======================================================================
//=======================================================================
USBDevice_ USBDevice;
USBDevice_::USBDevice_()
{
}
void USBDevice_::attach()
{
_usbConfiguration = 0;
UHWCON = 0x01; // power internal reg
USBCON = (1<<USBE)|(1<<FRZCLK); // clock frozen, usb enabled
#if F_CPU == 16000000UL
PLLCSR = 0x12; // Need 16 MHz xtal
#elif F_CPU == 8000000UL
PLLCSR = 0x02; // Need 8 MHz xtal
#endif
while (!(PLLCSR & (1<<PLOCK))) // wait for lock pll
;
// Some tests on specific versions of macosx (10.7.3), reported some
// strange behaviuors when the board is reset using the serial
// port touch at 1200 bps. This delay fixes this behaviour.
delay(1);
USBCON = ((1<<USBE)|(1<<OTGPADE)); // start USB clock
UDIEN = (1<<EORSTE)|(1<<SOFE); // Enable interrupts for EOR (End of Reset) and SOF (start of frame)
UDCON = 0; // enable attach resistor
TX_RX_LED_INIT;
}
void USBDevice_::detach()
{
}
// Check for interrupts
// TODO: VBUS detection
bool USBDevice_::configured()
{
return _usbConfiguration;
}
void USBDevice_::poll()
{
}
#endif /* if defined(USBCON) */

303
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/USBCore.h

@ -0,0 +1,303 @@
// Copyright (c) 2010, Peter Barrett
/*
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#ifndef __USBCORE_H__
#define __USBCORE_H__
// Standard requests
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define SET_DESCRIPTOR 7
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
// bmRequestType
#define REQUEST_HOSTTODEVICE 0x00
#define REQUEST_DEVICETOHOST 0x80
#define REQUEST_DIRECTION 0x80
#define REQUEST_STANDARD 0x00
#define REQUEST_CLASS 0x20
#define REQUEST_VENDOR 0x40
#define REQUEST_TYPE 0x60
#define REQUEST_DEVICE 0x00
#define REQUEST_INTERFACE 0x01
#define REQUEST_ENDPOINT 0x02
#define REQUEST_OTHER 0x03
#define REQUEST_RECIPIENT 0x03
#define REQUEST_DEVICETOHOST_CLASS_INTERFACE (REQUEST_DEVICETOHOST + REQUEST_CLASS + REQUEST_INTERFACE)
#define REQUEST_HOSTTODEVICE_CLASS_INTERFACE (REQUEST_HOSTTODEVICE + REQUEST_CLASS + REQUEST_INTERFACE)
// Class requests
#define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22
#define MSC_RESET 0xFF
#define MSC_GET_MAX_LUN 0xFE
#define HID_GET_REPORT 0x01
#define HID_GET_IDLE 0x02
#define HID_GET_PROTOCOL 0x03
#define HID_SET_REPORT 0x09
#define HID_SET_IDLE 0x0A
#define HID_SET_PROTOCOL 0x0B
// Descriptors
#define USB_DEVICE_DESC_SIZE 18
#define USB_CONFIGUARTION_DESC_SIZE 9
#define USB_INTERFACE_DESC_SIZE 9
#define USB_ENDPOINT_DESC_SIZE 7
#define USB_DEVICE_DESCRIPTOR_TYPE 1
#define USB_CONFIGURATION_DESCRIPTOR_TYPE 2
#define USB_STRING_DESCRIPTOR_TYPE 3
#define USB_INTERFACE_DESCRIPTOR_TYPE 4
#define USB_ENDPOINT_DESCRIPTOR_TYPE 5
#define USB_DEVICE_CLASS_COMMUNICATIONS 0x02
#define USB_DEVICE_CLASS_HUMAN_INTERFACE 0x03
#define USB_DEVICE_CLASS_STORAGE 0x08
#define USB_DEVICE_CLASS_VENDOR_SPECIFIC 0xFF
#define USB_CONFIG_POWERED_MASK 0x40
#define USB_CONFIG_BUS_POWERED 0x80
#define USB_CONFIG_SELF_POWERED 0xC0
#define USB_CONFIG_REMOTE_WAKEUP 0x20
// bMaxPower in Configuration Descriptor
#define USB_CONFIG_POWER_MA(mA) ((mA)/2)
// bEndpointAddress in Endpoint Descriptor
#define USB_ENDPOINT_DIRECTION_MASK 0x80
#define USB_ENDPOINT_OUT(addr) ((addr) | 0x00)
#define USB_ENDPOINT_IN(addr) ((addr) | 0x80)
#define USB_ENDPOINT_TYPE_MASK 0x03
#define USB_ENDPOINT_TYPE_CONTROL 0x00
#define USB_ENDPOINT_TYPE_ISOCHRONOUS 0x01
#define USB_ENDPOINT_TYPE_BULK 0x02
#define USB_ENDPOINT_TYPE_INTERRUPT 0x03
#define TOBYTES(x) ((x) & 0xFF),(((x) >> 8) & 0xFF)
#define CDC_V1_10 0x0110
#define CDC_COMMUNICATION_INTERFACE_CLASS 0x02
#define CDC_CALL_MANAGEMENT 0x01
#define CDC_ABSTRACT_CONTROL_MODEL 0x02
#define CDC_HEADER 0x00
#define CDC_ABSTRACT_CONTROL_MANAGEMENT 0x02
#define CDC_UNION 0x06
#define CDC_CS_INTERFACE 0x24
#define CDC_CS_ENDPOINT 0x25
#define CDC_DATA_INTERFACE_CLASS 0x0A
#define MSC_SUBCLASS_SCSI 0x06
#define MSC_PROTOCOL_BULK_ONLY 0x50
#define HID_HID_DESCRIPTOR_TYPE 0x21
#define HID_REPORT_DESCRIPTOR_TYPE 0x22
#define HID_PHYSICAL_DESCRIPTOR_TYPE 0x23
// Device
typedef struct {
u8 len; // 18
u8 dtype; // 1 USB_DEVICE_DESCRIPTOR_TYPE
u16 usbVersion; // 0x200
u8 deviceClass;
u8 deviceSubClass;
u8 deviceProtocol;
u8 packetSize0; // Packet 0
u16 idVendor;
u16 idProduct;
u16 deviceVersion; // 0x100
u8 iManufacturer;
u8 iProduct;
u8 iSerialNumber;
u8 bNumConfigurations;
} DeviceDescriptor;
// Config
typedef struct {
u8 len; // 9
u8 dtype; // 2
u16 clen; // total length
u8 numInterfaces;
u8 config;
u8 iconfig;
u8 attributes;
u8 maxPower;
} ConfigDescriptor;
// String
// Interface
typedef struct
{
u8 len; // 9
u8 dtype; // 4
u8 number;
u8 alternate;
u8 numEndpoints;
u8 interfaceClass;
u8 interfaceSubClass;
u8 protocol;
u8 iInterface;
} InterfaceDescriptor;
// Endpoint
typedef struct
{
u8 len; // 7
u8 dtype; // 5
u8 addr;
u8 attr;
u16 packetSize;
u8 interval;
} EndpointDescriptor;
// Interface Association Descriptor
// Used to bind 2 interfaces together in CDC compostite device
typedef struct
{
u8 len; // 8
u8 dtype; // 11
u8 firstInterface;
u8 interfaceCount;
u8 functionClass;
u8 funtionSubClass;
u8 functionProtocol;
u8 iInterface;
} IADDescriptor;
// CDC CS interface descriptor
typedef struct
{
u8 len; // 5
u8 dtype; // 0x24
u8 subtype;
u8 d0;
u8 d1;
} CDCCSInterfaceDescriptor;
typedef struct
{
u8 len; // 4
u8 dtype; // 0x24
u8 subtype;
u8 d0;
} CDCCSInterfaceDescriptor4;
typedef struct
{
u8 len;
u8 dtype; // 0x24
u8 subtype; // 1
u8 bmCapabilities;
u8 bDataInterface;
} CMFunctionalDescriptor;
typedef struct
{
u8 len;
u8 dtype; // 0x24
u8 subtype; // 1
u8 bmCapabilities;
} ACMFunctionalDescriptor;
typedef struct
{
// IAD
IADDescriptor iad; // Only needed on compound device
// Control
InterfaceDescriptor cif; //
CDCCSInterfaceDescriptor header;
CMFunctionalDescriptor callManagement; // Call Management
ACMFunctionalDescriptor controlManagement; // ACM
CDCCSInterfaceDescriptor functionalDescriptor; // CDC_UNION
EndpointDescriptor cifin;
// Data
InterfaceDescriptor dif;
EndpointDescriptor in;
EndpointDescriptor out;
} CDCDescriptor;
typedef struct
{
InterfaceDescriptor msc;
EndpointDescriptor in;
EndpointDescriptor out;
} MSCDescriptor;
typedef struct
{
u8 len; // 9
u8 dtype; // 0x21
u8 addr;
u8 versionL; // 0x101
u8 versionH; // 0x101
u8 country;
u8 desctype; // 0x22 report
u8 descLenL;
u8 descLenH;
} HIDDescDescriptor;
typedef struct
{
InterfaceDescriptor hid;
HIDDescDescriptor desc;
EndpointDescriptor in;
} HIDDescriptor;
#define D_DEVICE(_class,_subClass,_proto,_packetSize0,_vid,_pid,_version,_im,_ip,_is,_configs) \
{ 18, 1, 0x200, _class,_subClass,_proto,_packetSize0,_vid,_pid,_version,_im,_ip,_is,_configs }
#define D_CONFIG(_totalLength,_interfaces) \
{ 9, 2, _totalLength,_interfaces, 1, 0, USB_CONFIG_BUS_POWERED, USB_CONFIG_POWER_MA(500) }
#define D_INTERFACE(_n,_numEndpoints,_class,_subClass,_protocol) \
{ 9, 4, _n, 0, _numEndpoints, _class,_subClass, _protocol, 0 }
#define D_ENDPOINT(_addr,_attr,_packetSize, _interval) \
{ 7, 5, _addr,_attr,_packetSize, _interval }
#define D_IAD(_firstInterface, _count, _class, _subClass, _protocol) \
{ 8, 11, _firstInterface, _count, _class, _subClass, _protocol, 0 }
#define D_HIDREPORT(_descriptorLength) \
{ 9, 0x21, 0x1, 0x1, 0, 1, 0x22, _descriptorLength, 0 }
#define D_CDCCS(_subtype,_d0,_d1) { 5, 0x24, _subtype, _d0, _d1 }
#define D_CDCCS4(_subtype,_d0) { 4, 0x24, _subtype, _d0 }
#endif

63
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/USBDesc.h

@ -0,0 +1,63 @@
/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#define CDC_ENABLED
#define HID_ENABLED
#ifdef CDC_ENABLED
#define CDC_INTERFACE_COUNT 2
#define CDC_ENPOINT_COUNT 3
#else
#define CDC_INTERFACE_COUNT 0
#define CDC_ENPOINT_COUNT 0
#endif
#ifdef HID_ENABLED
#define HID_INTERFACE_COUNT 1
#define HID_ENPOINT_COUNT 1
#else
#define HID_INTERFACE_COUNT 0
#define HID_ENPOINT_COUNT 0
#endif
#define CDC_ACM_INTERFACE 0 // CDC ACM
#define CDC_DATA_INTERFACE 1 // CDC Data
#define CDC_FIRST_ENDPOINT 1
#define CDC_ENDPOINT_ACM (CDC_FIRST_ENDPOINT) // CDC First
#define CDC_ENDPOINT_OUT (CDC_FIRST_ENDPOINT+1)
#define CDC_ENDPOINT_IN (CDC_FIRST_ENDPOINT+2)
#define HID_INTERFACE (CDC_ACM_INTERFACE + CDC_INTERFACE_COUNT) // HID Interface
#define HID_FIRST_ENDPOINT (CDC_FIRST_ENDPOINT + CDC_ENPOINT_COUNT)
#define HID_ENDPOINT_INT (HID_FIRST_ENDPOINT)
#define INTERFACE_COUNT (MSC_INTERFACE + MSC_INTERFACE_COUNT)
#ifdef CDC_ENABLED
#define CDC_RX CDC_ENDPOINT_OUT
#define CDC_TX CDC_ENDPOINT_IN
#endif
#ifdef HID_ENABLED
#define HID_TX HID_ENDPOINT_INT
#endif
#define IMANUFACTURER 1
#define IPRODUCT 2

88
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/Udp.h

@ -0,0 +1,88 @@
/*
* Udp.cpp: Library to send/receive UDP packets.
*
* NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
* 1) UDP does not guarantee the order in which assembled UDP packets are received. This
* might not happen often in practice, but in larger network topologies, a UDP
* packet can be received out of sequence.
* 2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
* aware of it. Again, this may not be a concern in practice on small local networks.
* For more information, see http://www.cafeaulait.org/course/week12/35.html
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
#ifndef udp_h
#define udp_h
#include <Stream.h>
#include <IPAddress.h>
class UDP : public Stream {
public:
virtual uint8_t begin(uint16_t) =0; // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual void stop() =0; // Finish with the UDP socket
// Sending UDP packets
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port) =0;
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port) =0;
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket() =0;
// Write a single byte into the packet
virtual size_t write(uint8_t) =0;
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size) =0;
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket() =0;
// Number of bytes remaining in the current packet
virtual int available() =0;
// Read a single byte from the current packet
virtual int read() =0;
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len) =0;
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len) =0;
// Return the next byte from the current packet without moving on to the next byte
virtual int peek() =0;
virtual void flush() =0; // Finish reading the current packet
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP() =0;
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort() =0;
protected:
uint8_t* rawIPAddress(IPAddress& addr) { return addr.raw_address(); };
};
#endif

168
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WCharacter.h

@ -0,0 +1,168 @@
/*
WCharacter.h - Character utility functions for Wiring & Arduino
Copyright (c) 2010 Hernando Barragan. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef Character_h
#define Character_h
#include <ctype.h>
// WCharacter.h prototypes
inline boolean isAlphaNumeric(int c) __attribute__((always_inline));
inline boolean isAlpha(int c) __attribute__((always_inline));
inline boolean isAscii(int c) __attribute__((always_inline));
inline boolean isWhitespace(int c) __attribute__((always_inline));
inline boolean isControl(int c) __attribute__((always_inline));
inline boolean isDigit(int c) __attribute__((always_inline));
inline boolean isGraph(int c) __attribute__((always_inline));
inline boolean isLowerCase(int c) __attribute__((always_inline));
inline boolean isPrintable(int c) __attribute__((always_inline));
inline boolean isPunct(int c) __attribute__((always_inline));
inline boolean isSpace(int c) __attribute__((always_inline));
inline boolean isUpperCase(int c) __attribute__((always_inline));
inline boolean isHexadecimalDigit(int c) __attribute__((always_inline));
inline int toAscii(int c) __attribute__((always_inline));
inline int toLowerCase(int c) __attribute__((always_inline));
inline int toUpperCase(int c)__attribute__((always_inline));
// Checks for an alphanumeric character.
// It is equivalent to (isalpha(c) || isdigit(c)).
inline boolean isAlphaNumeric(int c)
{
return ( isalnum(c) == 0 ? false : true);
}
// Checks for an alphabetic character.
// It is equivalent to (isupper(c) || islower(c)).
inline boolean isAlpha(int c)
{
return ( isalpha(c) == 0 ? false : true);
}
// Checks whether c is a 7-bit unsigned char value
// that fits into the ASCII character set.
inline boolean isAscii(int c)
{
return ( isascii (c) == 0 ? false : true);
}
// Checks for a blank character, that is, a space or a tab.
inline boolean isWhitespace(int c)
{
return ( isblank (c) == 0 ? false : true);
}
// Checks for a control character.
inline boolean isControl(int c)
{
return ( iscntrl (c) == 0 ? false : true);
}
// Checks for a digit (0 through 9).
inline boolean isDigit(int c)
{
return ( isdigit (c) == 0 ? false : true);
}
// Checks for any printable character except space.
inline boolean isGraph(int c)
{
return ( isgraph (c) == 0 ? false : true);
}
// Checks for a lower-case character.
inline boolean isLowerCase(int c)
{
return (islower (c) == 0 ? false : true);
}
// Checks for any printable character including space.
inline boolean isPrintable(int c)
{
return ( isprint (c) == 0 ? false : true);
}
// Checks for any printable character which is not a space
// or an alphanumeric character.
inline boolean isPunct(int c)
{
return ( ispunct (c) == 0 ? false : true);
}
// Checks for white-space characters. For the avr-libc library,
// these are: space, formfeed ('\f'), newline ('\n'), carriage
// return ('\r'), horizontal tab ('\t'), and vertical tab ('\v').
inline boolean isSpace(int c)
{
return ( isspace (c) == 0 ? false : true);
}
// Checks for an uppercase letter.
inline boolean isUpperCase(int c)
{
return ( isupper (c) == 0 ? false : true);
}
// Checks for a hexadecimal digits, i.e. one of 0 1 2 3 4 5 6 7
// 8 9 a b c d e f A B C D E F.
inline boolean isHexadecimalDigit(int c)
{
return ( isxdigit (c) == 0 ? false : true);
}
// Converts c to a 7-bit unsigned char value that fits into the
// ASCII character set, by clearing the high-order bits.
inline int toAscii(int c)
{
return toascii (c);
}
// Warning:
// Many people will be unhappy if you use this function.
// This function will convert accented letters into random
// characters.
// Converts the letter c to lower case, if possible.
inline int toLowerCase(int c)
{
return tolower (c);
}
// Converts the letter c to upper case, if possible.
inline int toUpperCase(int c)
{
return toupper (c);
}
#endif

322
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WInterrupts.c

@ -0,0 +1,322 @@
/* -*- mode: jde; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
Part of the Wiring project - http://wiring.uniandes.edu.co
Copyright (c) 2004-05 Hernando Barragan
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
Modified 24 November 2006 by David A. Mellis
Modified 1 August 2010 by Mark Sproul
*/
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <stdio.h>
#include "wiring_private.h"
static volatile voidFuncPtr intFunc[EXTERNAL_NUM_INTERRUPTS];
// volatile static voidFuncPtr twiIntFunc;
void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) {
if(interruptNum < EXTERNAL_NUM_INTERRUPTS) {
intFunc[interruptNum] = userFunc;
// Configure the interrupt mode (trigger on low input, any change, rising
// edge, or falling edge). The mode constants were chosen to correspond
// to the configuration bits in the hardware register, so we simply shift
// the mode into place.
// Enable the interrupt.
switch (interruptNum) {
#if defined(__AVR_ATmega32U4__)
// I hate doing this, but the register assignment differs between the 1280/2560
// and the 32U4. Since avrlib defines registers PCMSK1 and PCMSK2 that aren't
// even present on the 32U4 this is the only way to distinguish between them.
case 0:
EICRA = (EICRA & ~((1<<ISC00) | (1<<ISC01))) | (mode << ISC00);
EIMSK |= (1<<INT0);
break;
case 1:
EICRA = (EICRA & ~((1<<ISC10) | (1<<ISC11))) | (mode << ISC10);
EIMSK |= (1<<INT1);
break;
case 2:
EICRA = (EICRA & ~((1<<ISC20) | (1<<ISC21))) | (mode << ISC20);
EIMSK |= (1<<INT2);
break;
case 3:
EICRA = (EICRA & ~((1<<ISC30) | (1<<ISC31))) | (mode << ISC30);
EIMSK |= (1<<INT3);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
EIMSK |= (1 << INT0);
break;
case 3:
EICRA = (EICRA & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
EIMSK |= (1 << INT1);
break;
case 4:
EICRA = (EICRA & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
EIMSK |= (1 << INT2);
break;
case 5:
EICRA = (EICRA & ~((1 << ISC30) | (1 << ISC31))) | (mode << ISC30);
EIMSK |= (1 << INT3);
break;
case 0:
EICRB = (EICRB & ~((1 << ISC40) | (1 << ISC41))) | (mode << ISC40);
EIMSK |= (1 << INT4);
break;
case 1:
EICRB = (EICRB & ~((1 << ISC50) | (1 << ISC51))) | (mode << ISC50);
EIMSK |= (1 << INT5);
break;
case 6:
EICRB = (EICRB & ~((1 << ISC60) | (1 << ISC61))) | (mode << ISC60);
EIMSK |= (1 << INT6);
break;
case 7:
EICRB = (EICRB & ~((1 << ISC70) | (1 << ISC71))) | (mode << ISC70);
EIMSK |= (1 << INT7);
break;
#else
case 0:
#if defined(EICRA) && defined(ISC00) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
EIMSK |= (1 << INT0);
#elif defined(MCUCR) && defined(ISC00) && defined(GICR)
MCUCR = (MCUCR & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
GICR |= (1 << INT0);
#elif defined(MCUCR) && defined(ISC00) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
GIMSK |= (1 << INT0);
#else
#error attachInterrupt not finished for this CPU (case 0)
#endif
break;
case 1:
#if defined(EICRA) && defined(ISC10) && defined(ISC11) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
EIMSK |= (1 << INT1);
#elif defined(MCUCR) && defined(ISC10) && defined(ISC11) && defined(GICR)
MCUCR = (MCUCR & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
GICR |= (1 << INT1);
#elif defined(MCUCR) && defined(ISC10) && defined(GIMSK) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
GIMSK |= (1 << INT1);
#else
#warning attachInterrupt may need some more work for this cpu (case 1)
#endif
break;
case 2:
#if defined(EICRA) && defined(ISC20) && defined(ISC21) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
EIMSK |= (1 << INT2);
#elif defined(MCUCR) && defined(ISC20) && defined(ISC21) && defined(GICR)
MCUCR = (MCUCR & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
GICR |= (1 << INT2);
#elif defined(MCUCR) && defined(ISC20) && defined(GIMSK) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
GIMSK |= (1 << INT2);
#endif
break;
#endif
}
}
}
void detachInterrupt(uint8_t interruptNum) {
if(interruptNum < EXTERNAL_NUM_INTERRUPTS) {
// Disable the interrupt. (We can't assume that interruptNum is equal
// to the number of the EIMSK bit to clear, as this isn't true on the
// ATmega8. There, INT0 is 6 and INT1 is 7.)
switch (interruptNum) {
#if defined(__AVR_ATmega32U4__)
case 0:
EIMSK &= ~(1<<INT0);
break;
case 1:
EIMSK &= ~(1<<INT1);
break;
case 2:
EIMSK &= ~(1<<INT2);
break;
case 3:
EIMSK &= ~(1<<INT3);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EIMSK &= ~(1 << INT0);
break;
case 3:
EIMSK &= ~(1 << INT1);
break;
case 4:
EIMSK &= ~(1 << INT2);
break;
case 5:
EIMSK &= ~(1 << INT3);
break;
case 0:
EIMSK &= ~(1 << INT4);
break;
case 1:
EIMSK &= ~(1 << INT5);
break;
case 6:
EIMSK &= ~(1 << INT6);
break;
case 7:
EIMSK &= ~(1 << INT7);
break;
#else
case 0:
#if defined(EIMSK) && defined(INT0)
EIMSK &= ~(1 << INT0);
#elif defined(GICR) && defined(ISC00)
GICR &= ~(1 << INT0); // atmega32
#elif defined(GIMSK) && defined(INT0)
GIMSK &= ~(1 << INT0);
#else
#error detachInterrupt not finished for this cpu
#endif
break;
case 1:
#if defined(EIMSK) && defined(INT1)
EIMSK &= ~(1 << INT1);
#elif defined(GICR) && defined(INT1)
GICR &= ~(1 << INT1); // atmega32
#elif defined(GIMSK) && defined(INT1)
GIMSK &= ~(1 << INT1);
#else
#warning detachInterrupt may need some more work for this cpu (case 1)
#endif
break;
#endif
}
intFunc[interruptNum] = 0;
}
}
/*
void attachInterruptTwi(void (*userFunc)(void) ) {
twiIntFunc = userFunc;
}
*/
#if defined(__AVR_ATmega32U4__)
SIGNAL(INT0_vect) {
if(intFunc[EXTERNAL_INT_0])
intFunc[EXTERNAL_INT_0]();
}
SIGNAL(INT1_vect) {
if(intFunc[EXTERNAL_INT_1])
intFunc[EXTERNAL_INT_1]();
}
SIGNAL(INT2_vect) {
if(intFunc[EXTERNAL_INT_2])
intFunc[EXTERNAL_INT_2]();
}
SIGNAL(INT3_vect) {
if(intFunc[EXTERNAL_INT_3])
intFunc[EXTERNAL_INT_3]();
}
#elif defined(EICRA) && defined(EICRB)
SIGNAL(INT0_vect) {
if(intFunc[EXTERNAL_INT_2])
intFunc[EXTERNAL_INT_2]();
}
SIGNAL(INT1_vect) {
if(intFunc[EXTERNAL_INT_3])
intFunc[EXTERNAL_INT_3]();
}
SIGNAL(INT2_vect) {
if(intFunc[EXTERNAL_INT_4])
intFunc[EXTERNAL_INT_4]();
}
SIGNAL(INT3_vect) {
if(intFunc[EXTERNAL_INT_5])
intFunc[EXTERNAL_INT_5]();
}
SIGNAL(INT4_vect) {
if(intFunc[EXTERNAL_INT_0])
intFunc[EXTERNAL_INT_0]();
}
SIGNAL(INT5_vect) {
if(intFunc[EXTERNAL_INT_1])
intFunc[EXTERNAL_INT_1]();
}
SIGNAL(INT6_vect) {
if(intFunc[EXTERNAL_INT_6])
intFunc[EXTERNAL_INT_6]();
}
SIGNAL(INT7_vect) {
if(intFunc[EXTERNAL_INT_7])
intFunc[EXTERNAL_INT_7]();
}
#else
SIGNAL(INT0_vect) {
if(intFunc[EXTERNAL_INT_0])
intFunc[EXTERNAL_INT_0]();
}
SIGNAL(INT1_vect) {
if(intFunc[EXTERNAL_INT_1])
intFunc[EXTERNAL_INT_1]();
}
#if defined(EICRA) && defined(ISC20)
SIGNAL(INT2_vect) {
if(intFunc[EXTERNAL_INT_2])
intFunc[EXTERNAL_INT_2]();
}
#endif
#endif
/*
SIGNAL(SIG_2WIRE_SERIAL) {
if(twiIntFunc)
twiIntFunc();
}
*/

60
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WMath.cpp

@ -0,0 +1,60 @@
/* -*- mode: jde; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
Part of the Wiring project - http://wiring.org.co
Copyright (c) 2004-06 Hernando Barragan
Modified 13 August 2006, David A. Mellis for Arduino - http://www.arduino.cc/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id$
*/
extern "C" {
#include "stdlib.h"
}
void randomSeed(unsigned int seed)
{
if (seed != 0) {
srandom(seed);
}
}
long random(long howbig)
{
if (howbig == 0) {
return 0;
}
return random() % howbig;
}
long random(long howsmall, long howbig)
{
if (howsmall >= howbig) {
return howsmall;
}
long diff = howbig - howsmall;
return random(diff) + howsmall;
}
long map(long x, long in_min, long in_max, long out_min, long out_max)
{
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
unsigned int makeWord(unsigned int w) { return w; }
unsigned int makeWord(unsigned char h, unsigned char l) { return (h << 8) | l; }

645
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WString.cpp

@ -0,0 +1,645 @@
/*
WString.cpp - String library for Wiring & Arduino
...mostly rewritten by Paul Stoffregen...
Copyright (c) 2009-10 Hernando Barragan. All rights reserved.
Copyright 2011, Paul Stoffregen, paul@pjrc.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "WString.h"
/*********************************************/
/* Constructors */
/*********************************************/
String::String(const char *cstr)
{
init();
if (cstr) copy(cstr, strlen(cstr));
}
String::String(const String &value)
{
init();
*this = value;
}
#ifdef __GXX_EXPERIMENTAL_CXX0X__
String::String(String &&rval)
{
init();
move(rval);
}
String::String(StringSumHelper &&rval)
{
init();
move(rval);
}
#endif
String::String(char c)
{
init();
char buf[2];
buf[0] = c;
buf[1] = 0;
*this = buf;
}
String::String(unsigned char value, unsigned char base)
{
init();
char buf[9];
utoa(value, buf, base);
*this = buf;
}
String::String(int value, unsigned char base)
{
init();
char buf[18];
itoa(value, buf, base);
*this = buf;
}
String::String(unsigned int value, unsigned char base)
{
init();
char buf[17];
utoa(value, buf, base);
*this = buf;
}
String::String(long value, unsigned char base)
{
init();
char buf[34];
ltoa(value, buf, base);
*this = buf;
}
String::String(unsigned long value, unsigned char base)
{
init();
char buf[33];
ultoa(value, buf, base);
*this = buf;
}
String::~String()
{
free(buffer);
}
/*********************************************/
/* Memory Management */
/*********************************************/
inline void String::init(void)
{
buffer = NULL;
capacity = 0;
len = 0;
flags = 0;
}
void String::invalidate(void)
{
if (buffer) free(buffer);
buffer = NULL;
capacity = len = 0;
}
unsigned char String::reserve(unsigned int size)
{
if (buffer && capacity >= size) return 1;
if (changeBuffer(size)) {
if (len == 0) buffer[0] = 0;
return 1;
}
return 0;
}
unsigned char String::changeBuffer(unsigned int maxStrLen)
{
char *newbuffer = (char *)realloc(buffer, maxStrLen + 1);
if (newbuffer) {
buffer = newbuffer;
capacity = maxStrLen;
return 1;
}
return 0;
}
/*********************************************/
/* Copy and Move */
/*********************************************/
String & String::copy(const char *cstr, unsigned int length)
{
if (!reserve(length)) {
invalidate();
return *this;
}
len = length;
strcpy(buffer, cstr);
return *this;
}
#ifdef __GXX_EXPERIMENTAL_CXX0X__
void String::move(String &rhs)
{
if (buffer) {
if (capacity >= rhs.len) {
strcpy(buffer, rhs.buffer);
len = rhs.len;
rhs.len = 0;
return;
} else {
free(buffer);
}
}
buffer = rhs.buffer;
capacity = rhs.capacity;
len = rhs.len;
rhs.buffer = NULL;
rhs.capacity = 0;
rhs.len = 0;
}
#endif
String & String::operator = (const String &rhs)
{
if (this == &rhs) return *this;
if (rhs.buffer) copy(rhs.buffer, rhs.len);
else invalidate();
return *this;
}
#ifdef __GXX_EXPERIMENTAL_CXX0X__
String & String::operator = (String &&rval)
{
if (this != &rval) move(rval);
return *this;
}
String & String::operator = (StringSumHelper &&rval)
{
if (this != &rval) move(rval);
return *this;
}
#endif
String & String::operator = (const char *cstr)
{
if (cstr) copy(cstr, strlen(cstr));
else invalidate();
return *this;
}
/*********************************************/
/* concat */
/*********************************************/
unsigned char String::concat(const String &s)
{
return concat(s.buffer, s.len);
}
unsigned char String::concat(const char *cstr, unsigned int length)
{
unsigned int newlen = len + length;
if (!cstr) return 0;
if (length == 0) return 1;
if (!reserve(newlen)) return 0;
strcpy(buffer + len, cstr);
len = newlen;
return 1;
}
unsigned char String::concat(const char *cstr)
{
if (!cstr) return 0;
return concat(cstr, strlen(cstr));
}
unsigned char String::concat(char c)
{
char buf[2];
buf[0] = c;
buf[1] = 0;
return concat(buf, 1);
}
unsigned char String::concat(unsigned char num)
{
char buf[4];
itoa(num, buf, 10);
return concat(buf, strlen(buf));
}
unsigned char String::concat(int num)
{
char buf[7];
itoa(num, buf, 10);
return concat(buf, strlen(buf));
}
unsigned char String::concat(unsigned int num)
{
char buf[6];
utoa(num, buf, 10);
return concat(buf, strlen(buf));
}
unsigned char String::concat(long num)
{
char buf[12];
ltoa(num, buf, 10);
return concat(buf, strlen(buf));
}
unsigned char String::concat(unsigned long num)
{
char buf[11];
ultoa(num, buf, 10);
return concat(buf, strlen(buf));
}
/*********************************************/
/* Concatenate */
/*********************************************/
StringSumHelper & operator + (const StringSumHelper &lhs, const String &rhs)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(rhs.buffer, rhs.len)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, const char *cstr)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!cstr || !a.concat(cstr, strlen(cstr))) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, char c)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(c)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, unsigned char num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, int num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, unsigned int num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, long num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, unsigned long num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
/*********************************************/
/* Comparison */
/*********************************************/
int String::compareTo(const String &s) const
{
if (!buffer || !s.buffer) {
if (s.buffer && s.len > 0) return 0 - *(unsigned char *)s.buffer;
if (buffer && len > 0) return *(unsigned char *)buffer;
return 0;
}
return strcmp(buffer, s.buffer);
}
unsigned char String::equals(const String &s2) const
{
return (len == s2.len && compareTo(s2) == 0);
}
unsigned char String::equals(const char *cstr) const
{
if (len == 0) return (cstr == NULL || *cstr == 0);
if (cstr == NULL) return buffer[0] == 0;
return strcmp(buffer, cstr) == 0;
}
unsigned char String::operator<(const String &rhs) const
{
return compareTo(rhs) < 0;
}
unsigned char String::operator>(const String &rhs) const
{
return compareTo(rhs) > 0;
}
unsigned char String::operator<=(const String &rhs) const
{
return compareTo(rhs) <= 0;
}
unsigned char String::operator>=(const String &rhs) const
{
return compareTo(rhs) >= 0;
}
unsigned char String::equalsIgnoreCase( const String &s2 ) const
{
if (this == &s2) return 1;
if (len != s2.len) return 0;
if (len == 0) return 1;
const char *p1 = buffer;
const char *p2 = s2.buffer;
while (*p1) {
if (tolower(*p1++) != tolower(*p2++)) return 0;
}
return 1;
}
unsigned char String::startsWith( const String &s2 ) const
{
if (len < s2.len) return 0;
return startsWith(s2, 0);
}
unsigned char String::startsWith( const String &s2, unsigned int offset ) const
{
if (offset > len - s2.len || !buffer || !s2.buffer) return 0;
return strncmp( &buffer[offset], s2.buffer, s2.len ) == 0;
}
unsigned char String::endsWith( const String &s2 ) const
{
if ( len < s2.len || !buffer || !s2.buffer) return 0;
return strcmp(&buffer[len - s2.len], s2.buffer) == 0;
}
/*********************************************/
/* Character Access */
/*********************************************/
char String::charAt(unsigned int loc) const
{
return operator[](loc);
}
void String::setCharAt(unsigned int loc, char c)
{
if (loc < len) buffer[loc] = c;
}
char & String::operator[](unsigned int index)
{
static char dummy_writable_char;
if (index >= len || !buffer) {
dummy_writable_char = 0;
return dummy_writable_char;
}
return buffer[index];
}
char String::operator[]( unsigned int index ) const
{
if (index >= len || !buffer) return 0;
return buffer[index];
}
void String::getBytes(unsigned char *buf, unsigned int bufsize, unsigned int index) const
{
if (!bufsize || !buf) return;
if (index >= len) {
buf[0] = 0;
return;
}
unsigned int n = bufsize - 1;
if (n > len - index) n = len - index;
strncpy((char *)buf, buffer + index, n);
buf[n] = 0;
}
/*********************************************/
/* Search */
/*********************************************/
int String::indexOf(char c) const
{
return indexOf(c, 0);
}
int String::indexOf( char ch, unsigned int fromIndex ) const
{
if (fromIndex >= len) return -1;
const char* temp = strchr(buffer + fromIndex, ch);
if (temp == NULL) return -1;
return temp - buffer;
}
int String::indexOf(const String &s2) const
{
return indexOf(s2, 0);
}
int String::indexOf(const String &s2, unsigned int fromIndex) const
{
if (fromIndex >= len) return -1;
const char *found = strstr(buffer + fromIndex, s2.buffer);
if (found == NULL) return -1;
return found - buffer;
}
int String::lastIndexOf( char theChar ) const
{
return lastIndexOf(theChar, len - 1);
}
int String::lastIndexOf(char ch, unsigned int fromIndex) const
{
if (fromIndex >= len) return -1;
char tempchar = buffer[fromIndex + 1];
buffer[fromIndex + 1] = '\0';
char* temp = strrchr( buffer, ch );
buffer[fromIndex + 1] = tempchar;
if (temp == NULL) return -1;
return temp - buffer;
}
int String::lastIndexOf(const String &s2) const
{
return lastIndexOf(s2, len - s2.len);
}
int String::lastIndexOf(const String &s2, unsigned int fromIndex) const
{
if (s2.len == 0 || len == 0 || s2.len > len) return -1;
if (fromIndex >= len) fromIndex = len - 1;
int found = -1;
for (char *p = buffer; p <= buffer + fromIndex; p++) {
p = strstr(p, s2.buffer);
if (!p) break;
if ((unsigned int)(p - buffer) <= fromIndex) found = p - buffer;
}
return found;
}
String String::substring( unsigned int left ) const
{
return substring(left, len);
}
String String::substring(unsigned int left, unsigned int right) const
{
if (left > right) {
unsigned int temp = right;
right = left;
left = temp;
}
String out;
if (left > len) return out;
if (right > len) right = len;
char temp = buffer[right]; // save the replaced character
buffer[right] = '\0';
out = buffer + left; // pointer arithmetic
buffer[right] = temp; //restore character
return out;
}
/*********************************************/
/* Modification */
/*********************************************/
void String::replace(char find, char replace)
{
if (!buffer) return;
for (char *p = buffer; *p; p++) {
if (*p == find) *p = replace;
}
}
void String::replace(const String& find, const String& replace)
{
if (len == 0 || find.len == 0) return;
int diff = replace.len - find.len;
char *readFrom = buffer;
char *foundAt;
if (diff == 0) {
while ((foundAt = strstr(readFrom, find.buffer)) != NULL) {
memcpy(foundAt, replace.buffer, replace.len);
readFrom = foundAt + replace.len;
}
} else if (diff < 0) {
char *writeTo = buffer;
while ((foundAt = strstr(readFrom, find.buffer)) != NULL) {
unsigned int n = foundAt - readFrom;
memcpy(writeTo, readFrom, n);
writeTo += n;
memcpy(writeTo, replace.buffer, replace.len);
writeTo += replace.len;
readFrom = foundAt + find.len;
len += diff;
}
strcpy(writeTo, readFrom);
} else {
unsigned int size = len; // compute size needed for result
while ((foundAt = strstr(readFrom, find.buffer)) != NULL) {
readFrom = foundAt + find.len;
size += diff;
}
if (size == len) return;
if (size > capacity && !changeBuffer(size)) return; // XXX: tell user!
int index = len - 1;
while (index >= 0 && (index = lastIndexOf(find, index)) >= 0) {
readFrom = buffer + index + find.len;
memmove(readFrom + diff, readFrom, len - (readFrom - buffer));
len += diff;
buffer[len] = 0;
memcpy(buffer + index, replace.buffer, replace.len);
index--;
}
}
}
void String::toLowerCase(void)
{
if (!buffer) return;
for (char *p = buffer; *p; p++) {
*p = tolower(*p);
}
}
void String::toUpperCase(void)
{
if (!buffer) return;
for (char *p = buffer; *p; p++) {
*p = toupper(*p);
}
}
void String::trim(void)
{
if (!buffer || len == 0) return;
char *begin = buffer;
while (isspace(*begin)) begin++;
char *end = buffer + len - 1;
while (isspace(*end) && end >= begin) end--;
len = end + 1 - begin;
if (begin > buffer) memcpy(buffer, begin, len);
buffer[len] = 0;
}
/*********************************************/
/* Parsing / Conversion */
/*********************************************/
long String::toInt(void) const
{
if (buffer) return atol(buffer);
return 0;
}

205
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/WString.h

@ -0,0 +1,205 @@
/*
WString.h - String library for Wiring & Arduino
...mostly rewritten by Paul Stoffregen...
Copyright (c) 2009-10 Hernando Barragan. All right reserved.
Copyright 2011, Paul Stoffregen, paul@pjrc.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef String_class_h
#define String_class_h
#ifdef __cplusplus
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <avr/pgmspace.h>
// When compiling programs with this class, the following gcc parameters
// dramatically increase performance and memory (RAM) efficiency, typically
// with little or no increase in code size.
// -felide-constructors
// -std=c++0x
class __FlashStringHelper;
#define F(string_literal) (reinterpret_cast<const __FlashStringHelper *>(PSTR(string_literal)))
// An inherited class for holding the result of a concatenation. These
// result objects are assumed to be writable by subsequent concatenations.
class StringSumHelper;
// The string class
class String
{
// use a function pointer to allow for "if (s)" without the
// complications of an operator bool(). for more information, see:
// http://www.artima.com/cppsource/safebool.html
typedef void (String::*StringIfHelperType)() const;
void StringIfHelper() const {}
public:
// constructors
// creates a copy of the initial value.
// if the initial value is null or invalid, or if memory allocation
// fails, the string will be marked as invalid (i.e. "if (s)" will
// be false).
String(const char *cstr = "");
String(const String &str);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
String(String &&rval);
String(StringSumHelper &&rval);
#endif
explicit String(char c);
explicit String(unsigned char, unsigned char base=10);
explicit String(int, unsigned char base=10);
explicit String(unsigned int, unsigned char base=10);
explicit String(long, unsigned char base=10);
explicit String(unsigned long, unsigned char base=10);
~String(void);
// memory management
// return true on success, false on failure (in which case, the string
// is left unchanged). reserve(0), if successful, will validate an
// invalid string (i.e., "if (s)" will be true afterwards)
unsigned char reserve(unsigned int size);
inline unsigned int length(void) const {return len;}
// creates a copy of the assigned value. if the value is null or
// invalid, or if the memory allocation fails, the string will be
// marked as invalid ("if (s)" will be false).
String & operator = (const String &rhs);
String & operator = (const char *cstr);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
String & operator = (String &&rval);
String & operator = (StringSumHelper &&rval);
#endif
// concatenate (works w/ built-in types)
// returns true on success, false on failure (in which case, the string
// is left unchanged). if the argument is null or invalid, the
// concatenation is considered unsucessful.
unsigned char concat(const String &str);
unsigned char concat(const char *cstr);
unsigned char concat(char c);
unsigned char concat(unsigned char c);
unsigned char concat(int num);
unsigned char concat(unsigned int num);
unsigned char concat(long num);
unsigned char concat(unsigned long num);
// if there's not enough memory for the concatenated value, the string
// will be left unchanged (but this isn't signalled in any way)
String & operator += (const String &rhs) {concat(rhs); return (*this);}
String & operator += (const char *cstr) {concat(cstr); return (*this);}
String & operator += (char c) {concat(c); return (*this);}
String & operator += (unsigned char num) {concat(num); return (*this);}
String & operator += (int num) {concat(num); return (*this);}
String & operator += (unsigned int num) {concat(num); return (*this);}
String & operator += (long num) {concat(num); return (*this);}
String & operator += (unsigned long num) {concat(num); return (*this);}
friend StringSumHelper & operator + (const StringSumHelper &lhs, const String &rhs);
friend StringSumHelper & operator + (const StringSumHelper &lhs, const char *cstr);
friend StringSumHelper & operator + (const StringSumHelper &lhs, char c);
friend StringSumHelper & operator + (const StringSumHelper &lhs, unsigned char num);
friend StringSumHelper & operator + (const StringSumHelper &lhs, int num);
friend StringSumHelper & operator + (const StringSumHelper &lhs, unsigned int num);
friend StringSumHelper & operator + (const StringSumHelper &lhs, long num);
friend StringSumHelper & operator + (const StringSumHelper &lhs, unsigned long num);
// comparison (only works w/ Strings and "strings")
operator StringIfHelperType() const { return buffer ? &String::StringIfHelper : 0; }
int compareTo(const String &s) const;
unsigned char equals(const String &s) const;
unsigned char equals(const char *cstr) const;
unsigned char operator == (const String &rhs) const {return equals(rhs);}
unsigned char operator == (const char *cstr) const {return equals(cstr);}
unsigned char operator != (const String &rhs) const {return !equals(rhs);}
unsigned char operator != (const char *cstr) const {return !equals(cstr);}
unsigned char operator < (const String &rhs) const;
unsigned char operator > (const String &rhs) const;
unsigned char operator <= (const String &rhs) const;
unsigned char operator >= (const String &rhs) const;
unsigned char equalsIgnoreCase(const String &s) const;
unsigned char startsWith( const String &prefix) const;
unsigned char startsWith(const String &prefix, unsigned int offset) const;
unsigned char endsWith(const String &suffix) const;
// character acccess
char charAt(unsigned int index) const;
void setCharAt(unsigned int index, char c);
char operator [] (unsigned int index) const;
char& operator [] (unsigned int index);
void getBytes(unsigned char *buf, unsigned int bufsize, unsigned int index=0) const;
void toCharArray(char *buf, unsigned int bufsize, unsigned int index=0) const
{getBytes((unsigned char *)buf, bufsize, index);}
// search
int indexOf( char ch ) const;
int indexOf( char ch, unsigned int fromIndex ) const;
int indexOf( const String &str ) const;
int indexOf( const String &str, unsigned int fromIndex ) const;
int lastIndexOf( char ch ) const;
int lastIndexOf( char ch, unsigned int fromIndex ) const;
int lastIndexOf( const String &str ) const;
int lastIndexOf( const String &str, unsigned int fromIndex ) const;
String substring( unsigned int beginIndex ) const;
String substring( unsigned int beginIndex, unsigned int endIndex ) const;
// modification
void replace(char find, char replace);
void replace(const String& find, const String& replace);
void toLowerCase(void);
void toUpperCase(void);
void trim(void);
// parsing/conversion
long toInt(void) const;
protected:
char *buffer; // the actual char array
unsigned int capacity; // the array length minus one (for the '\0')
unsigned int len; // the String length (not counting the '\0')
unsigned char flags; // unused, for future features
protected:
void init(void);
void invalidate(void);
unsigned char changeBuffer(unsigned int maxStrLen);
unsigned char concat(const char *cstr, unsigned int length);
// copy and move
String & copy(const char *cstr, unsigned int length);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
void move(String &rhs);
#endif
};
class StringSumHelper : public String
{
public:
StringSumHelper(const String &s) : String(s) {}
StringSumHelper(const char *p) : String(p) {}
StringSumHelper(char c) : String(c) {}
StringSumHelper(unsigned char num) : String(num) {}
StringSumHelper(int num) : String(num) {}
StringSumHelper(unsigned int num) : String(num) {}
StringSumHelper(long num) : String(num) {}
StringSumHelper(unsigned long num) : String(num) {}
};
#endif // __cplusplus
#endif // String_class_h

515
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/binary.h

@ -0,0 +1,515 @@
#ifndef Binary_h
#define Binary_h
#define B0 0
#define B00 0
#define B000 0
#define B0000 0
#define B00000 0
#define B000000 0
#define B0000000 0
#define B00000000 0
#define B1 1
#define B01 1
#define B001 1
#define B0001 1
#define B00001 1
#define B000001 1
#define B0000001 1
#define B00000001 1
#define B10 2
#define B010 2
#define B0010 2
#define B00010 2
#define B000010 2
#define B0000010 2
#define B00000010 2
#define B11 3
#define B011 3
#define B0011 3
#define B00011 3
#define B000011 3
#define B0000011 3
#define B00000011 3
#define B100 4
#define B0100 4
#define B00100 4
#define B000100 4
#define B0000100 4
#define B00000100 4
#define B101 5
#define B0101 5
#define B00101 5
#define B000101 5
#define B0000101 5
#define B00000101 5
#define B110 6
#define B0110 6
#define B00110 6
#define B000110 6
#define B0000110 6
#define B00000110 6
#define B111 7
#define B0111 7
#define B00111 7
#define B000111 7
#define B0000111 7
#define B00000111 7
#define B1000 8
#define B01000 8
#define B001000 8
#define B0001000 8
#define B00001000 8
#define B1001 9
#define B01001 9
#define B001001 9
#define B0001001 9
#define B00001001 9
#define B1010 10
#define B01010 10
#define B001010 10
#define B0001010 10
#define B00001010 10
#define B1011 11
#define B01011 11
#define B001011 11
#define B0001011 11
#define B00001011 11
#define B1100 12
#define B01100 12
#define B001100 12
#define B0001100 12
#define B00001100 12
#define B1101 13
#define B01101 13
#define B001101 13
#define B0001101 13
#define B00001101 13
#define B1110 14
#define B01110 14
#define B001110 14
#define B0001110 14
#define B00001110 14
#define B1111 15
#define B01111 15
#define B001111 15
#define B0001111 15
#define B00001111 15
#define B10000 16
#define B010000 16
#define B0010000 16
#define B00010000 16
#define B10001 17
#define B010001 17
#define B0010001 17
#define B00010001 17
#define B10010 18
#define B010010 18
#define B0010010 18
#define B00010010 18
#define B10011 19
#define B010011 19
#define B0010011 19
#define B00010011 19
#define B10100 20
#define B010100 20
#define B0010100 20
#define B00010100 20
#define B10101 21
#define B010101 21
#define B0010101 21
#define B00010101 21
#define B10110 22
#define B010110 22
#define B0010110 22
#define B00010110 22
#define B10111 23
#define B010111 23
#define B0010111 23
#define B00010111 23
#define B11000 24
#define B011000 24
#define B0011000 24
#define B00011000 24
#define B11001 25
#define B011001 25
#define B0011001 25
#define B00011001 25
#define B11010 26
#define B011010 26
#define B0011010 26
#define B00011010 26
#define B11011 27
#define B011011 27
#define B0011011 27
#define B00011011 27
#define B11100 28
#define B011100 28
#define B0011100 28
#define B00011100 28
#define B11101 29
#define B011101 29
#define B0011101 29
#define B00011101 29
#define B11110 30
#define B011110 30
#define B0011110 30
#define B00011110 30
#define B11111 31
#define B011111 31
#define B0011111 31
#define B00011111 31
#define B100000 32
#define B0100000 32
#define B00100000 32
#define B100001 33
#define B0100001 33
#define B00100001 33
#define B100010 34
#define B0100010 34
#define B00100010 34
#define B100011 35
#define B0100011 35
#define B00100011 35
#define B100100 36
#define B0100100 36
#define B00100100 36
#define B100101 37
#define B0100101 37
#define B00100101 37
#define B100110 38
#define B0100110 38
#define B00100110 38
#define B100111 39
#define B0100111 39
#define B00100111 39
#define B101000 40
#define B0101000 40
#define B00101000 40
#define B101001 41
#define B0101001 41
#define B00101001 41
#define B101010 42
#define B0101010 42
#define B00101010 42
#define B101011 43
#define B0101011 43
#define B00101011 43
#define B101100 44
#define B0101100 44
#define B00101100 44
#define B101101 45
#define B0101101 45
#define B00101101 45
#define B101110 46
#define B0101110 46
#define B00101110 46
#define B101111 47
#define B0101111 47
#define B00101111 47
#define B110000 48
#define B0110000 48
#define B00110000 48
#define B110001 49
#define B0110001 49
#define B00110001 49
#define B110010 50
#define B0110010 50
#define B00110010 50
#define B110011 51
#define B0110011 51
#define B00110011 51
#define B110100 52
#define B0110100 52
#define B00110100 52
#define B110101 53
#define B0110101 53
#define B00110101 53
#define B110110 54
#define B0110110 54
#define B00110110 54
#define B110111 55
#define B0110111 55
#define B00110111 55
#define B111000 56
#define B0111000 56
#define B00111000 56
#define B111001 57
#define B0111001 57
#define B00111001 57
#define B111010 58
#define B0111010 58
#define B00111010 58
#define B111011 59
#define B0111011 59
#define B00111011 59
#define B111100 60
#define B0111100 60
#define B00111100 60
#define B111101 61
#define B0111101 61
#define B00111101 61
#define B111110 62
#define B0111110 62
#define B00111110 62
#define B111111 63
#define B0111111 63
#define B00111111 63
#define B1000000 64
#define B01000000 64
#define B1000001 65
#define B01000001 65
#define B1000010 66
#define B01000010 66
#define B1000011 67
#define B01000011 67
#define B1000100 68
#define B01000100 68
#define B1000101 69
#define B01000101 69
#define B1000110 70
#define B01000110 70
#define B1000111 71
#define B01000111 71
#define B1001000 72
#define B01001000 72
#define B1001001 73
#define B01001001 73
#define B1001010 74
#define B01001010 74
#define B1001011 75
#define B01001011 75
#define B1001100 76
#define B01001100 76
#define B1001101 77
#define B01001101 77
#define B1001110 78
#define B01001110 78
#define B1001111 79
#define B01001111 79
#define B1010000 80
#define B01010000 80
#define B1010001 81
#define B01010001 81
#define B1010010 82
#define B01010010 82
#define B1010011 83
#define B01010011 83
#define B1010100 84
#define B01010100 84
#define B1010101 85
#define B01010101 85
#define B1010110 86
#define B01010110 86
#define B1010111 87
#define B01010111 87
#define B1011000 88
#define B01011000 88
#define B1011001 89
#define B01011001 89
#define B1011010 90
#define B01011010 90
#define B1011011 91
#define B01011011 91
#define B1011100 92
#define B01011100 92
#define B1011101 93
#define B01011101 93
#define B1011110 94
#define B01011110 94
#define B1011111 95
#define B01011111 95
#define B1100000 96
#define B01100000 96
#define B1100001 97
#define B01100001 97
#define B1100010 98
#define B01100010 98
#define B1100011 99
#define B01100011 99
#define B1100100 100
#define B01100100 100
#define B1100101 101
#define B01100101 101
#define B1100110 102
#define B01100110 102
#define B1100111 103
#define B01100111 103
#define B1101000 104
#define B01101000 104
#define B1101001 105
#define B01101001 105
#define B1101010 106
#define B01101010 106
#define B1101011 107
#define B01101011 107
#define B1101100 108
#define B01101100 108
#define B1101101 109
#define B01101101 109
#define B1101110 110
#define B01101110 110
#define B1101111 111
#define B01101111 111
#define B1110000 112
#define B01110000 112
#define B1110001 113
#define B01110001 113
#define B1110010 114
#define B01110010 114
#define B1110011 115
#define B01110011 115
#define B1110100 116
#define B01110100 116
#define B1110101 117
#define B01110101 117
#define B1110110 118
#define B01110110 118
#define B1110111 119
#define B01110111 119
#define B1111000 120
#define B01111000 120
#define B1111001 121
#define B01111001 121
#define B1111010 122
#define B01111010 122
#define B1111011 123
#define B01111011 123
#define B1111100 124
#define B01111100 124
#define B1111101 125
#define B01111101 125
#define B1111110 126
#define B01111110 126
#define B1111111 127
#define B01111111 127
#define B10000000 128
#define B10000001 129
#define B10000010 130
#define B10000011 131
#define B10000100 132
#define B10000101 133
#define B10000110 134
#define B10000111 135
#define B10001000 136
#define B10001001 137
#define B10001010 138
#define B10001011 139
#define B10001100 140
#define B10001101 141
#define B10001110 142
#define B10001111 143
#define B10010000 144
#define B10010001 145
#define B10010010 146
#define B10010011 147
#define B10010100 148
#define B10010101 149
#define B10010110 150
#define B10010111 151
#define B10011000 152
#define B10011001 153
#define B10011010 154
#define B10011011 155
#define B10011100 156
#define B10011101 157
#define B10011110 158
#define B10011111 159
#define B10100000 160
#define B10100001 161
#define B10100010 162
#define B10100011 163
#define B10100100 164
#define B10100101 165
#define B10100110 166
#define B10100111 167
#define B10101000 168
#define B10101001 169
#define B10101010 170
#define B10101011 171
#define B10101100 172
#define B10101101 173
#define B10101110 174
#define B10101111 175
#define B10110000 176
#define B10110001 177
#define B10110010 178
#define B10110011 179
#define B10110100 180
#define B10110101 181
#define B10110110 182
#define B10110111 183
#define B10111000 184
#define B10111001 185
#define B10111010 186
#define B10111011 187
#define B10111100 188
#define B10111101 189
#define B10111110 190
#define B10111111 191
#define B11000000 192
#define B11000001 193
#define B11000010 194
#define B11000011 195
#define B11000100 196
#define B11000101 197
#define B11000110 198
#define B11000111 199
#define B11001000 200
#define B11001001 201
#define B11001010 202
#define B11001011 203
#define B11001100 204
#define B11001101 205
#define B11001110 206
#define B11001111 207
#define B11010000 208
#define B11010001 209
#define B11010010 210
#define B11010011 211
#define B11010100 212
#define B11010101 213
#define B11010110 214
#define B11010111 215
#define B11011000 216
#define B11011001 217
#define B11011010 218
#define B11011011 219
#define B11011100 220
#define B11011101 221
#define B11011110 222
#define B11011111 223
#define B11100000 224
#define B11100001 225
#define B11100010 226
#define B11100011 227
#define B11100100 228
#define B11100101 229
#define B11100110 230
#define B11100111 231
#define B11101000 232
#define B11101001 233
#define B11101010 234
#define B11101011 235
#define B11101100 236
#define B11101101 237
#define B11101110 238
#define B11101111 239
#define B11110000 240
#define B11110001 241
#define B11110010 242
#define B11110011 243
#define B11110100 244
#define B11110101 245
#define B11110110 246
#define B11110111 247
#define B11111000 248
#define B11111001 249
#define B11111010 250
#define B11111011 251
#define B11111100 252
#define B11111101 253
#define B11111110 254
#define B11111111 255
#endif

20
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/main.cpp

@ -0,0 +1,20 @@
#include <Arduino.h>
int main(void)
{
init();
#if defined(USBCON)
USBDevice.attach();
#endif
setup();
for (;;) {
loop();
if (serialEventRun) serialEventRun();
}
return 0;
}

18
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/new.cpp

@ -0,0 +1,18 @@
#include <new.h>
void * operator new(size_t size)
{
return malloc(size);
}
void operator delete(void * ptr)
{
free(ptr);
}
int __cxa_guard_acquire(__guard *g) {return !*(char *)(g);};
void __cxa_guard_release (__guard *g) {*(char *)g = 1;};
void __cxa_guard_abort (__guard *) {};
void __cxa_pure_virtual(void) {};

22
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/new.h

@ -0,0 +1,22 @@
/* Header to define new/delete operators as they aren't provided by avr-gcc by default
Taken from http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=59453
*/
#ifndef NEW_H
#define NEW_H
#include <stdlib.h>
void * operator new(size_t size);
void operator delete(void * ptr);
__extension__ typedef int __guard __attribute__((mode (__DI__)));
extern "C" int __cxa_guard_acquire(__guard *);
extern "C" void __cxa_guard_release (__guard *);
extern "C" void __cxa_guard_abort (__guard *);
extern "C" void __cxa_pure_virtual(void);
#endif

324
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring.c

@ -0,0 +1,324 @@
/*
wiring.c - Partial implementation of the Wiring API for the ATmega8.
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id$
*/
#include "wiring_private.h"
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)
volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;
#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
SIGNAL(TIM0_OVF_vect)
#else
SIGNAL(TIMER0_OVF_vect)
#endif
{
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
unsigned long m = timer0_millis;
unsigned char f = timer0_fract;
m += MILLIS_INC;
f += FRACT_INC;
if (f >= FRACT_MAX) {
f -= FRACT_MAX;
m += 1;
}
timer0_fract = f;
timer0_millis = m;
timer0_overflow_count++;
}
unsigned long millis()
{
unsigned long m;
uint8_t oldSREG = SREG;
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli();
m = timer0_millis;
SREG = oldSREG;
return m;
}
unsigned long micros() {
unsigned long m;
uint8_t oldSREG = SREG, t;
cli();
m = timer0_overflow_count;
#if defined(TCNT0)
t = TCNT0;
#elif defined(TCNT0L)
t = TCNT0L;
#else
#error TIMER 0 not defined
#endif
#ifdef TIFR0
if ((TIFR0 & _BV(TOV0)) && (t < 255))
m++;
#else
if ((TIFR & _BV(TOV0)) && (t < 255))
m++;
#endif
SREG = oldSREG;
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}
void delay(unsigned long ms)
{
uint16_t start = (uint16_t)micros();
while (ms > 0) {
if (((uint16_t)micros() - start) >= 1000) {
ms--;
start += 1000;
}
}
}
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
void delayMicroseconds(unsigned int us)
{
// calling avrlib's delay_us() function with low values (e.g. 1 or
// 2 microseconds) gives delays longer than desired.
//delay_us(us);
#if F_CPU >= 20000000L
// for the 20 MHz clock on rare Arduino boards
// for a one-microsecond delay, simply wait 2 cycle and return. The overhead
// of the function call yields a delay of exactly a one microsecond.
__asm__ __volatile__ (
"nop" "\n\t"
"nop"); //just waiting 2 cycle
if (--us == 0)
return;
// the following loop takes a 1/5 of a microsecond (4 cycles)
// per iteration, so execute it five times for each microsecond of
// delay requested.
us = (us<<2) + us; // x5 us
// account for the time taken in the preceeding commands.
us -= 2;
#elif F_CPU >= 16000000L
// for the 16 MHz clock on most Arduino boards
// for a one-microsecond delay, simply return. the overhead
// of the function call yields a delay of approximately 1 1/8 us.
if (--us == 0)
return;
// the following loop takes a quarter of a microsecond (4 cycles)
// per iteration, so execute it four times for each microsecond of
// delay requested.
us <<= 2;
// account for the time taken in the preceeding commands.
us -= 2;
#else
// for the 8 MHz internal clock on the ATmega168
// for a one- or two-microsecond delay, simply return. the overhead of
// the function calls takes more than two microseconds. can't just
// subtract two, since us is unsigned; we'd overflow.
if (--us == 0)
return;
if (--us == 0)
return;
// the following loop takes half of a microsecond (4 cycles)
// per iteration, so execute it twice for each microsecond of
// delay requested.
us <<= 1;
// partially compensate for the time taken by the preceeding commands.
// we can't subtract any more than this or we'd overflow w/ small delays.
us--;
#endif
// busy wait
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
}
void init()
{
// this needs to be called before setup() or some functions won't
// work there
sei();
// on the ATmega168, timer 0 is also used for fast hardware pwm
// (using phase-correct PWM would mean that timer 0 overflowed half as often
// resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
sbi(TCCR0A, WGM01);
sbi(TCCR0A, WGM00);
#endif
// set timer 0 prescale factor to 64
#if defined(__AVR_ATmega128__)
// CPU specific: different values for the ATmega128
sbi(TCCR0, CS02);
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
// this combination is for the standard atmega8
sbi(TCCR0, CS01);
sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
// this combination is for the standard 168/328/1280/2560
sbi(TCCR0B, CS01);
sbi(TCCR0B, CS00);
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
// this combination is for the __AVR_ATmega645__ series
sbi(TCCR0A, CS01);
sbi(TCCR0A, CS00);
#else
#error Timer 0 prescale factor 64 not set correctly
#endif
// enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
sbi(TIMSK0, TOIE0);
#else
#error Timer 0 overflow interrupt not set correctly
#endif
// timers 1 and 2 are used for phase-correct hardware pwm
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
#if defined(TCCR1B) && defined(CS11) && defined(CS10)
TCCR1B = 0;
// set timer 1 prescale factor to 64
sbi(TCCR1B, CS11);
#if F_CPU >= 8000000L
sbi(TCCR1B, CS10);
#endif
#elif defined(TCCR1) && defined(CS11) && defined(CS10)
sbi(TCCR1, CS11);
#if F_CPU >= 8000000L
sbi(TCCR1, CS10);
#endif
#endif
// put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
sbi(TCCR1A, WGM10);
#elif defined(TCCR1)
#warning this needs to be finished
#endif
// set timer 2 prescale factor to 64
#if defined(TCCR2) && defined(CS22)
sbi(TCCR2, CS22);
#elif defined(TCCR2B) && defined(CS22)
sbi(TCCR2B, CS22);
#else
#warning Timer 2 not finished (may not be present on this CPU)
#endif
// configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
sbi(TCCR2A, WGM20);
#else
#warning Timer 2 not finished (may not be present on this CPU)
#endif
#if defined(TCCR3B) && defined(CS31) && defined(WGM30)
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
sbi(TCCR3B, CS30);
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
#endif
#if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
sbi(TCCR4B, CS42); // set timer4 prescale factor to 64
sbi(TCCR4B, CS41);
sbi(TCCR4B, CS40);
sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode
sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A
sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D
#else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
sbi(TCCR4B, CS40);
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
#endif
#endif /* end timer4 block for ATMEGA1280/2560 and similar */
#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
sbi(TCCR5B, CS50);
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
#endif
#if defined(ADCSRA)
// set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
// XXX: this will not work properly for other clock speeds, and
// this code should use F_CPU to determine the prescale factor.
sbi(ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
// enable a2d conversions
sbi(ADCSRA, ADEN);
#endif
// the bootloader connects pins 0 and 1 to the USART; disconnect them
// here so they can be used as normal digital i/o; they will be
// reconnected in Serial.begin()
#if defined(UCSRB)
UCSRB = 0;
#elif defined(UCSR0B)
UCSR0B = 0;
#endif
}

282
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_analog.c

@ -0,0 +1,282 @@
/*
wiring_analog.c - analog input and output
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
Modified 28 September 2010 by Mark Sproul
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#include "wiring_private.h"
#include "pins_arduino.h"
uint8_t analog_reference = DEFAULT;
void analogReference(uint8_t mode)
{
// can't actually set the register here because the default setting
// will connect AVCC and the AREF pin, which would cause a short if
// there's something connected to AREF.
analog_reference = mode;
}
int analogRead(uint8_t pin)
{
uint8_t low, high;
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
if (pin >= 54) pin -= 54; // allow for channel or pin numbers
#elif defined(__AVR_ATmega32U4__)
if (pin >= 18) pin -= 18; // allow for channel or pin numbers
#elif defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__)
if (pin >= 24) pin -= 24; // allow for channel or pin numbers
#else
if (pin >= 14) pin -= 14; // allow for channel or pin numbers
#endif
#if defined(__AVR_ATmega32U4__)
pin = analogPinToChannel(pin);
ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5);
#elif defined(ADCSRB) && defined(MUX5)
// the MUX5 bit of ADCSRB selects whether we're reading from channels
// 0 to 7 (MUX5 low) or 8 to 15 (MUX5 high).
ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5);
#endif
// set the analog reference (high two bits of ADMUX) and select the
// channel (low 4 bits). this also sets ADLAR (left-adjust result)
// to 0 (the default).
#if defined(ADMUX)
ADMUX = (analog_reference << 6) | (pin & 0x07);
#endif
// without a delay, we seem to read from the wrong channel
//delay(1);
#if defined(ADCSRA) && defined(ADCL)
// start the conversion
sbi(ADCSRA, ADSC);
// ADSC is cleared when the conversion finishes
while (bit_is_set(ADCSRA, ADSC));
// we have to read ADCL first; doing so locks both ADCL
// and ADCH until ADCH is read. reading ADCL second would
// cause the results of each conversion to be discarded,
// as ADCL and ADCH would be locked when it completed.
low = ADCL;
high = ADCH;
#else
// we dont have an ADC, return 0
low = 0;
high = 0;
#endif
// combine the two bytes
return (high << 8) | low;
}
// Right now, PWM output only works on the pins with
// hardware support. These are defined in the appropriate
// pins_*.c file. For the rest of the pins, we default
// to digital output.
void analogWrite(uint8_t pin, int val)
{
// We need to make sure the PWM output is enabled for those pins
// that support it, as we turn it off when digitally reading or
// writing with them. Also, make sure the pin is in output mode
// for consistenty with Wiring, which doesn't require a pinMode
// call for the analog output pins.
pinMode(pin, OUTPUT);
if (val == 0)
{
digitalWrite(pin, LOW);
}
else if (val == 255)
{
digitalWrite(pin, HIGH);
}
else
{
switch(digitalPinToTimer(pin))
{
// XXX fix needed for atmega8
#if defined(TCCR0) && defined(COM00) && !defined(__AVR_ATmega8__)
case TIMER0A:
// connect pwm to pin on timer 0
sbi(TCCR0, COM00);
OCR0 = val; // set pwm duty
break;
#endif
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A:
// connect pwm to pin on timer 0, channel A
sbi(TCCR0A, COM0A1);
OCR0A = val; // set pwm duty
break;
#endif
#if defined(TCCR0A) && defined(COM0B1)
case TIMER0B:
// connect pwm to pin on timer 0, channel B
sbi(TCCR0A, COM0B1);
OCR0B = val; // set pwm duty
break;
#endif
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A:
// connect pwm to pin on timer 1, channel A
sbi(TCCR1A, COM1A1);
OCR1A = val; // set pwm duty
break;
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B:
// connect pwm to pin on timer 1, channel B
sbi(TCCR1A, COM1B1);
OCR1B = val; // set pwm duty
break;
#endif
#if defined(TCCR2) && defined(COM21)
case TIMER2:
// connect pwm to pin on timer 2
sbi(TCCR2, COM21);
OCR2 = val; // set pwm duty
break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A:
// connect pwm to pin on timer 2, channel A
sbi(TCCR2A, COM2A1);
OCR2A = val; // set pwm duty
break;
#endif
#if defined(TCCR2A) && defined(COM2B1)
case TIMER2B:
// connect pwm to pin on timer 2, channel B
sbi(TCCR2A, COM2B1);
OCR2B = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A:
// connect pwm to pin on timer 3, channel A
sbi(TCCR3A, COM3A1);
OCR3A = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3B1)
case TIMER3B:
// connect pwm to pin on timer 3, channel B
sbi(TCCR3A, COM3B1);
OCR3B = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3C1)
case TIMER3C:
// connect pwm to pin on timer 3, channel C
sbi(TCCR3A, COM3C1);
OCR3C = val; // set pwm duty
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
//connect pwm to pin on timer 4, channel A
sbi(TCCR4A, COM4A1);
#if defined(COM4A0) // only used on 32U4
cbi(TCCR4A, COM4A0);
#endif
OCR4A = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4B1)
case TIMER4B:
// connect pwm to pin on timer 4, channel B
sbi(TCCR4A, COM4B1);
OCR4B = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4C1)
case TIMER4C:
// connect pwm to pin on timer 4, channel C
sbi(TCCR4A, COM4C1);
OCR4C = val; // set pwm duty
break;
#endif
#if defined(TCCR4C) && defined(COM4D1)
case TIMER4D:
// connect pwm to pin on timer 4, channel D
sbi(TCCR4C, COM4D1);
#if defined(COM4D0) // only used on 32U4
cbi(TCCR4C, COM4D0);
#endif
OCR4D = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5A1)
case TIMER5A:
// connect pwm to pin on timer 5, channel A
sbi(TCCR5A, COM5A1);
OCR5A = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5B1)
case TIMER5B:
// connect pwm to pin on timer 5, channel B
sbi(TCCR5A, COM5B1);
OCR5B = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5C1)
case TIMER5C:
// connect pwm to pin on timer 5, channel C
sbi(TCCR5A, COM5C1);
OCR5C = val; // set pwm duty
break;
#endif
case NOT_ON_TIMER:
default:
if (val < 128) {
digitalWrite(pin, LOW);
} else {
digitalWrite(pin, HIGH);
}
}
}
}

178
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_digital.c

@ -0,0 +1,178 @@
/*
wiring_digital.c - digital input and output functions
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
Modified 28 September 2010 by Mark Sproul
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#define ARDUINO_MAIN
#include "wiring_private.h"
#include "pins_arduino.h"
void pinMode(uint8_t pin, uint8_t mode)
{
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *reg, *out;
if (port == NOT_A_PIN) return;
// JWS: can I let the optimizer do this?
reg = portModeRegister(port);
out = portOutputRegister(port);
if (mode == INPUT) {
uint8_t oldSREG = SREG;
cli();
*reg &= ~bit;
*out &= ~bit;
SREG = oldSREG;
} else if (mode == INPUT_PULLUP) {
uint8_t oldSREG = SREG;
cli();
*reg &= ~bit;
*out |= bit;
SREG = oldSREG;
} else {
uint8_t oldSREG = SREG;
cli();
*reg |= bit;
SREG = oldSREG;
}
}
// Forcing this inline keeps the callers from having to push their own stuff
// on the stack. It is a good performance win and only takes 1 more byte per
// user than calling. (It will take more bytes on the 168.)
//
// But shouldn't this be moved into pinMode? Seems silly to check and do on
// each digitalread or write.
//
// Mark Sproul:
// - Removed inline. Save 170 bytes on atmega1280
// - changed to a switch statment; added 32 bytes but much easier to read and maintain.
// - Added more #ifdefs, now compiles for atmega645
//
//static inline void turnOffPWM(uint8_t timer) __attribute__ ((always_inline));
//static inline void turnOffPWM(uint8_t timer)
static void turnOffPWM(uint8_t timer)
{
switch (timer)
{
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A: cbi(TCCR1A, COM1A1); break;
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B: cbi(TCCR1A, COM1B1); break;
#endif
#if defined(TCCR2) && defined(COM21)
case TIMER2: cbi(TCCR2, COM21); break;
#endif
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A: cbi(TCCR0A, COM0A1); break;
#endif
#if defined(TIMER0B) && defined(COM0B1)
case TIMER0B: cbi(TCCR0A, COM0B1); break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A: cbi(TCCR2A, COM2A1); break;
#endif
#if defined(TCCR2A) && defined(COM2B1)
case TIMER2B: cbi(TCCR2A, COM2B1); break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A: cbi(TCCR3A, COM3A1); break;
#endif
#if defined(TCCR3A) && defined(COM3B1)
case TIMER3B: cbi(TCCR3A, COM3B1); break;
#endif
#if defined(TCCR3A) && defined(COM3C1)
case TIMER3C: cbi(TCCR3A, COM3C1); break;
#endif
#if defined(TCCR4A) && defined(COM4A1)
case TIMER4A: cbi(TCCR4A, COM4A1); break;
#endif
#if defined(TCCR4A) && defined(COM4B1)
case TIMER4B: cbi(TCCR4A, COM4B1); break;
#endif
#if defined(TCCR4A) && defined(COM4C1)
case TIMER4C: cbi(TCCR4A, COM4C1); break;
#endif
#if defined(TCCR4C) && defined(COM4D1)
case TIMER4D: cbi(TCCR4C, COM4D1); break;
#endif
#if defined(TCCR5A)
case TIMER5A: cbi(TCCR5A, COM5A1); break;
case TIMER5B: cbi(TCCR5A, COM5B1); break;
case TIMER5C: cbi(TCCR5A, COM5C1); break;
#endif
}
}
void digitalWrite(uint8_t pin, uint8_t val)
{
uint8_t timer = digitalPinToTimer(pin);
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *out;
if (port == NOT_A_PIN) return;
// If the pin that support PWM output, we need to turn it off
// before doing a digital write.
if (timer != NOT_ON_TIMER) turnOffPWM(timer);
out = portOutputRegister(port);
uint8_t oldSREG = SREG;
cli();
if (val == LOW) {
*out &= ~bit;
} else {
*out |= bit;
}
SREG = oldSREG;
}
int digitalRead(uint8_t pin)
{
uint8_t timer = digitalPinToTimer(pin);
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
if (port == NOT_A_PIN) return LOW;
// If the pin that support PWM output, we need to turn it off
// before getting a digital reading.
if (timer != NOT_ON_TIMER) turnOffPWM(timer);
if (*portInputRegister(port) & bit) return HIGH;
return LOW;
}

71
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_private.h

@ -0,0 +1,71 @@
/*
wiring_private.h - Internal header file.
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.h 239 2007-01-12 17:58:39Z mellis $
*/
#ifndef WiringPrivate_h
#define WiringPrivate_h
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include <stdarg.h>
#include "Arduino.h"
#ifdef __cplusplus
extern "C"{
#endif
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#define EXTERNAL_INT_0 0
#define EXTERNAL_INT_1 1
#define EXTERNAL_INT_2 2
#define EXTERNAL_INT_3 3
#define EXTERNAL_INT_4 4
#define EXTERNAL_INT_5 5
#define EXTERNAL_INT_6 6
#define EXTERNAL_INT_7 7
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define EXTERNAL_NUM_INTERRUPTS 8
#elif defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__)
#define EXTERNAL_NUM_INTERRUPTS 3
#elif defined(__AVR_ATmega32U4__)
#define EXTERNAL_NUM_INTERRUPTS 4
#else
#define EXTERNAL_NUM_INTERRUPTS 2
#endif
typedef void (*voidFuncPtr)(void);
#ifdef __cplusplus
} // extern "C"
#endif
#endif

69
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_pulse.c

@ -0,0 +1,69 @@
/*
wiring_pulse.c - pulseIn() function
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#include "wiring_private.h"
#include "pins_arduino.h"
/* Measures the length (in microseconds) of a pulse on the pin; state is HIGH
* or LOW, the type of pulse to measure. Works on pulses from 2-3 microseconds
* to 3 minutes in length, but must be called at least a few dozen microseconds
* before the start of the pulse. */
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout)
{
// cache the port and bit of the pin in order to speed up the
// pulse width measuring loop and achieve finer resolution. calling
// digitalRead() instead yields much coarser resolution.
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
uint8_t stateMask = (state ? bit : 0);
unsigned long width = 0; // keep initialization out of time critical area
// convert the timeout from microseconds to a number of times through
// the initial loop; it takes 16 clock cycles per iteration.
unsigned long numloops = 0;
unsigned long maxloops = microsecondsToClockCycles(timeout) / 16;
// wait for any previous pulse to end
while ((*portInputRegister(port) & bit) == stateMask)
if (numloops++ == maxloops)
return 0;
// wait for the pulse to start
while ((*portInputRegister(port) & bit) != stateMask)
if (numloops++ == maxloops)
return 0;
// wait for the pulse to stop
while ((*portInputRegister(port) & bit) == stateMask) {
if (numloops++ == maxloops)
return 0;
width++;
}
// convert the reading to microseconds. The loop has been determined
// to be 20 clock cycles long and have about 16 clocks between the edge
// and the start of the loop. There will be some error introduced by
// the interrupt handlers.
return clockCyclesToMicroseconds(width * 21 + 16);
}

55
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/cores/arduino/wiring_shift.c

@ -0,0 +1,55 @@
/*
wiring_shift.c - shiftOut() function
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#include "wiring_private.h"
uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder) {
uint8_t value = 0;
uint8_t i;
for (i = 0; i < 8; ++i) {
digitalWrite(clockPin, HIGH);
if (bitOrder == LSBFIRST)
value |= digitalRead(dataPin) << i;
else
value |= digitalRead(dataPin) << (7 - i);
digitalWrite(clockPin, LOW);
}
return value;
}
void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val)
{
uint8_t i;
for (i = 0; i < 8; i++) {
if (bitOrder == LSBFIRST)
digitalWrite(dataPin, !!(val & (1 << i)));
else
digitalWrite(dataPin, !!(val & (1 << (7 - i))));
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
}
}

286
ArduinoAddons/Arduino_1.x.x/hardware/Melzi/variants/standard/pins_arduino.h

@ -0,0 +1,286 @@
/*
pins_arduino.h - Pin definition functions for Arduino
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2007 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.h 249 2007-02-03 16:52:51Z mellis $
Changelog
-----------
11/25/11 - ryan@ryanmsutton.com - Add pins for Sanguino 644P and 1284P
07/15/12 - ryan@ryanmsutton.com - Updated for arduino0101
*/
#ifndef Pins_Arduino_h
#define Pins_Arduino_h
#include <avr/pgmspace.h>
#define NOT_A_PIN 0
#define NOT_A_PORT 0
#define NOT_ON_TIMER 0
#define TIMER0A 1
#define TIMER0B 2
#define TIMER1A 3
#define TIMER1B 4
#define TIMER2 5
#define TIMER2A 6
#define TIMER2B 7
#define TIMER3A 8
#define TIMER3B 9
#define TIMER3C 10
#define TIMER4A 11
#define TIMER4B 12
#define TIMER4C 13
#define TIMER4D 14
#define TIMER5A 15
#define TIMER5B 16
#define TIMER5C 17
const static uint8_t SS = 4;
const static uint8_t MOSI = 5;
const static uint8_t MISO = 6;
const static uint8_t SCK = 7;
static const uint8_t SDA = 17;
static const uint8_t SCL = 16;
static const uint8_t LED_BUILTIN = 13;
static const uint8_t A0 = 31;
static const uint8_t A1 = 30;
static const uint8_t A2 = 29;
static const uint8_t A3 = 28;
static const uint8_t A4 = 27;
static const uint8_t A5 = 26;
static const uint8_t A6 = 25;
static const uint8_t A7 = 24;
// On the ATmega1280, the addresses of some of the port registers are
// greater than 255, so we can't store them in uint8_t's.
// extern const uint16_t PROGMEM port_to_mode_PGM[];
// extern const uint16_t PROGMEM port_to_input_PGM[];
// extern const uint16_t PROGMEM port_to_output_PGM[];
// extern const uint8_t PROGMEM digital_pin_to_port_PGM[];
// extern const uint8_t PROGMEM digital_pin_to_bit_PGM[];
// extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[];
// extern const uint8_t PROGMEM digital_pin_to_timer_PGM[];
// ATMEL ATMEGA644P / SANGUINO
//
// +---\/---+
// INT0 (D 0) PB0 1| |40 PA0 (AI 0 / D31)
// INT1 (D 1) PB1 2| |39 PA1 (AI 1 / D30)
// INT2 (D 2) PB2 3| |38 PA2 (AI 2 / D29)
// PWM (D 3) PB3 4| |37 PA3 (AI 3 / D28)
// PWM (D 4) PB4 5| |36 PA4 (AI 4 / D27)
// MOSI (D 5) PB5 6| |35 PA5 (AI 5 / D26)
// MISO (D 6) PB6 7| |34 PA6 (AI 6 / D25)
// SCK (D 7) PB7 8| |33 PA7 (AI 7 / D24)
// RST 9| |32 AREF
// VCC 10| |31 GND
// GND 11| |30 AVCC
// XTAL2 12| |29 PC7 (D 23)
// XTAL1 13| |28 PC6 (D 22)
// RX0 (D 8) PD0 14| |27 PC5 (D 21) TDI
// TX0 (D 9) PD1 15| |26 PC4 (D 20) TDO
// RX1 (D 10) PD2 16| |25 PC3 (D 19) TMS
// TX1 (D 11) PD3 17| |24 PC2 (D 18) TCK
// PWM (D 12) PD4 18| |23 PC1 (D 17) SDA
// PWM (D 13) PD5 19| |22 PC0 (D 16) SCL
// PWM (D 14) PD6 20| |21 PD7 (D 15) PWM
// +--------+
//
#define NUM_DIGITAL_PINS 24
#define NUM_ANALOG_INPUTS 8
#define analogInputToDigitalPin(p) ((p < NUM_ANALOG_INPUTS) ? 31 - (p) : -1)
#define digitalPinHasPWM(p) ((p) == 3 || (p) == 4 || (p) == 12 || (p) == 13 || (p) == 14 || (p) == 15 )
#define digitalPinToPCICR(p) ( (((p) >= 0) && ((p) <= 31)) ? (&PCICR) : ((uint8_t *)0) )
#define digitalPinToPCICRbit(p) ( (((p) >= 24) && ((p) <= 31)) ? 0 : \
( (((p) >= 0) && ((p) <= 7)) ? 1 : \
( (((p) >= 16) && ((p) <= 23)) ? 2 : \
( (((p) >= 8) && ((p) <= 15)) ? 3 : \
0 ) ) ) )
#define digitalPinToPCMSK(p) ( (((p) >= 24) && ((p) <= 31)) ? (&PCMSK0) : \
( (((p) >= 0) && ((p) <= 7)) ? (&PCMSK1) : \
( (((p) >= 16) && ((p) <= 23)) ? (&PCMSK2) : \
( (((p) >= 8) && ((p) <= 15)) ? (&PCMSK3) : \
((uint8_t *)0) ) ) ) )
#define digitalPinToPCMSKbit(p) ( (((p) >= 24) && ((p) <= 31)) ? (31 - (p)) : \
( (((p) >= 0) && ((p) <= 7)) ? (p) : \
( (((p) >= 16) && ((p) <= 23)) ? ((p) - 16) : \
( (((p) >= 8) && ((p) <= 15)) ? ((p) - 8) : \
0 ) ) ) )
#define PA 1
#define PB 2
#define PC 3
#define PD 4
#define PE 5
#define PF 6
#define PG 7
#define PH 8
#define PJ 10
#define PK 11
#define PL 12
#ifdef ARDUINO_MAIN
// these arrays map port names (e.g. port B) to the
// appropriate addresses for various functions (e.g. reading
// and writing)
const uint16_t PROGMEM port_to_mode_PGM[] =
{
NOT_A_PORT,
(uint16_t) &DDRA,
(uint16_t) &DDRB,
(uint16_t) &DDRC,
(uint16_t) &DDRD,
};
const uint16_t PROGMEM port_to_output_PGM[] =
{
NOT_A_PORT,
(uint16_t) &PORTA,
(uint16_t) &PORTB,
(uint16_t) &PORTC,
(uint16_t) &PORTD,
};
const uint16_t PROGMEM port_to_input_PGM[] =
{
NOT_A_PORT,
(uint16_t) &PINA,
(uint16_t) &PINB,
(uint16_t) &PINC,
(uint16_t) &PIND,
};
const uint8_t PROGMEM digital_pin_to_port_PGM[] =
{
PB, /* 0 */
PB,
PB,
PB,
PB,
PB,
PB,
PB,
PD, /* 8 */
PD,
PD,
PD,
PD,
PD,
PD,
PD,
PC, /* 16 */
PC,
PC,
PC,
PC,
PC,
PC,
PC,
PA, /* 24 */
PA,
PA,
PA,
PA,
PA,
PA,
PA /* 31 */
};
const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[] =
{
_BV(0), /* 0, port B */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
_BV(6),
_BV(7),
_BV(0), /* 8, port D */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
_BV(6),
_BV(7),
_BV(0), /* 16, port C */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
_BV(6),
_BV(7),
_BV(7), /* 24, port A */
_BV(6),
_BV(5),
_BV(4),
_BV(3),
_BV(2),
_BV(1),
_BV(0)
};
const uint8_t PROGMEM digital_pin_to_timer_PGM[] =
{
NOT_ON_TIMER, /* 0 - PB0 */
NOT_ON_TIMER, /* 1 - PB1 */
NOT_ON_TIMER, /* 2 - PB2 */
TIMER0A, /* 3 - PB3 */
TIMER0B, /* 4 - PB4 */
NOT_ON_TIMER, /* 5 - PB5 */
NOT_ON_TIMER, /* 6 - PB6 */
NOT_ON_TIMER, /* 7 - PB7 */
NOT_ON_TIMER, /* 8 - PD0 */
NOT_ON_TIMER, /* 9 - PD1 */
NOT_ON_TIMER, /* 10 - PD2 */
NOT_ON_TIMER, /* 11 - PD3 */
TIMER1B, /* 12 - PD4 */
TIMER1A, /* 13 - PD5 */
TIMER2B, /* 14 - PD6 */
TIMER2A, /* 15 - PD7 */
NOT_ON_TIMER, /* 16 - PC0 */
NOT_ON_TIMER, /* 17 - PC1 */
NOT_ON_TIMER, /* 18 - PC2 */
NOT_ON_TIMER, /* 19 - PC3 */
NOT_ON_TIMER, /* 20 - PC4 */
NOT_ON_TIMER, /* 21 - PC5 */
NOT_ON_TIMER, /* 22 - PC6 */
NOT_ON_TIMER, /* 23 - PC7 */
NOT_ON_TIMER, /* 24 - PA0 */
NOT_ON_TIMER, /* 25 - PA1 */
NOT_ON_TIMER, /* 26 - PA2 */
NOT_ON_TIMER, /* 27 - PA3 */
NOT_ON_TIMER, /* 28 - PA4 */
NOT_ON_TIMER, /* 29 - PA5 */
NOT_ON_TIMER, /* 30 - PA6 */
NOT_ON_TIMER /* 31 - PA7 */
};
#endif
#endif
Loading…
Cancel
Save