Browse Source

Merge github.com:ErikZalm/Marlin into Marlin_v1

pull/1/head
Guillaume Seguin 12 years ago
parent
commit
18199ff960
  1. 2
      ArduinoAddons/Arduino_0.xx/Gen6/bootloaders/atmega644p/ATmegaBOOT.c
  2. 2
      ArduinoAddons/Arduino_0.xx/Sanguino/bootloaders/atmega644p/ATmegaBOOT.c
  3. 2
      ArduinoAddons/Arduino_0.xx/libraries/LiquidCrystal/LiquidCrystal.cpp
  4. 2
      ArduinoAddons/Arduino_0.xx/libraries/U8glib/utility/chessengine.c
  5. 2
      ArduinoAddons/Arduino_1.x.x/libraries/LiquidCrystal/LiquidCrystal.cpp
  6. 2
      ArduinoAddons/Arduino_1.x.x/libraries/U8glib/utility/chessengine.c
  7. 2
      ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega/ATmegaBOOT_168.c
  8. 2
      ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega644p/ATmegaBOOT.c
  9. 2
      ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega644p/ATmegaBOOT.c.tst
  10. 171
      Marlin/Configuration.h
  11. 13
      Marlin/ConfigurationStore.cpp
  12. 34
      Marlin/Configuration_adv.h
  13. 2
      Marlin/LiquidCrystalRus.cpp
  14. 10
      Marlin/Makefile
  15. 13
      Marlin/Marlin.h
  16. 303
      Marlin/Marlin_main.cpp
  17. 2
      Marlin/Servo.cpp
  18. 20
      Marlin/cardreader.cpp
  19. 5
      Marlin/cardreader.h
  20. 23
      Marlin/dogm_lcd_implementation.h
  21. 203
      Marlin/language.h
  22. 376
      Marlin/pins.h
  23. 46
      Marlin/planner.cpp
  24. 4
      Marlin/planner.h
  25. 157
      Marlin/stepper.cpp
  26. 73
      Marlin/temperature.cpp
  27. 3
      Marlin/temperature.h
  28. 110
      Marlin/ultralcd.cpp
  29. 48
      Marlin/ultralcd.h
  30. 15
      Marlin/ultralcd_implementation_hitachi_HD44780.h
  31. 131
      Marlin/ultralcd_st7920_u8glib_rrd.h
  32. 137
      README.md

2
ArduinoAddons/Arduino_0.xx/Gen6/bootloaders/atmega644p/ATmegaBOOT.c

@ -168,7 +168,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#endif

2
ArduinoAddons/Arduino_0.xx/Sanguino/bootloaders/atmega644p/ATmegaBOOT.c

@ -168,7 +168,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#endif

2
ArduinoAddons/Arduino_0.xx/libraries/LiquidCrystal/LiquidCrystal.cpp

@ -21,7 +21,7 @@
// S = 0; No shift
//
// Note, however, that resetting the Arduino doesn't reset the LCD, so we
// can't assume that its in that state when a sketch starts (and the
// can't assume that it's in that state when a sketch starts (and the
// LiquidCrystal constructor is called).
LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,

2
ArduinoAddons/Arduino_0.xx/libraries/U8glib/utility/chessengine.c

@ -72,7 +72,7 @@
- Castling: Need to check for fields under attack
--> done
- Check for WIN / LOOSE situation, perhaps call ce_Eval() once on the top-level board setup
- Check for WIN / LOSE situation, perhaps call ce_Eval() once on the top-level board setup
just after the real move
- cleanup cu_Move
--> almost done

2
ArduinoAddons/Arduino_1.x.x/libraries/LiquidCrystal/LiquidCrystal.cpp

@ -21,7 +21,7 @@
// S = 0; No shift
//
// Note, however, that resetting the Arduino doesn't reset the LCD, so we
// can't assume that its in that state when a sketch starts (and the
// can't assume that it's in that state when a sketch starts (and the
// LiquidCrystal constructor is called).
LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,

2
ArduinoAddons/Arduino_1.x.x/libraries/U8glib/utility/chessengine.c

@ -72,7 +72,7 @@
- Castling: Need to check for fields under attack
--> done
- Check for WIN / LOOSE situation, perhaps call ce_Eval() once on the top-level board setup
- Check for WIN / LOSE situation, perhaps call ce_Eval() once on the top-level board setup
just after the real move
- cleanup cu_Move
--> almost done

2
ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega/ATmegaBOOT_168.c

@ -301,7 +301,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#else
asm volatile("nop\n\t");

2
ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega644p/ATmegaBOOT.c

@ -172,7 +172,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#endif

2
ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega644p/ATmegaBOOT.c.tst

@ -172,7 +172,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#endif

171
Marlin/Configuration.h

@ -1,15 +1,15 @@
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
// This configurtion file contains the basic settings.
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
//User specified version info of this build to display in [Pronterface, etc] terminal window during startup.
//Implementation of an idea by Prof Braino to inform user that any changes made
//to this build by the user have been successfully uploaded into firmware.
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "(none, default config)" //Who made the changes.
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
@ -26,7 +26,7 @@
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 3 = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Bed, Fan)
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
// 4 = Duemilanove w/ ATMega328P pin assignment
// 5 = Gen6
@ -35,8 +35,11 @@
// 62 = Sanguinololu 1.2 and above
// 63 = Melzi
// 64 = STB V1.1
// 65 = Azteeg X1
// 66 = Melzi with ATmega1284 (MaKr3d version)
// 7 = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 77 = 3Drag Controller
// 8 = Teensylu
// 80 = Rumba
// 81 = Printrboard (AT90USB1286)
@ -48,11 +51,15 @@
// 90 = Alpha OMCA board
// 91 = Final OMCA board
// 301 = Rambo
// 21 = Elefu Ra Board (v3)
#ifndef MOTHERBOARD
#define MOTHERBOARD 7
#endif
// Define this to set a custom name for your generic Mendel,
// #define CUSTOM_MENDEL_NAME "This Mendel"
// This defines the number of extruders
#define EXTRUDERS 1
@ -62,6 +69,43 @@
#define POWER_SUPPLY 1
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
// Enable DELTA kinematics
//#define DELTA
// Make delta curves from many straight lines (linear interpolation).
// This is a trade-off between visible corners (not enough segments)
// and processor overload (too many expensive sqrt calls).
#define DELTA_SEGMENTS_PER_SECOND 200
// Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 250.0 // mm
// Horizontal offset from middle of printer to smooth rod center.
#define DELTA_SMOOTH_ROD_OFFSET 175.0 // mm
// Horizontal offset of the universal joints on the end effector.
#define DELTA_EFFECTOR_OFFSET 33.0 // mm
// Horizontal offset of the universal joints on the carriages.
#define DELTA_CARRIAGE_OFFSET 18.0 // mm
// Effective horizontal distance bridged by diagonal push rods.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
// Effective X/Y positions of the three vertical towers.
#define SIN_60 0.8660254037844386
#define COS_60 0.5
#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER3_X 0.0 // back middle tower
#define DELTA_TOWER3_Y DELTA_RADIUS
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
@ -82,6 +126,7 @@
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 60 is 100k Maker's Tool Works Kapton Bed Thermister
//
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID)
@ -90,14 +135,18 @@
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan) (1k pullup)
#define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_1 -1
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_BED 0
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the recidency timer x degC early.
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
@ -123,15 +172,15 @@
// PID settings:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 256 // limits current to nozzle while in bang-bang mode; 256=full current
#define PID_MAX 256 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 256=full current
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define K1 0.95 //smoothing factor withing the PID
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a preconfigured hotend then you can use one of the value sets by uncommenting it
@ -154,26 +203,26 @@
// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you proabaly
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING
// This sets the max power delived to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 256 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 256 // limits duty cycle to bed; 256=full current
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, argressive factor of .15 (vs .1, 1, 10)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
@ -205,17 +254,17 @@
// Uncomment the following line to enable CoreXY kinematics
// #define COREXY
// corse Endstop Settings
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#ifndef ENDSTOPPULLUPS
// fine Enstop settings: Individual Pullups. will be ignord if ENDSTOPPULLUPS is defined
#define ENDSTOPPULLUP_XMAX
#define ENDSTOPPULLUP_YMAX
#define ENDSTOPPULLUP_ZMAX
#define ENDSTOPPULLUP_XMIN
#define ENDSTOPPULLUP_YMIN
//#define ENDSTOPPULLUP_ZMIN
// fine Enstop settings: Individual Pullups. will be ignored if ENDSTOPPULLUPS is defined
// #define ENDSTOPPULLUP_XMAX
// #define ENDSTOPPULLUP_YMAX
// #define ENDSTOPPULLUP_ZMAX
// #define ENDSTOPPULLUP_XMIN
// #define ENDSTOPPULLUP_YMIN
// #define ENDSTOPPULLUP_ZMIN
#endif
#ifdef ENDSTOPPULLUPS
@ -232,6 +281,12 @@ const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
@ -258,8 +313,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
#define min_software_endstops true //If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true //If true, axis won't move to coordinates greater than the defined lengths below.
#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.
// Travel limits after homing
#define X_MAX_POS 205
#define X_MIN_POS 0
@ -277,9 +332,11 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
//Manual homing switch locations:
// For deltabots this means top and center of the cartesian print volume.
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS 0
#define MANUAL_Z_HOME_POS 0
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
@ -287,12 +344,12 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200.0*8/3,760*1.1} // default steps per unit for ultimaker
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200.0*8/3,760*1.1} // default steps per unit for Ultimaker
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 25} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
@ -300,7 +357,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
// The speed change that does not require acceleration (i.e. the software might assume it can be done instanteneously)
// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK 20.0 // (mm/sec)
#define DEFAULT_ZJERK 0.4 // (mm/sec)
#define DEFAULT_EJERK 5.0 // (mm/sec)
@ -338,6 +395,10 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
//#define ULTIPANEL //the ultipanel as on thingiverse
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -357,7 +418,20 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click
// The Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARUDINO library folder: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//#define RA_CONTROL_PANEL
//automatic expansion
#if defined (MAKRPANEL)
#define DOGLCD
#define SDSUPPORT
#define ULTIPANEL
#define NEWPANEL
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920
@ -373,6 +447,12 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define NEWPANEL
#define ULTIPANEL
#endif
#if defined(RA_CONTROL_PANEL)
#define ULTIPANEL
#define NEWPANEL
#define LCD_I2C_TYPE_PCA8574
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#endif
//I2C PANELS
@ -438,9 +518,27 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#endif
#endif
// default LCD contrast for dogm-like LCD displays
#ifdef DOGLCD
# ifndef DEFAULT_LCD_CONTRAST
# define DEFAULT_LCD_CONTRAST 32
# endif
#endif
// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not ass annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
// #define PHOTOGRAPH_PIN 23
@ -452,11 +550,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
//#define BARICUDA
/*********************************************************************\
*
* R/C SERVO support
*
* Sponsored by TrinityLabs, Reworked by codexmas
*
**********************************************************************/
// Number of servos
@ -466,7 +561,15 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
// #define NUM_SERVOS 3
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// Servo Endstops
//
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles
#include "Configuration_adv.h"
#include "thermistortables.h"

13
Marlin/ConfigurationStore.cpp

@ -37,7 +37,7 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size)
// the default values are used whenever there is a change to the data, to prevent
// wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V07"
#define EEPROM_VERSION "V08"
#ifdef EEPROM_SETTINGS
void Config_StoreSettings()
@ -78,6 +78,10 @@ void Config_StoreSettings()
EEPROM_WRITE_VAR(i,dummy);
EEPROM_WRITE_VAR(i,dummy);
#endif
#ifndef DOGLCD
int lcd_contrast = 32;
#endif
EEPROM_WRITE_VAR(i,lcd_contrast);
char ver2[4]=EEPROM_VERSION;
i=EEPROM_OFFSET;
EEPROM_WRITE_VAR(i,ver2); // validate data
@ -198,6 +202,10 @@ void Config_RetrieveSettings()
EEPROM_READ_VAR(i,Kp);
EEPROM_READ_VAR(i,Ki);
EEPROM_READ_VAR(i,Kd);
#ifndef DOGLCD
int lcd_contrast;
#endif
EEPROM_READ_VAR(i,lcd_contrast);
// Call updatePID (similar to when we have processed M301)
updatePID();
@ -244,6 +252,9 @@ void Config_ResetDefault()
absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif
#ifdef DOGLCD
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#ifdef PIDTEMP
Kp = DEFAULT_Kp;
Ki = scalePID_i(DEFAULT_Ki);

34
Marlin/Configuration_adv.h

@ -18,12 +18,6 @@
//#define WATCH_TEMP_PERIOD 40000 //40 seconds
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
// Wait for Cooldown
// This defines if the M109 call should not block if it is cooling down.
// example: From a current temp of 220, you set M109 S200.
// if CooldownNoWait is defined M109 will not wait for the cooldown to finish
#define CooldownNoWait true
#ifdef PIDTEMP
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
@ -152,6 +146,31 @@
#define EXTRUDERS 1
#endif
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds.
//#define DUAL_X_CARRIAGE
#ifdef DUAL_X_CARRIAGE
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 88 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 350.45 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h)
#define X2_ENABLE_PIN 29
#define X2_STEP_PIN 25
#define X2_DIR_PIN 23
#endif // DUAL_X_CARRIAGE
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_RETRACT_MM 5
#define Y_HOME_RETRACT_MM 5
@ -318,6 +337,9 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//===========================================================================
//============================= Define Defines ============================
//===========================================================================
#if EXTRUDERS > 1 && defined TEMP_SENSOR_1_AS_REDUNDANT
#error "You cannot use TEMP_SENSOR_1_AS_REDUNDANT if EXTRUDERS > 1"
#endif
#if TEMP_SENSOR_0 > 0
#define THERMISTORHEATER_0 TEMP_SENSOR_0

2
Marlin/LiquidCrystalRus.cpp

@ -36,7 +36,7 @@ const PROGMEM uint8_t utf_recode[] =
// S = 0; No shift
//
// Note, however, that resetting the Arduino doesn't reset the LCD, so we
// can't assume that its in that state when a sketch starts (and the
// can't assume that it's in that state when a sketch starts (and the
// LiquidCrystal constructor is called).
//
// modified 27 Jul 2011

10
Marlin/Makefile

@ -114,6 +114,12 @@ MCU ?= atmega644p
else ifeq ($(HARDWARE_MOTHERBOARD),63)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega644p
else ifeq ($(HARDWARE_MOTHERBOARD),65)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
else ifeq ($(HARDWARE_MOTHERBOARD),66)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
#Ultimaker
else ifeq ($(HARDWARE_MOTHERBOARD),7)
@ -213,7 +219,7 @@ CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \
SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \
stepper.cpp temperature.cpp cardreader.cpp ConfigurationStore.cpp \
watchdog.cpp
CXXSRC += LiquidCrystal.cpp ultralcd.cpp SPI.cpp Servo.cpp
CXXSRC += LiquidCrystal.cpp ultralcd.cpp SPI.cpp Servo.cpp Tone.cpp
#Check for Arduino 1.0.0 or higher and use the correct sourcefiles for that version
ifeq ($(shell [ $(ARDUINO_VERSION) -ge 100 ] && echo true), true)
@ -287,7 +293,7 @@ LDFLAGS = -lm
# Programming support using avrdude. Settings and variables.
AVRDUDE_PORT = $(UPLOAD_PORT)
AVRDUDE_WRITE_FLASH = -U flash:w:$(BUILD_DIR)/$(TARGET).hex:i
AVRDUDE_FLAGS = -D -C $(ARDUINO_INSTALL_DIR)/hardware/tools/avrdude.conf \
AVRDUDE_FLAGS = -D -C $(ARDUINO_INSTALL_DIR)/hardware/tools/avr/etc/avrdude.conf \
-p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) \
-b $(UPLOAD_RATE)

13
Marlin/Marlin.h

@ -96,7 +96,11 @@ void process_commands();
void manage_inactivity();
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
#if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \
&& defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
#define enable_x() do { WRITE(X_ENABLE_PIN, X_ENABLE_ON); WRITE(X2_ENABLE_PIN, X_ENABLE_ON); } while (0)
#define disable_x() do { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); WRITE(X2_ENABLE_PIN,!X_ENABLE_ON); } while (0)
#elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
#else
@ -157,6 +161,9 @@ void FlushSerialRequestResend();
void ClearToSend();
void get_coordinates();
#ifdef DELTA
void calculate_delta(float cartesian[3]);
#endif
void prepare_move();
void kill();
void Stop();
@ -191,6 +198,10 @@ extern int ValvePressure;
extern int EtoPPressure;
#endif
#ifdef FAN_SOFT_PWM
extern unsigned char fanSpeedSoftPwm;
#endif
#ifdef FWRETRACT
extern bool autoretract_enabled;
extern bool retracted;

303
Marlin/Marlin_main.cpp

@ -67,17 +67,9 @@
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given
//RepRap M Codes
// M Codes
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
// M1 - Same as M0
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Wait for extruder current temp to reach target temp.
// M114 - Display current position
//Custom M Codes
// M17 - Enable/Power all stepper motors
// M18 - Disable all stepper motors; same as M84
// M20 - List SD card
@ -92,6 +84,7 @@
// M29 - Stop SD write
// M30 - Delete file from SD (M30 filename.g)
// M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used when printing from SD card)
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
@ -101,6 +94,12 @@
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
// M114 - Output current position to serial port
// M115 - Capabilities string
// M117 - display message
@ -110,7 +109,8 @@
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 - Set filament diameter
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
@ -125,10 +125,11 @@
// M220 S<factor in percent>- set speed factor override percentage
// M221 S<factor in percent>- set extrude factor override percentage
// M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C<contrast value> (value 0..63)
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beepsound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M400 - Finish all moves
@ -177,6 +178,10 @@ float extruder_offset[2][EXTRUDERS] = {
#endif
uint8_t active_extruder = 0;
int fanSpeed=0;
#ifdef SERVO_ENDSTOPS
int servo_endstops[] = SERVO_ENDSTOPS;
int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
#endif
#ifdef BARICUDA
int ValvePressure=0;
int EtoPPressure=0;
@ -194,6 +199,9 @@ int EtoPPressure=0;
//===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
#ifdef DELTA
static float delta[3] = {0.0, 0.0, 0.0};
#endif
static float offset[3] = {0.0, 0.0, 0.0};
static bool home_all_axis = true;
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
@ -234,6 +242,9 @@ bool Stopped=false;
Servo servos[NUM_SERVOS];
#endif
bool CooldownNoWait = true;
bool target_direction;
//===========================================================================
//=============================ROUTINES=============================
//===========================================================================
@ -351,6 +362,16 @@ void servo_init()
#if (NUM_SERVOS >= 5)
#error "TODO: enter initalisation code for more servos"
#endif
// Set position of Servo Endstops that are defined
#ifdef SERVO_ENDSTOPS
for(int8_t i = 0; i < 3; i++)
{
if(servo_endstops[i] > -1) {
servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
}
}
#endif
}
void setup()
@ -404,6 +425,7 @@ void setup()
servo_init();
lcd_init();
_delay_ms(1000); // wait 1sec to display the splash screen
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
@ -655,7 +677,44 @@ XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#ifdef DUAL_X_CARRIAGE
#if EXTRUDERS == 1 || defined(COREXY) \
|| !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
|| !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
|| !defined(X_MAX_PIN) || X_MAX_PIN < 0
#error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
#endif
#if X_HOME_DIR != -1 || X2_HOME_DIR != 1
#error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
#endif
static float x_home_pos(int extruder) {
if (extruder == 0)
return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
else
// In dual carriage mode the extruder offset provides an override of the
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
// This allow soft recalibration of the second extruder offset position without firmware reflash
// (through the M218 command).
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
}
static int x_home_dir(int extruder) {
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
}
static float inactive_x_carriage_pos = X2_MAX_POS;
#endif
static void axis_is_at_home(int axis) {
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS && active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
return;
}
#endif
current_position[axis] = base_home_pos(axis) + add_homeing[axis];
min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
@ -669,20 +728,33 @@ static void homeaxis(int axis) {
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
axis==Z_AXIS ? HOMEAXIS_DO(Z) :
0) {
int axis_home_dir = home_dir(axis);
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS)
axis_home_dir = x_home_dir(active_extruder);
#endif
// Engage Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (SERVO_ENDSTOPS[axis] > -1) {
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
}
#endif
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = -home_retract_mm(axis) * home_dir(axis);
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
feedrate = homing_feedrate[axis]/2 ;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
@ -691,6 +763,13 @@ static void homeaxis(int axis) {
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose();
// Retract Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (SERVO_ENDSTOPS[axis] > -1) {
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
}
#endif
}
}
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
@ -782,6 +861,39 @@ void process_commands()
destination[i] = current_position[i];
}
feedrate = 0.0;
#ifdef DELTA
// A delta can only safely home all axis at the same time
// all axis have to home at the same time
// Move all carriages up together until the first endstop is hit.
current_position[X_AXIS] = 0;
current_position[Y_AXIS] = 0;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 3 * Z_MAX_LENGTH;
destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
current_position[Z_AXIS] = destination[Z_AXIS];
// take care of back off and rehome now we are all at the top
HOMEAXIS(X);
HOMEAXIS(Y);
HOMEAXIS(Z);
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else // NOT DELTA
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
@ -795,8 +907,14 @@ void process_commands()
{
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
#ifndef DUAL_X_CARRIAGE
int x_axis_home_dir = home_dir(X_AXIS);
#else
int x_axis_home_dir = x_home_dir(active_extruder);
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
feedrate = homing_feedrate[X_AXIS];
if(homing_feedrate[Y_AXIS]<feedrate)
feedrate =homing_feedrate[Y_AXIS];
@ -812,11 +930,22 @@ void process_commands()
feedrate = 0.0;
st_synchronize();
endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
current_position[Z_AXIS] = destination[Z_AXIS];
}
#endif
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
{
#ifdef DUAL_X_CARRIAGE
int tmp_extruder = active_extruder;
active_extruder = !active_extruder;
HOMEAXIS(X);
inactive_x_carriage_pos = current_position[X_AXIS];
active_extruder = tmp_extruder;
#endif
HOMEAXIS(X);
}
@ -849,6 +978,7 @@ void process_commands()
}
}
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif // else DELTA
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
@ -988,6 +1118,19 @@ void process_commands()
card.removeFile(strchr_pointer + 4);
}
break;
case 32: //M32 - Select file and start SD print
if(card.sdprinting) {
st_synchronize();
card.closefile();
card.sdprinting = false;
}
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos-1)='\0';
card.openFile(strchr_pointer + 4,true);
card.startFileprint();
starttime=millis();
break;
case 928: //M928 - Start SD write
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos != NULL){
@ -1098,7 +1241,13 @@ void process_commands()
#ifdef AUTOTEMP
autotemp_enabled=false;
#endif
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
if (code_seen('S')) {
setTargetHotend(code_value(), tmp_extruder);
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
CooldownNoWait = false;
}
#ifdef AUTOTEMP
if (code_seen('S')) autotemp_min=code_value();
if (code_seen('B')) autotemp_max=code_value();
@ -1113,7 +1262,7 @@ void process_commands()
codenum = millis();
/* See if we are heating up or cooling down */
bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
@ -1169,9 +1318,18 @@ void process_commands()
case 190: // M190 - Wait for bed heater to reach target.
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
LCD_MESSAGEPGM(MSG_BED_HEATING);
if (code_seen('S')) setTargetBed(code_value());
if (code_seen('S')) {
setTargetBed(code_value());
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetBed(code_value());
CooldownNoWait = false;
}
codenum = millis();
while(isHeatingBed())
target_direction = isHeatingBed(); // true if heating, false if cooling
while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
{
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
@ -1550,10 +1708,10 @@ void process_commands()
#if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
case 300: // M300
{
int beepS = 400;
int beepP = 1000;
if(code_seen('S')) beepS = code_value();
if(code_seen('P')) beepP = code_value();
int beepS = code_seen('S') ? code_value() : 110;
int beepP = code_seen('P') ? code_value() : 1000;
if (beepS > 0)
{
#if BEEPER > 0
tone(BEEPER, beepS);
delay(beepP);
@ -1562,6 +1720,11 @@ void process_commands()
lcd_buzz(beepS, beepP);
#endif
}
else
{
delay(beepP);
}
}
break;
#endif // M300
@ -1633,12 +1796,27 @@ void process_commands()
#endif
}
break;
case 302: // allow cold extrudes
#ifdef DOGLCD
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
{
if (code_seen('C')) {
lcd_setcontrast( ((int)code_value())&63 );
}
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
SERIAL_PROTOCOLLN("");
}
break;
#endif
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature
{
allow_cold_extrudes(true);
float temp = .0;
if (code_seen('S')) temp=code_value();
set_extrude_min_temp(temp);
}
break;
#endif
case 303: // M303 PID autotune
{
float temp = 150.0;
@ -1887,6 +2065,20 @@ void process_commands()
if(tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination));
#ifdef DUAL_X_CARRIAGE
// only apply Y extruder offset in dual x carriage mode (x offset is already used in determining home pos)
current_position[Y_AXIS] = current_position[Y_AXIS] -
extruder_offset[Y_AXIS][active_extruder] +
extruder_offset[Y_AXIS][tmp_extruder];
float tmp_x_pos = current_position[X_AXIS];
// Set the new active extruder and position
active_extruder = tmp_extruder;
axis_is_at_home(X_AXIS); //this function updates X min/max values.
current_position[X_AXIS] = inactive_x_carriage_pos;
inactive_x_carriage_pos = tmp_x_pos;
#else
// Offset extruder (only by XY)
int i;
for(i = 0; i < 2; i++) {
@ -1896,6 +2088,7 @@ void process_commands()
}
// Set the new active extruder and position
active_extruder = tmp_extruder;
#endif //else DUAL_X_CARRIAGE
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// Move to the old position if 'F' was in the parameters
if(make_move && Stopped == false) {
@ -2032,11 +2225,64 @@ void clamp_to_software_endstops(float target[3])
}
}
#ifdef DELTA
void calculate_delta(float cartesian[3])
{
delta[X_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
- sq(DELTA_TOWER1_X-cartesian[X_AXIS])
- sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Y_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
- sq(DELTA_TOWER2_X-cartesian[X_AXIS])
- sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Z_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
- sq(DELTA_TOWER3_X-cartesian[X_AXIS])
- sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
*/
}
#endif
void prepare_move()
{
clamp_to_software_endstops(destination);
previous_millis_cmd = millis();
#ifdef DELTA
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {
difference[i] = destination[i] - current_position[i];
}
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
}
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#else
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
@ -2044,6 +2290,7 @@ void prepare_move()
else {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
}
#endif
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
@ -2086,6 +2333,9 @@ void controllerFan()
|| !READ(E2_ENABLE_PIN)
#endif
#if EXTRUDER > 1
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|| !READ(X2_ENABLE_PIN)
#endif
|| !READ(E1_ENABLE_PIN)
#endif
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
@ -2287,3 +2537,4 @@ bool setTargetedHotend(int code){
}
return false;
}

2
Marlin/Servo.cpp

@ -41,6 +41,8 @@
detach() - Stops an attached servos from pulsing its i/o pin.
*/
#include "Configuration.h"
#ifdef NUM_SERVOS
#include <avr/interrupt.h>
#include <Arduino.h>

20
Marlin/cardreader.cpp

@ -18,6 +18,8 @@ CardReader::CardReader()
saving = false;
logging = false;
autostart_atmillis=0;
workDirDepth = 0;
memset(workDirParents, 0, sizeof(workDirParents));
autostart_stilltocheck=true; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware.
lastnr=0;
@ -204,7 +206,6 @@ void CardReader::startFileprint()
if(cardOK)
{
sdprinting = true;
}
}
@ -521,19 +522,24 @@ void CardReader::chdir(const char * relpath)
}
else
{
workDirParentParent=workDirParent;
workDirParent=*parent;
if (workDirDepth < MAX_DIR_DEPTH) {
for (int d = ++workDirDepth; d--;)
workDirParents[d+1] = workDirParents[d];
workDirParents[0]=*parent;
}
workDir=newfile;
}
}
void CardReader::updir()
{
if(!workDir.isRoot())
if(workDirDepth > 0)
{
workDir=workDirParent;
workDirParent=workDirParentParent;
--workDirDepth;
workDir = workDirParents[0];
int d;
for (int d = 0; d < workDirDepth; d++)
workDirParents[d] = workDirParents[d+1];
}
}

5
Marlin/cardreader.h

@ -3,6 +3,8 @@
#ifdef SDSUPPORT
#define MAX_DIR_DEPTH 10
#include "SdFile.h"
enum LsAction {LS_SerialPrint,LS_Count,LS_GetFilename};
class CardReader
@ -53,7 +55,8 @@ public:
bool filenameIsDir;
int lastnr; //last number of the autostart;
private:
SdFile root,*curDir,workDir,workDirParent,workDirParentParent;
SdFile root,*curDir,workDir,workDirParents[MAX_DIR_DEPTH];
uint16_t workDirDepth;
Sd2Card card;
SdVolume volume;
SdFile file;

23
Marlin/dogm_lcd_implementation.h

@ -33,11 +33,11 @@
#define LCD_CLICKED (buttons&EN_C)
#endif
// CHANGE_DE begin ***
#include <U8glib.h> // DE_U8glib
#include <U8glib.h>
#include "DOGMbitmaps.h"
#include "dogm_font_data_marlin.h"
#include "ultralcd.h"
#include "ultralcd_st7920_u8glib_rrd.h"
/* Russian language not supported yet, needs custom font
@ -74,17 +74,28 @@
#define FONT_STATUSMENU u8g_font_6x9
int lcd_contrast;
// LCD selection
#ifdef U8GLIB_ST7920
// SPI Com: SCK = en = (D4), MOSI = rw = (RS), CS = di = (ENABLE)
U8GLIB_ST7920_128X64_1X u8g(LCD_PINS_D4, LCD_PINS_ENABLE, LCD_PINS_RS);
//U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
U8GLIB_ST7920_128X64_RRD u8g(0);
#elif defined(MAKRPANEL)
// The MaKrPanel display, ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);
#else
// for regular DOGM128 display with HW-SPI
U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0); // HW-SPI Com: CS, A0
#endif
static void lcd_implementation_init()
{
#ifdef LCD_PIN_BL
pinMode(LCD_PIN_BL, OUTPUT); // Enable LCD backlight
digitalWrite(LCD_PIN_BL, HIGH);
#endif
u8g.setContrast(lcd_contrast);
// Uncomment this if you have the first generation (V1.10) of STBs board
// pinMode(17, OUTPUT); // Enable LCD backlight
// digitalWrite(17, HIGH);
@ -118,14 +129,14 @@ static void lcd_implementation_init()
u8g.setFont(u8g_font_6x10_marlin);
u8g.drawStr(62,10,"MARLIN");
u8g.setFont(u8g_font_5x8);
u8g.drawStr(62,19,"V1.0.0 RC2");
u8g.drawStr(62,19,"V1.0.0 RC2-mm");
u8g.setFont(u8g_font_6x10_marlin);
u8g.drawStr(62,28,"by ErikZalm");
u8g.drawStr(62,41,"DOGM128 LCD");
u8g.setFont(u8g_font_5x8);
u8g.drawStr(62,48,"enhancements");
u8g.setFont(u8g_font_5x8);
u8g.drawStr(62,55,"by STB");
u8g.drawStr(62,55,"by STB, MM");
u8g.drawStr(62,61,"uses u");
u8g.drawStr90(92,57,"8");
u8g.drawStr(100,61,"glib");

203
Marlin/language.h

@ -3,13 +3,13 @@
// NOTE: IF YOU CHANGE THIS FILE / MERGE THIS FILE WITH CHANGES
//
// ==&gt; ALWAYS TRY TO COMPILE MARLIN WITH/WITHOUT "ULTIPANEL" / "ULTRALCD" / "SDSUPPORT" #define IN "Configuration.h"
// ==&gt; ALSO TRY ALL AVAILABLE "LANGUAGE_CHOICE" OPTIONS
// ==> ALWAYS TRY TO COMPILE MARLIN WITH/WITHOUT "ULTIPANEL" / "ULTRALCD" / "SDSUPPORT" #define IN "Configuration.h"
// ==> ALSO TRY ALL AVAILABLE "LANGUAGE_CHOICE" OPTIONS
// Languages
// 1 English
// 2 Polish
// 3 French (awaiting translation!)
// 3 French
// 4 German
// 5 Spanish
// 6 Russian
@ -29,8 +29,15 @@
#elif MOTHERBOARD == 80
#define MACHINE_NAME "Rumba"
#define FIRMWARE_URL "https://github.com/ErikZalm/Marlin/"
#elif MOTHERBOARD == 77
#define MACHINE_NAME "3Drag"
#define FIRMWARE_URL "http://3dprint.elettronicain.it/"
#else
#ifdef CUSTOM_MENDEL_NAME
#define MACHINE_NAME CUSTOM_MENDEL_NAME
#else
#define MACHINE_NAME "Mendel"
#endif
#define FIRMWARE_URL "http://www.mendel-parts.com"
#endif
@ -94,6 +101,7 @@
#define MSG_RECTRACT "Rectract"
#define MSG_TEMPERATURE "Temperature"
#define MSG_MOTION "Motion"
#define MSG_CONTRAST "LCD contrast"
#define MSG_STORE_EPROM "Store memory"
#define MSG_LOAD_EPROM "Load memory"
#define MSG_RESTORE_FAILSAFE "Restore Failsafe"
@ -188,7 +196,7 @@
#define MSG_SD_ERR_WRITE_TO_FILE "error writing to file"
#define MSG_SD_CANT_ENTER_SUBDIR "Cannot enter subdir: "
#define MSG_STEPPER_TO_HIGH "Steprate to high: "
#define MSG_STEPPER_TOO_HIGH "Steprate too high: "
#define MSG_ENDSTOPS_HIT "endstops hit: "
#define MSG_ERR_COLD_EXTRUDE_STOP " cold extrusion prevented"
#define MSG_ERR_LONG_EXTRUDE_STOP " too long extrusion prevented"
@ -253,6 +261,7 @@
#define MSG_RECTRACT "Wycofanie"
#define MSG_TEMPERATURE "Temperatura"
#define MSG_MOTION "Ruch"
#define MSG_CONTRAST "LCD contrast"
#define MSG_STORE_EPROM "Zapisz w pamieci"
#define MSG_LOAD_EPROM "Wczytaj z pamieci"
#define MSG_RESTORE_FAILSAFE " Ustawienia fabryczne"
@ -348,7 +357,7 @@
#define MSG_SD_ERR_WRITE_TO_FILE "blad podczas zapisu do pliku"
#define MSG_SD_CANT_ENTER_SUBDIR "Nie mozna odczytac podkatalogu: "
#define MSG_STEPPER_TO_HIGH "Za duza czestotliwosc krokow: "
#define MSG_STEPPER_TOO_HIGH "Za duza czestotliwosc krokow: "
#define MSG_ENDSTOPS_HIT "Wylacznik krancowy zostal wyzwolony na pozycji: "
#define MSG_ERR_COLD_EXTRUDE_STOP " uniemozliwiono zimna ekstruzje"
#define MSG_ERR_LONG_EXTRUDE_STOP " uniemozliwiono zbyt dluga ekstruzje"
@ -416,6 +425,7 @@
#define MSG_TEMPERATURE_WIDE " Temperature \x7E"
#define MSG_TEMPERATURE_RTN " Temperature \003"
#define MSG_MOTION_WIDE " Mouvement \x7E"
#define MSG_CONTRAST "LCD contrast"
#define MSG_STORE_EPROM " Sauvegarder memoire"
#define MSG_LOAD_EPROM " Lire memoire"
#define MSG_RESTORE_FAILSAFE " Restaurer memoire"
@ -512,7 +522,7 @@
#define MSG_SD_ERR_WRITE_TO_FILE "Erreur d'ecriture dans le fichier"
#define MSG_SD_CANT_ENTER_SUBDIR "Impossible d'entrer dans le sous-repertoire: "
#define MSG_STEPPER_TO_HIGH "Steprate trop eleve: "
#define MSG_STEPPER_TOO_HIGH "Steprate trop eleve: "
#define MSG_ENDSTOPS_HIT "Fin de course atteint: "
#define MSG_ERR_COLD_EXTRUDE_STOP " Extrusion a froid evitee"
#define MSG_ERR_LONG_EXTRUDE_STOP " Extrusion longue evitee"
@ -528,7 +538,7 @@
#define MSG_SD_INSERTED "SDKarte erkannt"
#define MSG_SD_REMOVED "SDKarte entfernt"
#define MSG_MAIN "Hauptmneü"
#define MSG_MAIN "Hauptmenü"
#define MSG_AUTOSTART "Autostart"
#define MSG_DISABLE_STEPPERS "Stepper abschalten"
#define MSG_AUTO_HOME "Auto Nullpunkt"
@ -547,7 +557,7 @@
#define MSG_NOZZLE2 "Düse3"
#define MSG_BED "Bett"
#define MSG_FAN_SPEED "Lüftergeschw."
#define MSG_FLOW "Fluß"
#define MSG_FLOW "Fluss"
#define MSG_CONTROL "Einstellungen"
#define MSG_MIN "\002 Min"
#define MSG_MAX "\002 Max"
@ -580,6 +590,7 @@
#define MSG_WATCH "Beobachten"
#define MSG_TEMPERATURE "Temperatur"
#define MSG_MOTION "Bewegung"
#define MSG_CONTRAST "LCD contrast"
#define MSG_STORE_EPROM "EPROM speichern"
#define MSG_LOAD_EPROM "EPROM laden"
#define MSG_RESTORE_FAILSAFE "Standardkonfig."
@ -674,7 +685,7 @@
#define MSG_SD_ERR_WRITE_TO_FILE "error writing to file"
#define MSG_SD_CANT_ENTER_SUBDIR "Cannot enter subdir:"
#define MSG_STEPPER_TO_HIGH "Steprate to high : "
#define MSG_STEPPER_TOO_HIGH "Steprate too high : "
#define MSG_ENDSTOPS_HIT "endstops hit: "
#define MSG_ERR_COLD_EXTRUDE_STOP " cold extrusion prevented"
#define MSG_ERR_LONG_EXTRUDE_STOP " too long extrusion prevented"
@ -685,91 +696,98 @@
#if LANGUAGE_CHOICE == 5
// LCD Menu Messages
#define WELCOME_MSG MACHINE_NAME " Lista."
#define WELCOME_MSG MACHINE_NAME "Lista."
#define MSG_SD_INSERTED "Tarjeta SD Colocada"
#define MSG_SD_REMOVED "Tarjeta SD Retirada"
#define MSG_MAIN " Menu Principal \003"
#define MSG_MAIN "Menu Principal"
#define MSG_AUTOSTART " Autostart"
#define MSG_DISABLE_STEPPERS " Apagar Motores"
#define MSG_AUTO_HOME " Llevar Ejes al Cero"
#define MSG_SET_ORIGIN " Establecer Cero"
#define MSG_COOLDOWN " Enfriar"
#define MSG_EXTRUDE " Extruir"
#define MSG_RETRACT " Retraer"
#define MSG_PREHEAT_PLA " Precalentar PLA"
#define MSG_PREHEAT_PLA_SETTINGS " Ajustar temp. PLA"
#define MSG_PREHEAT_ABS " Precalentar ABS"
#define MSG_PREHEAT_ABS_SETTINGS " Ajustar temp. ABS"
#define MSG_MOVE_AXIS " Mover Ejes \x7E"
#define MSG_SPEED " Velocidad:"
#define MSG_NOZZLE " \002Nozzle:"
#define MSG_NOZZLE1 " \002Nozzle2:"
#define MSG_NOZZLE2 " \002Nozzle3:"
#define MSG_BED " \002Base:"
#define MSG_FAN_SPEED " Ventilador:"
#define MSG_FLOW " Flujo:"
#define MSG_CONTROL " Control \003"
#define MSG_MIN " \002 Min:"
#define MSG_MAX " \002 Max:"
#define MSG_FACTOR " \002 Fact:"
#define MSG_AUTOTEMP " Autotemp:"
#define MSG_ON "On "
#define MSG_DISABLE_STEPPERS "Apagar Motores"
#define MSG_AUTO_HOME "Llevar al Origen" // "Llevar Ejes al Cero"
#define MSG_SET_ORIGIN "Establecer Cero"
#define MSG_PREHEAT_PLA "Precalentar PLA"
#define MSG_PREHEAT_PLA_SETTINGS "Ajustar temp. PLA"
#define MSG_PREHEAT_ABS "Precalentar ABS"
#define MSG_PREHEAT_ABS_SETTINGS "Ajustar temp. ABS"
#define MSG_COOLDOWN "Enfriar"
#define MSG_EXTRUDE "Extruir"
#define MSG_RETRACT "Retraer"
#define MSG_MOVE_AXIS "Mover Ejes"
#define MSG_SPEED "Velocidad"
#define MSG_NOZZLE "Nozzle"
#define MSG_NOZZLE1 "Nozzle2"
#define MSG_NOZZLE2 "Nozzle3"
#define MSG_BED "Base"
#define MSG_FAN_SPEED "Ventilador"
#define MSG_FLOW "Flujo"
#define MSG_CONTROL "Control"
#define MSG_MIN "\002 Min"
#define MSG_MAX "\002 Max"
#define MSG_FACTOR "\002 Fact"
#define MSG_AUTOTEMP "Autotemp"
#define MSG_ON "On"
#define MSG_OFF "Off"
#define MSG_PID_P " PID-P: "
#define MSG_PID_I " PID-I: "
#define MSG_PID_D " PID-D: "
#define MSG_PID_C " PID-C: "
#define MSG_ACC " Acc:"
#define MSG_VXY_JERK " Vxy-jerk: "
#define MSG_PID_P "PID-P"
#define MSG_PID_I "PID-I"
#define MSG_PID_D "PID-D"
#define MSG_PID_C "PID-C"
#define MSG_ACC "Acel"
#define MSG_VXY_JERK "Vxy-jerk"
#define MSG_VZ_JERK "Vz-jerk"
#define MSG_VE_JERK "Ve-jerk"
#define MSG_VMAX " Vmax "
#define MSG_X "x:"
#define MSG_Y "y:"
#define MSG_Z "z:"
#define MSG_E "e:"
#define MSG_VMIN " Vmin:"
#define MSG_VTRAV_MIN " VTrav min:"
#define MSG_AMAX " Amax "
#define MSG_A_RETRACT " A-retrac.:"
#define MSG_XSTEPS " Xpasos/mm:"
#define MSG_YSTEPS " Ypasos/mm:"
#define MSG_ZSTEPS " Zpasos/mm:"
#define MSG_ESTEPS " Epasos/mm:"
#define MSG_MAIN_WIDE " Menu Principal \003"
#define MSG_RECTRACT_WIDE " Retraer \x7E"
#define MSG_TEMPERATURE_WIDE " Temperatura \x7E"
#define MSG_TEMPERATURE_RTN " Temperatura \003"
#define MSG_MOTION_WIDE " Movimiento \x7E"
#define MSG_STORE_EPROM " Guardar Memoria"
#define MSG_LOAD_EPROM " Cargar Memoria"
#define MSG_RESTORE_FAILSAFE " Rest. de emergencia"
#define MSG_REFRESH "\004Volver a cargar"
#define MSG_WATCH " Monitorizar \003"
#define MSG_PREPARE " Preparar \x7E"
#define MSG_PREPARE_ALT " Preparar \003"
#define MSG_CONTROL_ARROW " Control \x7E"
#define MSG_RETRACT_ARROW " Retraer \x7E"
#define MSG_TUNE " Ajustar \x7E"
#define MSG_PAUSE_PRINT " Pausar Impresion \x7E"
#define MSG_RESUME_PRINT " Reanudar Impresion \x7E"
#define MSG_STOP_PRINT " Detener Impresion \x7E"
#define MSG_CARD_MENU " Menu de SD \x7E"
#define MSG_NO_CARD " No hay Tarjeta SD"
#define MSG_VMAX "Vmax"
#define MSG_X "x"
#define MSG_Y "y"
#define MSG_Z "z"
#define MSG_E "e"
#define MSG_VMIN "Vmin"
#define MSG_VTRAV_MIN "VTrav min"
#define MSG_AMAX "Amax"
#define MSG_A_RETRACT "A-retrac."
#define MSG_XSTEPS "X pasos/mm"
#define MSG_YSTEPS "Y pasos/mm"
#define MSG_ZSTEPS "Z pasos/mm"
#define MSG_ESTEPS "E pasos/mm"
#define MSG_RECTRACT "Retraer"
#define MSG_TEMPERATURE "Temperatura"
#define MSG_MOTION "Movimiento"
#define MSG_STORE_EPROM "Guardar Memoria"
#define MSG_LOAD_EPROM "Cargar Memoria"
#define MSG_RESTORE_FAILSAFE "Rest. de emergencia"
#define MSG_REFRESH "Volver a cargar"
#define MSG_WATCH "Monitorizar"
#define MSG_PREPARE "Preparar"
#define MSG_TUNE "Ajustar"
#define MSG_PAUSE_PRINT "Pausar Impresion"
#define MSG_RESUME_PRINT "Reanudar Impresion"
#define MSG_STOP_PRINT "Detener Impresion"
#define MSG_CARD_MENU "Menu de SD"
#define MSG_NO_CARD "No hay Tarjeta SD"
#define MSG_DWELL "Reposo..."
#define MSG_USERWAIT "Esperando Ordenes..."
#define MSG_RESUMING "Resumiendo Impresion"
#define MSG_NO_MOVE "Sin movimiento"
#define MSG_PART_RELEASE "Desacople Parcial"
#define MSG_KILLED "PARADA DE EMERGENCIA. "
#define MSG_STOPPED "PARADA. "
#define MSG_STEPPER_RELEASED "Desacoplada."
#define MSG_CONTROL_RETRACT " Retraer mm:"
#define MSG_CONTROL_RETRACTF " Retraer F:"
#define MSG_CONTROL_RETRACT_ZLIFT " Levantar mm:"
#define MSG_CONTROL_RETRACT_RECOVER " DesRet +mm:"
#define MSG_CONTROL_RETRACT_RECOVERF " DesRet F:"
#define MSG_AUTORETRACT " AutoRetr.:"
#define MSG_STOPPED "PARADA."
#define MSG_CONTROL_RETRACT "Retraer mm"
#define MSG_CONTROL_RETRACTF "Retraer F"
#define MSG_CONTROL_RETRACT_ZLIFT "Levantar mm"
#define MSG_CONTROL_RETRACT_RECOVER "DesRet +mm"
#define MSG_CONTROL_RETRACT_RECOVERF "DesRet F"
#define MSG_AUTORETRACT "AutoRetr."
#define MSG_FILAMENTCHANGE "Change filament"
#define MSG_INIT_SDCARD "Iniciando. Tarjeta-SD"
#define MSG_CNG_SDCARD "Cambiar Tarjeta-SD"
#define MSG_RECTRACT_WIDE "Retraer"
#define MSG_TEMPERATURE_WIDE "Temperatura"
#define MSG_TEMPERATURE_RTN "Temperatura"
#define MSG_MAIN_WIDE "Menu Principal"
#define MSG_MOTION_WIDE "Movimiento"
#define MSG_PREPARE_ALT "Preparar"
#define MSG_CONTROL_ARROW "Control"
#define MSG_RETRACT_ARROW "Retraer"
#define MSG_PART_RELEASE "Desacople Parcial"
#define MSG_STEPPER_RELEASED "Desacoplada."
// Serial Console Messages
#define MSG_Enqueing "En cola \""
@ -814,11 +832,11 @@
#define MSG_Y_MIN "y_min: "
#define MSG_Y_MAX "y_max: "
#define MSG_Z_MIN "z_min: "
#define MSG_Z_MAX "z_max: "
#define MSG_M119_REPORT "Comprobando fines de carrera."
#define MSG_ENDSTOP_HIT "PULSADO"
#define MSG_ENDSTOP_OPEN "abierto"
#define MSG_HOTEND_OFFSET "Hotend offsets:"
#define MSG_SD_CANT_OPEN_SUBDIR "No se pudo abrir la subcarpeta."
#define MSG_SD_INIT_FAIL "Fallo al iniciar la SD"
#define MSG_SD_VOL_INIT_FAIL "Fallo al montar el volumen"
@ -835,7 +853,7 @@
#define MSG_SD_ERR_WRITE_TO_FILE "Error al escribir en el archivo"
#define MSG_SD_CANT_ENTER_SUBDIR "No se puede abrir la carpeta:"
#define MSG_STEPPER_TO_HIGH "Steprate demasiado alto : "
#define MSG_STEPPER_TOO_HIGH "Steprate demasiado alto : "
#define MSG_ENDSTOPS_HIT "Se ha tocado el fin de carril: "
#define MSG_ERR_COLD_EXTRUDE_STOP " extrusion fria evitada"
#define MSG_ERR_LONG_EXTRUDE_STOP " extrusion demasiado larga evitada"
@ -899,6 +917,7 @@
#define MSG_RECTRACT " Откат подачи \x7E"
#define MSG_TEMPERATURE " Температура \x7E"
#define MSG_MOTION " Скорости \x7E"
#define MSG_CONTRAST "LCD contrast"
#define MSG_STORE_EPROM " Сохранить настройки"
#define MSG_LOAD_EPROM " Загрузить настройки"
#define MSG_RESTORE_FAILSAFE " Сброс настроек "
@ -989,7 +1008,7 @@
#define MSG_SD_NOT_PRINTING "нет SD печати"
#define MSG_SD_ERR_WRITE_TO_FILE "ошибка записи в файл"
#define MSG_SD_CANT_ENTER_SUBDIR "Не зайти в папку:"
#define MSG_STEPPER_TO_HIGH "Частота шагов очень высока : "
#define MSG_STEPPER_TOO_HIGH "Частота шагов очень высока : "
#define MSG_ENDSTOPS_HIT "концевик сработал: "
#define MSG_ERR_COLD_EXTRUDE_STOP " защита холодной экструзии"
#define MSG_ERR_LONG_EXTRUDE_STOP " защита превышения длинны экструзии"
@ -1000,7 +1019,7 @@
#if LANGUAGE_CHOICE == 7
// LCD Menu Messages
#define WELCOME_MSG MACHINE_NAME " Pronto."
#define WELCOME_MSG MACHINE_NAME " Pronta"
#define MSG_SD_INSERTED "SD Card inserita"
#define MSG_SD_REMOVED "SD Card rimossa"
#define MSG_MAIN "Menu principale"
@ -1012,7 +1031,7 @@
#define MSG_PREHEAT_PLA_SETTINGS "Preris. PLA Conf"
#define MSG_PREHEAT_ABS "Preriscalda ABS"
#define MSG_PREHEAT_ABS_SETTINGS "Preris. ABS Conf"
#define MSG_COOLDOWN "Rafredda"
#define MSG_COOLDOWN "Raffredda"
#define MSG_EXTRUDE "Estrudi"
#define MSG_RETRACT "Ritrai"
#define MSG_MOVE_AXIS "Muovi Asse"
@ -1054,6 +1073,7 @@
#define MSG_RECTRACT "Ritrai"
#define MSG_TEMPERATURE "Temperatura"
#define MSG_MOTION "Movimento"
#define MSG_CONTRAST "LCD contrast"
#define MSG_STORE_EPROM "Salva in EEPROM"
#define MSG_LOAD_EPROM "Carica da EEPROM"
#define MSG_RESTORE_FAILSAFE "Impostaz. default"
@ -1149,7 +1169,7 @@
#define MSG_SD_ERR_WRITE_TO_FILE "Errore nella scrittura su file"
#define MSG_SD_CANT_ENTER_SUBDIR "Impossibile entrare nella sottocartella: "
#define MSG_STEPPER_TO_HIGH "Steprate troppo alto: "
#define MSG_STEPPER_TOO_HIGH "Steprate troppo alto: "
#define MSG_ENDSTOPS_HIT "Raggiunto il fondo carrello: "
#define MSG_ERR_COLD_EXTRUDE_STOP " prevenuta estrusione fredda"
#define MSG_ERR_LONG_EXTRUDE_STOP " prevenuta estrusione troppo lunga"
@ -1315,7 +1335,7 @@
#define MSG_SD_ERR_WRITE_TO_FILE "Erro ao escrever no arquivo"
#define MSG_SD_CANT_ENTER_SUBDIR "Nao pode abrir o sub diretorio:"
#define MSG_STEPPER_TO_HIGH "Steprate muito alto : "
#define MSG_STEPPER_TOO_HIGH "Steprate muito alto : "
#define MSG_ENDSTOPS_HIT "O ponto final foi tocado: "
#define MSG_ERR_COLD_EXTRUDE_STOP " Extrusao a frio evitada"
#define MSG_ERR_LONG_EXTRUDE_STOP " Extrusao muito larga evitada"
@ -1384,6 +1404,7 @@
#define MSG_RECTRACT "Veda takaisin"
#define MSG_TEMPERATURE "Lampotila"
#define MSG_MOTION "Liike"
#define MSG_CONTRAST "LCD contrast"
#define MSG_STORE_EPROM "Tallenna muistiin"
#define MSG_LOAD_EPROM "Lataa muistista"
#define MSG_RESTORE_FAILSAFE "Palauta oletus"
@ -1476,7 +1497,7 @@
#define MSG_SD_ERR_WRITE_TO_FILE "virhe kirjoitettaessa tiedostoon"
#define MSG_SD_CANT_ENTER_SUBDIR "Alihakemistoon ei voitu siirtya: "
#define MSG_STEPPER_TO_HIGH "Askellustaajuus liian suuri: "
#define MSG_STEPPER_TOO_HIGH "Askellustaajuus liian suuri: "
#define MSG_ENDSTOPS_HIT "paatyrajat aktivoitu: "
#define MSG_ERR_COLD_EXTRUDE_STOP " kylmana pursotus estetty"
#define MSG_ERR_LONG_EXTRUDE_STOP " liian pitka pursotus estetty"

376
Marlin/pins.h

@ -53,6 +53,7 @@
#endif /* 99 */
/****************************************************************************************
* Gen7 v1.1, v1.2, v1.3 pin assignment
*
@ -227,8 +228,8 @@
#endif
//x axis pins
#define X_STEP_PIN 21 //different from stanard GEN7
#define X_DIR_PIN 20 //different from stanard GEN7
#define X_STEP_PIN 21 // different from standard GEN7
#define X_DIR_PIN 20 // different from standard GEN7
#define X_ENABLE_PIN 24
#define X_STOP_PIN 0
@ -297,7 +298,7 @@
* Arduino Mega pin assignment
*
****************************************************************************************/
#if MOTHERBOARD == 3 || MOTHERBOARD == 33 || MOTHERBOARD == 34
#if MOTHERBOARD == 3 || MOTHERBOARD == 33 || MOTHERBOARD == 34 || MOTHERBOARD == 77
#define KNOWN_BOARD 1
//////////////////FIX THIS//////////////
@ -307,88 +308,151 @@
#endif
#endif
// uncomment one of the following lines for RAMPS v1.3 or v1.0, comment both for v1.2 or 1.1
// #define RAMPS_V_1_3
// #define RAMPS_V_1_0
#if MOTHERBOARD == 33 || MOTHERBOARD == 34
#define LARGE_FLASH true
#if MOTHERBOARD == 33 || MOTHERBOARD == 34 || MOTHERBOARD == 77
#define X_STEP_PIN 54
#define X_DIR_PIN 55
#define X_ENABLE_PIN 38
#define X_MIN_PIN 3
#define X_MAX_PIN 2
#define LARGE_FLASH true
#define Y_STEP_PIN 60
#define Y_DIR_PIN 61
#define Y_ENABLE_PIN 56
#define Y_MIN_PIN 14
#define Y_MAX_PIN 15
#if MOTHERBOARD == 77
#define X_STEP_PIN 54
#define X_DIR_PIN 55
#define X_ENABLE_PIN 38
#define X_MIN_PIN 3
#define X_MAX_PIN -1 //2 //Max endstops default to disabled "-1", set to commented value to enable.
#define Z_STEP_PIN 46
#define Z_DIR_PIN 48
#define Z_ENABLE_PIN 62
#define Z_MIN_PIN 18
#define Z_MAX_PIN 19
#define Y_STEP_PIN 60
#define Y_DIR_PIN 61
#define Y_ENABLE_PIN 56
#define Y_MIN_PIN 14
#define Y_MAX_PIN -1 //15
#define Z2_STEP_PIN 36
#define Z2_DIR_PIN 34
#define Z2_ENABLE_PIN 30
#define Z_STEP_PIN 46
#define Z_DIR_PIN 48
#define Z_ENABLE_PIN 63
#define Z_MIN_PIN 18
#define Z_MAX_PIN -1
#define E0_STEP_PIN 26
#define E0_DIR_PIN 28
#define E0_ENABLE_PIN 24
#define Z2_STEP_PIN 36
#define Z2_DIR_PIN 34
#define Z2_ENABLE_PIN 30
#define E1_STEP_PIN 36
#define E1_DIR_PIN 34
#define E1_ENABLE_PIN 30
#define E0_STEP_PIN 26
#define E0_DIR_PIN 28
#define E0_ENABLE_PIN 24
#define SDPOWER -1
#define SDSS 53
#define LED_PIN 13
#define E1_STEP_PIN 36
#define E1_DIR_PIN 34
#define E1_ENABLE_PIN 30
#if MOTHERBOARD == 33
#define FAN_PIN 9 // (Sprinter config)
#else
#define FAN_PIN 4 // IO pin. Buffer needed
#endif
#define PS_ON_PIN 12
#define SDPOWER -1
#define SDSS 25//53
#define LED_PIN 13
#if defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
#define KILL_PIN 41
#else
#define KILL_PIN -1
#endif
#define BEEPER 33
#define HEATER_0_PIN 10 // EXTRUDER 1
#if MOTHERBOARD == 33
#define HEATER_1_PIN -1
#else
#define HEATER_1_PIN 9 // EXTRUDER 2 (FAN On Sprinter)
#endif
#define HEATER_2_PIN -1
#define TEMP_0_PIN 13 // ANALOG NUMBERING
#define TEMP_1_PIN 15 // ANALOG NUMBERING
#define TEMP_2_PIN -1 // ANALOG NUMBERING
#define HEATER_BED_PIN 8 // BED
#define TEMP_BED_PIN 14 // ANALOG NUMBERING
#else
#ifdef NUM_SERVOS
#define X_STEP_PIN 54
#define X_DIR_PIN 55
#define X_ENABLE_PIN 38
#define X_MIN_PIN 3
#define X_MAX_PIN 2
#define Y_STEP_PIN 60
#define Y_DIR_PIN 61
#define Y_ENABLE_PIN 56
#define Y_MIN_PIN 14
#define Y_MAX_PIN 15
#define Z_STEP_PIN 46
#define Z_DIR_PIN 48
#define Z_ENABLE_PIN 62
#define Z_MIN_PIN 18
#define Z_MAX_PIN 19
#define Z2_STEP_PIN 36
#define Z2_DIR_PIN 34
#define Z2_ENABLE_PIN 30
#define E0_STEP_PIN 26
#define E0_DIR_PIN 28
#define E0_ENABLE_PIN 24
#define E1_STEP_PIN 36
#define E1_DIR_PIN 34
#define E1_ENABLE_PIN 30
#define SDPOWER -1
#define SDSS 53
#define LED_PIN 13
#endif
#if MOTHERBOARD == 33
#define FAN_PIN 9 // (Sprinter config)
#else
#define FAN_PIN 4 // IO pin. Buffer needed
#endif
#if MOTHERBOARD == 77
#define FAN_PIN 8
#endif
#define PS_ON_PIN 12
#if defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
#define KILL_PIN 41
#else
#define KILL_PIN -1
#endif
#define HEATER_0_PIN 10 // EXTRUDER 1
#if MOTHERBOARD == 33
#define HEATER_1_PIN -1
#else
#define HEATER_1_PIN 9 // EXTRUDER 2 (FAN On Sprinter)
#endif
#define HEATER_2_PIN -1
#if MOTHERBOARD == 77
#define HEATER_0_PIN 10
#define HEATER_1_PIN 12
#define HEATER_2_PIN 6
#endif
#define TEMP_0_PIN 13 // ANALOG NUMBERING
#define TEMP_1_PIN 15 // ANALOG NUMBERING
#define TEMP_2_PIN -1 // ANALOG NUMBERING
#if MOTHERBOARD == 77
#define HEATER_BED_PIN 9 // BED
#else
#define HEATER_BED_PIN 8 // BED
#endif
#define TEMP_BED_PIN 14 // ANALOG NUMBERING
#ifdef NUM_SERVOS
#define SERVO0_PIN 11
#if NUM_SERVOS > 1
#define SERVO1_PIN 6
#endif
#if NUM_SERVOS > 2
#define SERVO2_PIN 5
#endif
#if NUM_SERVOS > 2
#if NUM_SERVOS > 3
#define SERVO3_PIN 4
#endif
#endif
#endif
#ifdef ULTRA_LCD
#ifdef ULTRA_LCD
#ifdef NEWPANEL
#define LCD_PINS_RS 16
@ -429,11 +493,28 @@
#else
#define SDCARDDETECT -1 // Ramps does not use this port
#endif
#endif
#if MOTHERBOARD == 77
#define BEEPER -1
#define LCD_PINS_RS 27
#define LCD_PINS_ENABLE 29
#define LCD_PINS_D4 37
#define LCD_PINS_D5 35
#define LCD_PINS_D6 33
#define LCD_PINS_D7 31
//buttons
#define BTN_EN1 16
#define BTN_EN2 17
#define BTN_ENC 23 //the click
#endif
#else //old style panel with shift register
//arduino pin witch triggers an piezzo beeper
#define BEEPER 33 // No Beeper added
#define BEEPER 33 //No Beeper added
//buttons are attached to a shift register
// Not wired this yet
@ -449,7 +530,7 @@
#define LCD_PINS_D6 27
#define LCD_PINS_D7 29
#endif
#endif //ULTRA_LCD
#endif //ULTRA_LCD
#else // RAMPS_V_1_1 or RAMPS_V_1_2 as default (MOTHERBOARD == 3)
@ -496,7 +577,8 @@
#define TEMP_1_PIN -1
#define TEMP_2_PIN -1
#define TEMP_BED_PIN 1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#endif// MOTHERBOARD == 33 || MOTHERBOARD == 34
#endif // MOTHERBOARD == 33 || MOTHERBOARD == 34 || MOTHERBOARD == 77
// SPI for Max6675 Thermocouple
@ -510,7 +592,9 @@
#define MAX6675_SS 49
#endif
#endif//MOTHERBOARD == 3 || MOTHERBOARD == 33 || MOTHERBOARD == 34
#endif //MOTHERBOARD == 3 || MOTHERBOARD == 33 || MOTHERBOARD == 34 || MOTHERBOARD == 77
/****************************************************************************************
* Duemilanove w/ ATMega328P pin assignment
@ -560,6 +644,131 @@
#endif
/****************************************************************************************
* Elefu RA Board Pin Assignments
*
****************************************************************************************/
#if MOTHERBOARD == 21
#define KNOWN_BOARD 1
#ifndef __AVR_ATmega2560__
#error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
#endif
#define X_STEP_PIN 49
#define X_DIR_PIN 13
#define X_ENABLE_PIN 48
#define X_MIN_PIN 35
#define X_MAX_PIN -1 //34
#define Y_STEP_PIN 11
#define Y_DIR_PIN 9
#define Y_ENABLE_PIN 12
#define Y_MIN_PIN 33
#define Y_MAX_PIN -1 //32
#define Z_STEP_PIN 7
#define Z_DIR_PIN 6
#define Z_ENABLE_PIN 8
#define Z_MIN_PIN 31
#define Z_MAX_PIN -1 //30
#define E2_STEP_PIN 43
#define E2_DIR_PIN 47
#define E2_ENABLE_PIN 42
#define E1_STEP_PIN 18
#define E1_DIR_PIN 19
#define E1_ENABLE_PIN 38
#define E0_STEP_PIN 40
#define E0_DIR_PIN 41
#define E0_ENABLE_PIN 37
#define SDPOWER -1
#define LED_PIN -1 //Use +12V Aux port for LED Ring
#define FAN_PIN 16 //5V PWM
#define PS_ON_PIN 10 //Set to -1 if using a manual switch on the PWRSW Connector
#define SLEEP_WAKE_PIN 26 //This feature still needs work
#define HEATER_0_PIN 45 //12V PWM1
#define HEATER_1_PIN 46 //12V PWM2
#define HEATER_2_PIN 17 //12V PWM3
#define HEATER_BED_PIN 44 //DOUBLE 12V PWM
#define TEMP_0_PIN 3 //ANALOG NUMBERING
#define TEMP_1_PIN 2 //ANALOG NUMBERING
#define TEMP_2_PIN 1 //ANALOG NUMBERING
#define TEMP_BED_PIN 0 //ANALOG NUMBERING
#define BEEPER 36
#define KILL_PIN -1
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
#define PHOTOGRAPH_PIN 29
#ifdef RA_CONTROL_PANEL
#define SDSS 53
#define SDCARDDETECT 28
#define BTN_EN1 14
#define BTN_EN2 39
#define BTN_ENC 15 //the click
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif //RA_CONTROL_PANEL
#ifdef RA_DISCO
//variables for which pins the TLC5947 is using
#define TLC_CLOCK_PIN 25
#define TLC_BLANK_PIN 23
#define TLC_XLAT_PIN 22
#define TLC_DATA_PIN 24
//We also need to define pin to port number mapping for the 2560 to match the pins listed above. If you change the TLC pins, update this as well per the 2560 datasheet!
//This currently only works with the RA Board.
#define TLC_CLOCK_BIT 3 //bit 3 on port A
#define TLC_CLOCK_PORT &PORTA //bit 3 on port A
#define TLC_BLANK_BIT 1 //bit 1 on port A
#define TLC_BLANK_PORT &PORTA //bit 1 on port A
#define TLC_DATA_BIT 2 //bit 2 on port A
#define TLC_DATA_PORT &PORTA //bit 2 on port A
#define TLC_XLAT_BIT 0 //bit 0 on port A
#define TLC_XLAT_PORT &PORTA //bit 0 on port A
//change this to match your situation. Lots of TLCs takes up the arduino SRAM very quickly, so be careful
//Leave it at at least 1 if you have enabled RA_LIGHTING
//The number of TLC5947 boards chained together for use with the animation, additional ones will repeat the animation on them, but are not individually addressable and mimic those before them. You can leave the default at 2 even if you only have 1 TLC5947 module.
#define NUM_TLCS 2
//These TRANS_ARRAY values let you change the order the LEDs on the lighting modules will animate for chase functions.
//Modify them according to your specific situation.
//NOTE: the array should be 8 long for every TLC you have. These defaults assume (2) TLCs.
#define TRANS_ARRAY {0, 1, 2, 3, 4, 5, 6, 7, 15, 14, 13, 12, 11, 10, 9, 8} //forwards
//#define TRANS_ARRAY {7, 6, 5, 4, 3, 2, 1, 0, 8, 9, 10, 11, 12, 13, 14, 15} //backwards
#endif //RA_LIGHTING
#endif /* Ra Board */
/****************************************************************************************
* Gen6 pin assignment
*
@ -634,10 +843,13 @@
#if MOTHERBOARD == 64
#define STB
#endif
#if MOTHERBOARD == 63
#if MOTHERBOARD == 63 || MOTHERBOARD == 66
#define MELZI
#endif
#if MOTHERBOARD == 62 || MOTHERBOARD == 63 || MOTHERBOARD == 64
#if MOTHERBOARD == 65
#define AZTEEG_X1
#endif
#if MOTHERBOARD == 62 || MOTHERBOARD == 63 || MOTHERBOARD == 64 || MOTHERBOARD == 65 || MOTHERBOARD == 66
#undef MOTHERBOARD
#define MOTHERBOARD 6
#define SANGUINOLOLU_V_1_2
@ -678,6 +890,12 @@
#endif
#ifdef STB
#define FAN_PIN 4
// Uncomment this if you have the first generation (V1.10) of STBs board
#define LCD_PIN_BL 17 // LCD backlight LED
#endif
#ifdef AZTEEG_X1
#define FAN_PIN 4
#endif
@ -759,6 +977,27 @@
#endif //Newpanel
#endif //Ultipanel
#ifdef MAKRPANEL
#define BEEPER 29
// Pins for DOGM SPI LCD Support
#define DOGLCD_A0 30
#define DOGLCD_CS 17
#define LCD_PIN_BL 28 // backlight LED on PA3
// GLCD features
#define LCD_CONTRAST 1
// Uncomment screen orientation
#define LCD_SCREEN_ROT_0
// #define LCD_SCREEN_ROT_90
// #define LCD_SCREEN_ROT_180
// #define LCD_SCREEN_ROT_270
//The encoder and click button
#define BTN_EN1 11
#define BTN_EN2 10
#define BTN_ENC 16 //the click switch
//not connected to a pin
#define SDCARDDETECT -1
#endif //Makrpanel
#endif
@ -1831,8 +2070,15 @@
#define Z_MAX_PIN -1
#endif
#ifdef DISABLE_MIN_ENDSTOPS
#define X_MIN_PIN -1
#define Y_MIN_PIN -1
#define Z_MIN_PIN -1
#endif
#define SENSITIVE_PINS {0, 1, X_STEP_PIN, X_DIR_PIN, X_ENABLE_PIN, X_MIN_PIN, X_MAX_PIN, Y_STEP_PIN, Y_DIR_PIN, Y_ENABLE_PIN, Y_MIN_PIN, Y_MAX_PIN, Z_STEP_PIN, Z_DIR_PIN, Z_ENABLE_PIN, Z_MIN_PIN, Z_MAX_PIN, PS_ON_PIN, \
HEATER_BED_PIN, FAN_PIN, \
_E0_PINS _E1_PINS _E2_PINS \
analogInputToDigitalPin(TEMP_0_PIN), analogInputToDigitalPin(TEMP_1_PIN), analogInputToDigitalPin(TEMP_2_PIN), analogInputToDigitalPin(TEMP_BED_PIN) }
#endif

46
Marlin/planner.cpp

@ -98,7 +98,7 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
//=============================private variables ============================
//===========================================================================
#ifdef PREVENT_DANGEROUS_EXTRUDE
bool allow_cold_extrude=false;
float extrude_min_temp=EXTRUDE_MINTEMP;
#endif
#ifdef XY_FREQUENCY_LIMIT
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
@ -473,7 +473,6 @@ void check_axes_activity()
disable_e2();
}
#if defined(FAN_PIN) && FAN_PIN > -1
#ifndef FAN_SOFT_PWM
#ifdef FAN_KICKSTART_TIME
static unsigned long fan_kick_end;
if (tail_fan_speed) {
@ -488,6 +487,9 @@ void check_axes_activity()
fan_kick_end = 0;
}
#endif//FAN_KICKSTART_TIME
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = tail_fan_speed;
#else
analogWrite(FAN_PIN,tail_fan_speed);
#endif//!FAN_SOFT_PWM
#endif//FAN_PIN > -1
@ -537,7 +539,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
#ifdef PREVENT_DANGEROUS_EXTRUDE
if(target[E_AXIS]!=position[E_AXIS])
{
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
if(degHotend(active_extruder)<extrude_min_temp)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
@ -562,8 +564,16 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->busy = false;
// Number of steps for each axis
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
#ifndef COREXY
// default non-h-bot planning
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
#else
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
#endif
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
block->steps_e *= extrudemultiply;
@ -584,6 +594,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Compute direction bits for this block
block->direction_bits = 0;
#ifndef COREXY
if (target[X_AXIS] < position[X_AXIS])
{
block->direction_bits |= (1<<X_AXIS);
@ -592,6 +603,16 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
{
block->direction_bits |= (1<<Y_AXIS);
}
#else
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= (1<<X_AXIS);
}
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= (1<<Y_AXIS);
}
#endif
if (target[Z_AXIS] < position[Z_AXIS])
{
block->direction_bits |= (1<<Z_AXIS);
@ -636,8 +657,13 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
}
float delta_mm[4];
#ifndef COREXY
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
#else
delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
#endif
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
@ -757,7 +783,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
}
block->acceleration = block->acceleration_st / steps_per_mm;
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
#if 0 // Use old jerk for now
// Compute path unit vector
@ -918,12 +944,12 @@ uint8_t movesplanned()
return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
}
void allow_cold_extrudes(bool allow)
{
#ifdef PREVENT_DANGEROUS_EXTRUDE
allow_cold_extrude=allow;
#endif
void set_extrude_min_temp(float temp)
{
extrude_min_temp=temp;
}
#endif
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
void reset_acceleration_rates()

4
Marlin/planner.h

@ -139,7 +139,9 @@ FORCE_INLINE bool blocks_queued()
return true;
}
void allow_cold_extrudes(bool allow);
#ifdef PREVENT_DANGEROUS_EXTRUDE
void set_extrude_min_temp(float temp);
#endif
void reset_acceleration_rates();
#endif

157
Marlin/stepper.cpp

@ -272,7 +272,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer;
}
@ -345,13 +345,47 @@ ISR(TIMER1_COMPA_vect)
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_DIR_PIN,INVERT_X_DIR);
else
#endif
WRITE(X_DIR_PIN, INVERT_X_DIR);
count_direction[X_AXIS]=-1;
}
else{
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_DIR_PIN,!INVERT_X_DIR);
else
#endif
WRITE(X_DIR_PIN, !INVERT_X_DIR);
count_direction[X_AXIS]=1;
}
if((out_bits & (1<<Y_AXIS))!=0){
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
count_direction[Y_AXIS]=-1;
}
else{
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
count_direction[Y_AXIS]=1;
}
// Set direction en check limit switches
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
#if !defined COREXY //NOT COREXY
WRITE(X_DIR_PIN, INVERT_X_DIR);
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
#endif
count_direction[X_AXIS]=-1;
CHECK_ENDSTOPS
{
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((active_extruder == 0 && X_HOME_DIR == -1) || (active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
@ -364,13 +398,14 @@ ISR(TIMER1_COMPA_vect)
#endif
}
}
}
else { // +direction
#if !defined COREXY //NOT COREXY
WRITE(X_DIR_PIN,!INVERT_X_DIR);
#endif
count_direction[X_AXIS]=1;
CHECK_ENDSTOPS
{
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((active_extruder == 0 && X_HOME_DIR == 1) || (active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
@ -383,12 +418,13 @@ ISR(TIMER1_COMPA_vect)
#endif
}
}
}
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
#if !defined COREXY //NOT COREXY
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
#endif
count_direction[Y_AXIS]=-1;
CHECK_ENDSTOPS
{
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
@ -403,10 +439,6 @@ ISR(TIMER1_COMPA_vect)
}
}
else { // +direction
#if !defined COREXY //NOT COREXY
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
#endif
count_direction[Y_AXIS]=1;
CHECK_ENDSTOPS
{
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
@ -421,27 +453,6 @@ ISR(TIMER1_COMPA_vect)
}
}
#ifdef COREXY //coreXY kinematics defined
if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) == 0)){ //+X is major axis
WRITE(X_DIR_PIN, !INVERT_X_DIR);
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
}
if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) != 0)){ //-X is major axis
WRITE(X_DIR_PIN, INVERT_X_DIR);
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
}
if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) == 0)){ //+Y is major axis
WRITE(X_DIR_PIN, !INVERT_X_DIR);
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
}
if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) != 0)){ //-Y is major axis
WRITE(X_DIR_PIN, INVERT_X_DIR);
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
}
#endif //coreXY
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
@ -516,12 +527,21 @@ ISR(TIMER1_COMPA_vect)
}
#endif //ADVANCE
#if !defined COREXY
counter_x += current_block->steps_x;
if (counter_x > 0) {
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_STEP_PIN,!INVERT_X_STEP_PIN);
else
#endif
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
else
#endif
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
}
@ -532,55 +552,6 @@ ISR(TIMER1_COMPA_vect)
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
}
#endif
#ifdef COREXY
counter_x += current_block->steps_x;
counter_y += current_block->steps_y;
if ((counter_x > 0)&&!(counter_y>0)){ //X step only
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
}
if (!(counter_x > 0)&&(counter_y>0)){ //Y step only
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
}
if ((counter_x > 0)&&(counter_y>0)){ //step in both axes
if (((out_bits & (1<<X_AXIS)) == 0)^((out_bits & (1<<Y_AXIS)) == 0)){ //X and Y in different directions
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_x -= current_block->step_event_count;
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
step_wait();
count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
}
else{ //X and Y in same direction
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN) ;
step_wait();
count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
counter_y -= current_block->step_event_count;
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
}
}
#endif //corexy
counter_z += current_block->steps_z;
if (counter_z > 0) {
@ -746,6 +717,9 @@ void st_init()
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
SET_OUTPUT(X2_DIR_PIN);
#endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#endif
@ -772,6 +746,10 @@ void st_init()
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
SET_OUTPUT(X2_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
@ -849,6 +827,11 @@ void st_init()
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
SET_OUTPUT(X2_STEP_PIN);
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);

73
Marlin/temperature.cpp

@ -40,10 +40,13 @@
int target_temperature[EXTRUDERS] = { 0 };
int target_temperature_bed = 0;
int current_temperature_raw[EXTRUDERS] = { 0 };
float current_temperature[EXTRUDERS] = { 0 };
float current_temperature[EXTRUDERS] = { 0.0 };
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0;
float current_temperature_bed = 0.0;
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
int redundant_temperature_raw = 0;
float redundant_temperature = 0.0;
#endif
#ifdef PIDTEMP
float Kp=DEFAULT_Kp;
float Ki=(DEFAULT_Ki*PID_dT);
@ -59,6 +62,9 @@ float current_temperature_bed = 0;
float bedKd=(DEFAULT_bedKd/PID_dT);
#endif //PIDTEMPBED
#ifdef FAN_SOFT_PWM
unsigned char fanSpeedSoftPwm;
#endif
//===========================================================================
//=============================private variables============================
@ -106,13 +112,13 @@ static volatile bool temp_meas_ready = false;
#endif
#if EXTRUDERS > 3
# error Unsupported number of extruders
# error Unsupported number of extruders
#elif EXTRUDERS > 2
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
#elif EXTRUDERS > 1
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
#else
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
#endif
// Init min and max temp with extreme values to prevent false errors during startup
@ -124,8 +130,14 @@ static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
#else
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
#endif
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
@ -136,6 +148,10 @@ int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
#endif //WATCH_TEMP_PERIOD
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
//===========================================================================
//============================= functions ============================
//===========================================================================
@ -260,7 +276,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
}
}
if(input > (temp + 20)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high");
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
return;
}
if(millis() - temp_millis > 2000) {
@ -284,7 +300,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
return;
}
if(cycles > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h");
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the Kp, Ki and Kd constants into Configuration.h");
return;
}
lcd_update();
@ -471,7 +487,19 @@ void manage_heater()
}
}
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
disable_heater();
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
#endif
} // End extruder for loop
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
@ -565,7 +593,11 @@ void manage_heater()
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) {
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if(e > EXTRUDERS)
#else
if(e >= EXTRUDERS)
#endif
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
@ -644,7 +676,9 @@ static void updateTemperaturesFromRawValues()
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
}
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
#endif
//Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
@ -693,7 +727,7 @@ void tp_init()
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan=(unsigned char)fanSpeed;
soft_pwm_fan = fanSpeedSoftPwm / 2;
#endif
#endif
@ -994,14 +1028,14 @@ int read_max6675()
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect)
{
//these variables are only accesible from the ISR, but static, so they don't loose their value
//these variables are only accesible from the ISR, but static, so they don't lose their value
static unsigned char temp_count = 0;
static unsigned long raw_temp_0_value = 0;
static unsigned long raw_temp_1_value = 0;
static unsigned long raw_temp_2_value = 0;
static unsigned long raw_temp_bed_value = 0;
static unsigned char temp_state = 0;
static unsigned char pwm_count = 1;
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
static unsigned char soft_pwm_0;
#if EXTRUDERS > 1
static unsigned char soft_pwm_1;
@ -1029,7 +1063,7 @@ ISR(TIMER0_COMPB_vect)
if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1);
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan =(unsigned char) fanSpeed;
soft_pwm_fan = fanSpeedSoftPwm / 2;
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1);
#endif
}
@ -1047,7 +1081,7 @@ ISR(TIMER0_COMPB_vect)
if(soft_pwm_fan <= pwm_count) WRITE(FAN_PIN,0);
#endif
pwm_count++;
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
switch(temp_state) {
@ -1145,6 +1179,9 @@ ISR(TIMER0_COMPB_vect)
#if EXTRUDERS > 1
current_temperature_raw[1] = raw_temp_1_value;
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature_raw = raw_temp_1_value;
#endif
#if EXTRUDERS > 2
current_temperature_raw[2] = raw_temp_2_value;
#endif

3
Marlin/temperature.h

@ -37,6 +37,9 @@ extern int target_temperature[EXTRUDERS];
extern float current_temperature[EXTRUDERS];
extern int target_temperature_bed;
extern float current_temperature_bed;
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
extern float redundant_temperature;
#endif
#ifdef PIDTEMP
extern float Kp,Ki,Kd,Kc;

110
Marlin/ultralcd.cpp

@ -8,6 +8,8 @@
#include "stepper.h"
#include "ConfigurationStore.h"
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
/* Configuration settings */
int plaPreheatHotendTemp;
int plaPreheatHPBTemp;
@ -47,6 +49,9 @@ static void lcd_control_temperature_menu();
static void lcd_control_temperature_preheat_pla_settings_menu();
static void lcd_control_temperature_preheat_abs_settings_menu();
static void lcd_control_motion_menu();
#ifdef DOGLCD
static void lcd_set_contrast();
#endif
static void lcd_control_retract_menu();
static void lcd_sdcard_menu();
@ -122,13 +127,11 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
#ifndef REPRAPWORLD_KEYPAD
volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
#else
volatile uint16_t buttons;//Contains the bits of the currently pressed buttons (extended).
volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shiftregister values
#endif
uint8_t currentMenuViewOffset; /* scroll offset in the current menu */
uint32_t blocking_enc;
uint8_t lastEncoderBits;
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
uint32_t encoderPosition;
#if (SDCARDDETECT > 0)
bool lcd_oldcardstatus;
@ -173,8 +176,8 @@ static void lcd_status_screen()
}
// Dead zone at 100% feedrate
if (feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100 ||
feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100)
if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) ||
(feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100))
{
encoderPosition = 0;
feedmultiply = 100;
@ -357,9 +360,9 @@ static void lcd_move_x()
if (encoderPosition != 0)
{
current_position[X_AXIS] += float((int)encoderPosition) * move_menu_scale;
if (current_position[X_AXIS] < X_MIN_POS)
if (min_software_endstops && current_position[X_AXIS] < X_MIN_POS)
current_position[X_AXIS] = X_MIN_POS;
if (current_position[X_AXIS] > X_MAX_POS)
if (max_software_endstops && current_position[X_AXIS] > X_MAX_POS)
current_position[X_AXIS] = X_MAX_POS;
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600, active_extruder);
@ -381,9 +384,9 @@ static void lcd_move_y()
if (encoderPosition != 0)
{
current_position[Y_AXIS] += float((int)encoderPosition) * move_menu_scale;
if (current_position[Y_AXIS] < Y_MIN_POS)
if (min_software_endstops && current_position[Y_AXIS] < Y_MIN_POS)
current_position[Y_AXIS] = Y_MIN_POS;
if (current_position[Y_AXIS] > Y_MAX_POS)
if (max_software_endstops && current_position[Y_AXIS] > Y_MAX_POS)
current_position[Y_AXIS] = Y_MAX_POS;
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600, active_extruder);
@ -405,12 +408,12 @@ static void lcd_move_z()
if (encoderPosition != 0)
{
current_position[Z_AXIS] += float((int)encoderPosition) * move_menu_scale;
if (current_position[Z_AXIS] < Z_MIN_POS)
if (min_software_endstops && current_position[Z_AXIS] < Z_MIN_POS)
current_position[Z_AXIS] = Z_MIN_POS;
if (current_position[Z_AXIS] > Z_MAX_POS)
if (max_software_endstops && current_position[Z_AXIS] > Z_MAX_POS)
current_position[Z_AXIS] = Z_MAX_POS;
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 60, active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
lcdDrawUpdate = 1;
}
if (lcdDrawUpdate)
@ -492,6 +495,10 @@ static void lcd_control_menu()
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM(submenu, MSG_MOTION, lcd_control_motion_menu);
#ifdef DOGLCD
// MENU_ITEM_EDIT(int3, MSG_CONTRAST, &lcd_contrast, 0, 63);
MENU_ITEM(submenu, MSG_CONTRAST, lcd_set_contrast);
#endif
#ifdef FWRETRACT
MENU_ITEM(submenu, MSG_RETRACT, lcd_control_retract_menu);
#endif
@ -505,9 +512,11 @@ static void lcd_control_menu()
static void lcd_control_temperature_menu()
{
#ifdef PIDTEMP
// set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(Ki);
raw_Kd = unscalePID_d(Kd);
#endif
START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
@ -601,6 +610,31 @@ static void lcd_control_motion_menu()
END_MENU();
}
#ifdef DOGLCD
static void lcd_set_contrast()
{
if (encoderPosition != 0)
{
lcd_contrast -= encoderPosition;
if (lcd_contrast < 0) lcd_contrast = 0;
else if (lcd_contrast > 63) lcd_contrast = 63;
encoderPosition = 0;
lcdDrawUpdate = 1;
u8g.setContrast(lcd_contrast);
}
if (lcdDrawUpdate)
{
lcd_implementation_drawedit(PSTR("Contrast"), itostr2(lcd_contrast));
}
if (LCD_CLICKED)
{
lcd_quick_feedback();
currentMenu = lcd_control_menu;
encoderPosition = 0;
}
}
#endif
#ifdef FWRETRACT
static void lcd_control_retract_menu()
{
@ -734,6 +768,26 @@ menu_edit_type(float, float52, ftostr52, 100)
menu_edit_type(unsigned long, long5, ftostr5, 0.01)
#ifdef REPRAPWORLD_KEYPAD
static void reprapworld_keypad_move_z_up() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_z();
}
static void reprapworld_keypad_move_z_down() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_z();
}
static void reprapworld_keypad_move_x_left() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_x();
}
static void reprapworld_keypad_move_x_right() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_x();
}
static void reprapworld_keypad_move_y_down() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
@ -745,9 +799,7 @@ menu_edit_type(unsigned long, long5, ftostr5, 0.01)
lcd_move_y();
}
static void reprapworld_keypad_move_home() {
//enquecommand_P((PSTR("G28"))); // move all axis home
// TODO gregor: move all axis home, i have currently only one axis on my prusa i3
enquecommand_P((PSTR("G28 Y")));
enquecommand_P((PSTR("G28"))); // move all axis home
}
#endif
@ -876,6 +928,18 @@ void lcd_update()
{
#ifdef ULTIPANEL
#ifdef REPRAPWORLD_KEYPAD
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) {
reprapworld_keypad_move_z_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) {
reprapworld_keypad_move_z_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) {
reprapworld_keypad_move_x_left();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) {
reprapworld_keypad_move_x_right();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) {
reprapworld_keypad_move_y_down();
}
@ -960,6 +1024,14 @@ void lcd_reset_alert_level()
lcd_status_message_level = 0;
}
#ifdef DOGLCD
void lcd_setcontrast(uint8_t value)
{
lcd_contrast = value & 63;
u8g.setContrast(lcd_contrast);
}
#endif
#ifdef ULTIPANEL
/* Warning: This function is called from interrupt context */
void lcd_buttons_update()
@ -972,6 +1044,7 @@ void lcd_buttons_update()
if((blocking_enc<millis()) && (READ(BTN_ENC)==0))
newbutton |= EN_C;
#endif
buttons = newbutton;
#ifdef REPRAPWORLD_KEYPAD
// for the reprapworld_keypad
uint8_t newbutton_reprapworld_keypad=0;
@ -984,9 +1057,8 @@ void lcd_buttons_update()
WRITE(SHIFT_CLK,HIGH);
WRITE(SHIFT_CLK,LOW);
}
newbutton |= ((~newbutton_reprapworld_keypad) << REPRAPWORLD_BTN_OFFSET); //invert it, because a pressed switch produces a logical 0
buttons_reprapworld_keypad=~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0
#endif
buttons = newbutton;
#else //read it from the shift register
uint8_t newbutton=0;
WRITE(SHIFT_LD,LOW);
@ -1252,16 +1324,20 @@ char *ftostr52(const float &x)
// grab the pid i value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i()
{
#ifdef PIDTEMP
Ki = scalePID_i(raw_Ki);
updatePID();
#endif
}
// Callback for after editing PID d value
// grab the pid d value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_d()
{
#ifdef PIDTEMP
Kd = scalePID_d(raw_Kd);
updatePID();
#endif
}
#endif //ULTRA_LCD

48
Marlin/ultralcd.h

@ -12,6 +12,11 @@
void lcd_setalertstatuspgm(const char* message);
void lcd_reset_alert_level();
#ifdef DOGLCD
extern int lcd_contrast;
void lcd_setcontrast(uint8_t value);
#endif
static unsigned char blink = 0; // Variable for visualisation of fan rotation in GLCD
#define LCD_MESSAGEPGM(x) lcd_setstatuspgm(PSTR(x))
@ -22,6 +27,10 @@
#ifdef ULTIPANEL
void lcd_buttons_update();
extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#ifdef REPRAPWORLD_KEYPAD
extern volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shiftregister values
#endif
#else
FORCE_INLINE void lcd_buttons_update() {}
#endif
@ -37,6 +46,45 @@
void lcd_buzz(long duration,uint16_t freq);
bool lcd_clicked();
#ifdef NEWPANEL
#define EN_C (1<<BLEN_C)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
#define LCD_CLICKED (buttons&EN_C)
#ifdef REPRAPWORLD_KEYPAD
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<BLEN_REPRAPWORLD_KEYPAD_F3)
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<BLEN_REPRAPWORLD_KEYPAD_F2)
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<BLEN_REPRAPWORLD_KEYPAD_F1)
#define EN_REPRAPWORLD_KEYPAD_UP (1<<BLEN_REPRAPWORLD_KEYPAD_UP)
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<BLEN_REPRAPWORLD_KEYPAD_RIGHT)
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<BLEN_REPRAPWORLD_KEYPAD_DOWN)
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<BLEN_REPRAPWORLD_KEYPAD_LEFT)
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2)
#define REPRAPWORLD_KEYPAD_MOVE_Z_DOWN (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F3)
#define REPRAPWORLD_KEYPAD_MOVE_X_LEFT (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_LEFT)
#define REPRAPWORLD_KEYPAD_MOVE_X_RIGHT (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_RIGHT)
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_DOWN)
#define REPRAPWORLD_KEYPAD_MOVE_Y_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_UP)
#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_MIDDLE)
#endif //REPRAPWORLD_KEYPAD
#else
//atomatic, do not change
#define B_LE (1<<BL_LE)
#define B_UP (1<<BL_UP)
#define B_MI (1<<BL_MI)
#define B_DW (1<<BL_DW)
#define B_RI (1<<BL_RI)
#define B_ST (1<<BL_ST)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
#endif//NEWPANEL
#else //no lcd
FORCE_INLINE void lcd_update() {}
FORCE_INLINE void lcd_init() {}

15
Marlin/ultralcd_implementation_hitachi_HD44780.h

@ -13,7 +13,7 @@ extern volatile uint16_t buttons; //an extended version of the last checked but
#endif
////////////////////////////////////
// Setup button and encode mappings for each panel (into 'buttons' variable)
// Setup button and encode mappings for each panel (into 'buttons' variable
//
// This is just to map common functions (across different panels) onto the same
// macro name. The mapping is independent of whether the button is directly connected or
@ -181,6 +181,11 @@ extern volatile uint16_t buttons; //an extended version of the last checked but
#define LCD_CLASS LiquidTWI2
LCD_CLASS lcd(LCD_I2C_ADDRESS);
#elif defined(LCD_I2C_TYPE_PCA8574)
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_WIDTH, LCD_HEIGHT);
#else
// Standard directly connected LCD implementations
#if LANGUAGE_CHOICE == 6
@ -306,6 +311,10 @@ static void lcd_implementation_init()
lcd.setMCPType(LTI_TYPE_MCP23008);
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#elif defined(LCD_I2C_TYPE_PCA8574)
lcd.init();
lcd.backlight();
#else
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#endif
@ -706,9 +715,9 @@ static void lcd_implementation_quick_feedback()
for(int8_t i=0;i<10;i++)
{
WRITE(BEEPER,HIGH);
delay(3);
delayMicroseconds(100);
WRITE(BEEPER,LOW);
delay(3);
delayMicroseconds(100);
}
#endif
}

131
Marlin/ultralcd_st7920_u8glib_rrd.h

@ -0,0 +1,131 @@
#ifndef ULCDST7920_H
#define ULCDST7920_H
#include "Marlin.h"
#ifdef U8GLIB_ST7920
//set optimization so ARDUINO optimizes this file
#pragma GCC optimize (3)
#define ST7920_CLK_PIN LCD_PINS_D4
#define ST7920_DAT_PIN LCD_PINS_ENABLE
#define ST7920_CS_PIN LCD_PINS_RS
//#define PAGE_HEIGHT 8 //128 byte frambuffer
//#define PAGE_HEIGHT 16 //256 byte frambuffer
#define PAGE_HEIGHT 32 //512 byte framebuffer
#define WIDTH 128
#define HEIGHT 64
#include <U8glib.h>
static void ST7920_SWSPI_SND_8BIT(uint8_t val)
{
uint8_t i;
for( i=0; i<8; i++ )
{
WRITE(ST7920_CLK_PIN,0);
WRITE(ST7920_DAT_PIN,val&0x80);
val<<=1;
WRITE(ST7920_CLK_PIN,1);
}
}
#define ST7920_CS() {WRITE(ST7920_CS_PIN,1);u8g_10MicroDelay();}
#define ST7920_NCS() {WRITE(ST7920_CS_PIN,0);}
#define ST7920_SET_CMD() {ST7920_SWSPI_SND_8BIT(0xf8);u8g_10MicroDelay();}
#define ST7920_SET_DAT() {ST7920_SWSPI_SND_8BIT(0xfa);u8g_10MicroDelay();}
#define ST7920_WRITE_BYTE(a) {ST7920_SWSPI_SND_8BIT((a)&0xf0);ST7920_SWSPI_SND_8BIT((a)<<4);u8g_10MicroDelay();}
#define ST7920_WRITE_BYTES(p,l) {uint8_t i;for(i=0;i<l;i++){ST7920_SWSPI_SND_8BIT(*p&0xf0);ST7920_SWSPI_SND_8BIT(*p<<4);p++;}u8g_10MicroDelay();}
uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg)
{
uint8_t i,y;
switch(msg)
{
case U8G_DEV_MSG_INIT:
{
SET_OUTPUT(ST7920_CS_PIN);
WRITE(ST7920_CS_PIN,0);
SET_OUTPUT(ST7920_DAT_PIN);
WRITE(ST7920_DAT_PIN,0);
SET_OUTPUT(ST7920_CLK_PIN);
WRITE(ST7920_CLK_PIN,1);
ST7920_CS();
u8g_Delay(90); //initial delay for boot up
ST7920_SET_CMD();
ST7920_WRITE_BYTE(0x08); //display off, cursor+blink off
ST7920_WRITE_BYTE(0x01); //clear CGRAM ram
u8g_Delay(10); //delay for cgram clear
ST7920_WRITE_BYTE(0x3E); //extended mode + gdram active
for(y=0;y<HEIGHT/2;y++) //clear GDRAM
{
ST7920_WRITE_BYTE(0x80|y); //set y
ST7920_WRITE_BYTE(0x80); //set x = 0
ST7920_SET_DAT();
for(i=0;i<2*WIDTH/8;i++) //2x width clears both segments
ST7920_WRITE_BYTE(0);
ST7920_SET_CMD();
}
ST7920_WRITE_BYTE(0x0C); //display on, cursor+blink off
ST7920_NCS();
}
break;
case U8G_DEV_MSG_STOP:
break;
case U8G_DEV_MSG_PAGE_NEXT:
{
uint8_t *ptr;
u8g_pb_t *pb = (u8g_pb_t *)(dev->dev_mem);
y = pb->p.page_y0;
ptr = (uint8_t*)pb->buf;
ST7920_CS();
for( i = 0; i < PAGE_HEIGHT; i ++ )
{
ST7920_SET_CMD();
if ( y < 32 )
{
ST7920_WRITE_BYTE(0x80 | y); //y
ST7920_WRITE_BYTE(0x80); //x=0
}
else
{
ST7920_WRITE_BYTE(0x80 | (y-32)); //y
ST7920_WRITE_BYTE(0x80 | 8); //x=64
}
ST7920_SET_DAT();
ST7920_WRITE_BYTES(ptr,WIDTH/8); //ptr is incremented inside of macro
y++;
}
ST7920_NCS();
}
break;
}
#if PAGE_HEIGHT == 8
return u8g_dev_pb8h1_base_fn(u8g, dev, msg, arg);
#elif PAGE_HEIGHT == 16
return u8g_dev_pb16h1_base_fn(u8g, dev, msg, arg);
#else
return u8g_dev_pb32h1_base_fn(u8g, dev, msg, arg);
#endif
}
uint8_t u8g_dev_st7920_128x64_rrd_buf[WIDTH*(PAGE_HEIGHT/8)] U8G_NOCOMMON;
u8g_pb_t u8g_dev_st7920_128x64_rrd_pb = {{PAGE_HEIGHT,HEIGHT,0,0,0},WIDTH,u8g_dev_st7920_128x64_rrd_buf};
u8g_dev_t u8g_dev_st7920_128x64_rrd_sw_spi = {u8g_dev_rrd_st7920_128x64_fn,&u8g_dev_st7920_128x64_rrd_pb,&u8g_com_null_fn};
class U8GLIB_ST7920_128X64_RRD : public U8GLIB
{
public:
U8GLIB_ST7920_128X64_RRD(uint8_t dummy) : U8GLIB(&u8g_dev_st7920_128x64_rrd_sw_spi) {}
};
#endif //U8GLIB_ST7920
#endif //ULCDST7920_H

137
README.md

@ -2,14 +2,7 @@
Marlin 3D Printer Firmware
==========================
Notes:
-----
The configuration is now split in two files:
Configuration.h for the normal settings
Configuration_adv.h for the advanced settings
Gen7T is not supported.
[![Flattr this git repo](http://api.flattr.com/button/flattr-badge-large.png)](https://flattr.com/submit/auto?user_id=ErikZalm&url=https://github.com/ErikZalm/Marlin&title=Marlin&language=&tags=github&category=software)
Quick Information
===================
@ -48,8 +41,11 @@ Features:
* Heater power reporting. Useful for PID monitoring.
* PID tuning
* CoreXY kinematics (www.corexy.com/theory.html)
* Delta kinematics
* Dual X-carriage support for multiple extruder systems
* Configurable serial port to support connection of wireless adaptors.
* Automatic operation of extruder/cold-end cooling fans based on nozzle temperature
* RC Servo Support, specify angle or duration for continuous rotation servos.
The default baudrate is 250000. This baudrate has less jitter and hence errors than the usual 115200 baud, but is less supported by drivers and host-environments.
@ -133,58 +129,99 @@ necessary for backwards compatibility.
An interrupt is used to manage ADC conversions, and enforce checking for critical temperatures.
This leads to less blocking in the heater management routine.
Implemented G Codes:
====================
Non-standard M-Codes, different to an old version of sprinter:
==============================================================
Movement:
* G0 -> G1
* G1 - Coordinated Movement X Y Z E
* G2 - CW ARC
* G3 - CCW ARC
General:
* M17 - Enable/Power all stepper motors. Compatibility to ReplicatorG.
* M18 - Disable all stepper motors; same as M84.Compatibility to ReplicatorG.
* M30 - Print time since last M109 or SD card start to serial
* M42 - Change pin status via gcode
* G4 - Dwell S<seconds> or P<milliseconds>
* G10 - retract filament according to settings of M207
* G11 - retract recover filament according to settings of M208
* G28 - Home all Axis
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to cordinates given
M Codes
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
* M1 - Same as M0
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card
* M21 - Init SD card
* M22 - Release SD card
* M23 - Select SD file (M23 filename.g)
* M24 - Start/resume SD print
* M25 - Pause SD print
* M26 - Set SD position in bytes (M26 S12345)
* M27 - Report SD print status
* M28 - Start SD write (M28 filename.g)
* M29 - Stop SD write
* M30 - Delete file from SD (M30 filename.g)
* M31 - Output time since last M109 or SD card start to serial
* M32 - Select file and start SD print (Can be used when printing from SD card)
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M82 - Set E codes absolute (default)
* M83 - Set E codes relative while in Absolute Coordinates (G90) mode
* M84 - Disable steppers until next move, or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
* M92 - Set axis_steps_per_unit - same syntax as G92
* M104 - Set extruder target temp
* M105 - Read current temp
* M106 - Fan on
* M107 - Fan off
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* M114 - Output current position to serial port
* M115 - Capabilities string
* M117 - display message
* M119 - Output Endstop status to serial port
Movement variables:
* M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M140 - Set bed target temp
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M200 - Set filament diameter
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
* M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
* M206 - set home offsets. This sets the X,Y,Z coordinates of the endstops (and is added to the {X,Y,Z}_HOME_POS configuration options (and is also added to the coordinates, if any, provided to G82, as with earlier firmware)
* M220 - set build speed mulitplying S:factor in percent ; aka "realtime tuneing in the gcode". So you can slow down if you have islands in one height-range, and speed up otherwise.
* M221 - set the extrude multiplying S:factor in percent
* M400 - Finish all buffered moves.
Temperature variables:
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
* M206 - set additional homeing offset
* M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
* M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
* M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
* M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
* M220 S<factor in percent>- set speed factor override percentage
* M221 S<factor in percent>- set extrude factor override percentage
* M240 - Trigger a camera to take a photograph
* M280 - Position an RC Servo P<index> S<angle/microseconds>, ommit S to report back current angle
* M300 - Play beepsound S<frequency Hz> P<duration ms>
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
Advance:
* M200 - Set filament diameter for advance
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
EEPROM:
* M500 - stores paramters in EEPROM. This parameters are stored: axis_steps_per_unit, max_feedrate, max_acceleration ,acceleration,retract_acceleration,
minimumfeedrate,mintravelfeedrate,minsegmenttime, jerk velocities, PID
* M304 - Set bed PID parameters P I and D
* M400 - Finish all moves
* M500 - stores paramters in EEPROM
* M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - print the current settings (from memory not from eeprom)
MISC:
* M240 - Trigger a camera to take a photograph
* M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
* M907 - Set digital trimpot motor current using axis codes.
* M908 - Control digital trimpot directly.
* M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly.
* M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error
Configuring and compilation:
============================
@ -194,12 +231,7 @@ Install the arduino software IDE/toolset v23 (Some configurations also work with
For gen6/gen7 and sanguinololu the Sanguino directory in the Marlin dir needs to be copied to the arduino environment.
copy ArduinoAddons\Arduino_x.x.x\sanguino <arduino home>\hardware\Sanguino
Install Ultimaker's RepG 25 build
http://software.ultimaker.com
For SD handling and as better substitute (apart from stl manipulation) download
the very nice Kliment's printrun/pronterface https://github.com/kliment/Printrun
Copy the Ultimaker Marlin firmware
Copy the Marlin firmware
https://github.com/ErikZalm/Marlin/tree/Marlin_v1
(Use the download button)
@ -213,15 +245,8 @@ Click the Verify/Compile button
Click the Upload button
If all goes well the firmware is uploading
Start Ultimaker's Custom RepG 25
Make sure Show Experimental Profiles is enabled in Preferences
Select Sprinter as the Driver
Press the Connect button.
KNOWN ISSUES: RepG will display: Unknown: marlin x.y.z
That's ok. Enjoy Silky Smooth Printing.

Loading…
Cancel
Save