Browse Source

Catch dangerous extrude before trying several

pull/1/head
Scott Lahteine 10 years ago
parent
commit
1269c445ab
  1. 4
      Marlin/Marlin.h
  2. 80
      Marlin/Marlin_main.cpp
  3. 9
      Marlin/planner.cpp
  4. 4
      Marlin/planner.h

4
Marlin/Marlin.h

@ -273,6 +273,10 @@ extern bool axis_known_position[3];
extern float zprobe_zoffset; extern float zprobe_zoffset;
#endif #endif
#ifdef PREVENT_DANGEROUS_EXTRUDE
extern float extrude_min_temp;
#endif
extern int fanSpeed; extern int fanSpeed;
#ifdef BARICUDA #ifdef BARICUDA

80
Marlin/Marlin_main.cpp

@ -380,12 +380,13 @@ bool target_direction;
void get_arc_coordinates(); void get_arc_coordinates();
bool setTargetedHotend(int code); bool setTargetedHotend(int code);
void serial_echopair_P(const char *s_P, float v) void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
{ serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, double v) void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, unsigned long v) #ifdef PREVENT_DANGEROUS_EXTRUDE
{ serialprintPGM(s_P); SERIAL_ECHO(v); } float extrude_min_temp = EXTRUDE_MINTEMP;
#endif
#ifdef SDSUPPORT #ifdef SDSUPPORT
#include "SdFatUtil.h" #include "SdFatUtil.h"
@ -1009,8 +1010,11 @@ inline void line_to_current_position() {
inline void line_to_z(float zPosition) { inline void line_to_z(float zPosition) {
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
} }
inline void line_to_destination(float mm_m) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
}
inline void line_to_destination() { inline void line_to_destination() {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); line_to_destination(feedrate);
} }
inline void sync_plan_position() { inline void sync_plan_position() {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
@ -4099,6 +4103,8 @@ inline void gcode_M226() {
#ifdef PREVENT_DANGEROUS_EXTRUDE #ifdef PREVENT_DANGEROUS_EXTRUDE
void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
/** /**
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
*/ */
@ -5445,14 +5451,30 @@ void prepare_move() {
clamp_to_software_endstops(destination); clamp_to_software_endstops(destination);
refresh_cmd_timeout(); refresh_cmd_timeout();
#ifdef PREVENT_DANGEROUS_EXTRUDE
float de = destination[E_AXIS] - current_position[E_AXIS];
if (de) {
if (degHotend(active_extruder) < extrude_min_temp) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#ifdef PREVENT_LENGTHY_EXTRUDE
if (labs(de) > EXTRUDE_MAXLENGTH) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
}
#endif
#ifdef SCARA //for now same as delta-code #ifdef SCARA //for now same as delta-code
float difference[NUM_AXIS]; float difference[NUM_AXIS];
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
float cartesian_mm = sqrt( sq(difference[X_AXIS]) + float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); } if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; } if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
@ -5464,9 +5486,7 @@ void prepare_move() {
for (int s = 1; s <= steps; s++) { for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps); float fraction = float(s) / float(steps);
for(int8_t i = 0; i < NUM_AXIS; i++) { for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
destination[i] = current_position[i] + difference[i] * fraction;
}
calculate_delta(destination); calculate_delta(destination);
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]); //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
@ -5476,9 +5496,7 @@ void prepare_move() {
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]); //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
} }
#endif // SCARA #endif // SCARA
@ -5488,9 +5506,7 @@ void prepare_move() {
float difference[NUM_AXIS]; float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
if (cartesian_mm < 0.000001) return; if (cartesian_mm < 0.000001) return;
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
@ -5507,9 +5523,7 @@ void prepare_move() {
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta(destination); adjust_delta(destination);
#endif #endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
} }
#endif // DELTA #endif // DELTA
@ -5519,8 +5533,8 @@ void prepare_move() {
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) { if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
// move duplicate extruder into correct duplication position. // move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[E_AXIS], max_feedrate[X_AXIS], 1); current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
sync_plan_position(); sync_plan_position();
st_synchronize(); st_synchronize();
extruder_duplication_enabled = true; extruder_duplication_enabled = true;
@ -5528,12 +5542,12 @@ void prepare_move() {
} }
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
if (current_position[E_AXIS] == destination[E_AXIS]) { if (current_position[E_AXIS] == destination[E_AXIS]) {
// this is a travel move - skit it but keep track of current position (so that it can later // This is a travel move (with no extrusion)
// be used as start of first non-travel move) // Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) { if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_to_destination(); set_current_to_destination();
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS]) if (destination[Z_AXIS] > raised_parked_position[Z_AXIS]) raised_parked_position[Z_AXIS] = destination[Z_AXIS];
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
delayed_move_time = millis(); delayed_move_time = millis();
return; return;
} }
@ -5541,10 +5555,8 @@ void prepare_move() {
delayed_move_time = 0; delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
active_extruder_parked = false; active_extruder_parked = false;
} }
} }
@ -5552,7 +5564,7 @@ void prepare_move() {
#if !defined(DELTA) && !defined(SCARA) #if !defined(DELTA) && !defined(SCARA)
// Do not use feedmultiply for E or Z only moves // Do not use feedmultiply for E or Z only moves
if ( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
line_to_destination(); line_to_destination();
} }
else { else {
@ -5560,7 +5572,7 @@ void prepare_move() {
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder); mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
return; return;
#else #else
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder); line_to_destination(feedrate * feedmultiply / 100.0);
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
} }
#endif // !(DELTA || SCARA) #endif // !(DELTA || SCARA)

9
Marlin/planner.cpp

@ -113,9 +113,6 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
//=========================================================================== //===========================================================================
//=============================private variables ============================ //=============================private variables ============================
//=========================================================================== //===========================================================================
#ifdef PREVENT_DANGEROUS_EXTRUDE
float extrude_min_temp = EXTRUDE_MINTEMP;
#endif
#ifdef XY_FREQUENCY_LIMIT #ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit // Used for the frequency limit
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
@ -508,7 +505,7 @@ float junction_deviation = 0.1;
#ifdef PREVENT_DANGEROUS_EXTRUDE #ifdef PREVENT_DANGEROUS_EXTRUDE
if (de) { if (de) {
if (degHotend(active_extruder) < extrude_min_temp) { if (degHotend(active_extruder) < extrude_min_temp) {
position[E_AXIS] = target[E_AXIS]; //behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
@ -998,10 +995,6 @@ void plan_set_e_position(const float &e) {
st_set_e_position(position[E_AXIS]); st_set_e_position(position[E_AXIS]);
} }
#ifdef PREVENT_DANGEROUS_EXTRUDE
void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
#endif
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
void reset_acceleration_rates() { void reset_acceleration_rates() {
for (int i = 0; i < NUM_AXIS; i++) for (int i = 0; i < NUM_AXIS; i++)

4
Marlin/planner.h

@ -161,10 +161,6 @@ FORCE_INLINE block_t *plan_get_current_block() {
return NULL; return NULL;
} }
#ifdef PREVENT_DANGEROUS_EXTRUDE
void set_extrude_min_temp(float temp);
#endif
void reset_acceleration_rates(); void reset_acceleration_rates();
#endif // PLANNER_H #endif // PLANNER_H

Loading…
Cancel
Save