|
|
@ -443,48 +443,24 @@ void Stepper::isr() { |
|
|
|
// Take multiple steps per interrupt (For high speed moves)
|
|
|
|
bool all_steps_done = false; |
|
|
|
for (uint8_t i = step_loops; i--;) { |
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
|
|
|
|
|
counter_E += current_block->steps[E_AXIS]; |
|
|
|
if (counter_E > 0) { |
|
|
|
counter_E -= current_block->step_event_count; |
|
|
|
#if DISABLED(MIXING_EXTRUDER) |
|
|
|
// Don't step E here for mixing extruder
|
|
|
|
count_position[E_AXIS] += count_direction[E_AXIS]; |
|
|
|
motor_direction(E_AXIS) ? --e_steps : ++e_steps; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER) |
|
|
|
// Step mixing steppers proportionally
|
|
|
|
const bool dir = motor_direction(E_AXIS); |
|
|
|
MIXING_STEPPERS_LOOP(j) { |
|
|
|
counter_m[j] += current_block->steps[E_AXIS]; |
|
|
|
if (counter_m[j] > 0) { |
|
|
|
counter_m[j] -= current_block->mix_event_count[j]; |
|
|
|
dir ? --e_steps[j] : ++e_steps[j]; |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif // LIN_ADVANCE
|
|
|
|
|
|
|
|
#define _COUNTER(AXIS) counter_## AXIS |
|
|
|
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP |
|
|
|
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN |
|
|
|
|
|
|
|
// Advance the Bresenham counter; start a pulse if the axis needs a step
|
|
|
|
#define PULSE_START(AXIS) \ |
|
|
|
#define PULSE_START(AXIS) do{ \ |
|
|
|
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \ |
|
|
|
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); } |
|
|
|
if (_COUNTER(AXIS) > 0) _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); }while(0) |
|
|
|
|
|
|
|
// Stop an active pulse, reset the Bresenham counter, update the position
|
|
|
|
#define PULSE_STOP(AXIS) \ |
|
|
|
// Advance the Bresenham counter; start a pulse if the axis needs a step
|
|
|
|
#define STEP_TICK(AXIS) \ |
|
|
|
if (_COUNTER(AXIS) > 0) { \ |
|
|
|
_COUNTER(AXIS) -= current_block->step_event_count; \ |
|
|
|
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ |
|
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \ |
|
|
|
} |
|
|
|
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; } |
|
|
|
|
|
|
|
// Stop an active pulse, if any
|
|
|
|
#define PULSE_STOP(AXIS) _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), 0) |
|
|
|
|
|
|
|
/**
|
|
|
|
* Estimate the number of cycles that the stepper logic already takes |
|
|
@ -563,8 +539,30 @@ void Stepper::isr() { |
|
|
|
PULSE_START(Z); |
|
|
|
#endif |
|
|
|
|
|
|
|
// For non-advance use linear interpolation for E also
|
|
|
|
#if DISABLED(LIN_ADVANCE) |
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
|
|
|
|
|
counter_E += current_block->steps[E_AXIS]; |
|
|
|
if (counter_E > 0) { |
|
|
|
#if DISABLED(MIXING_EXTRUDER) |
|
|
|
// Don't step E here for mixing extruder
|
|
|
|
motor_direction(E_AXIS) ? --e_steps : ++e_steps; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER) |
|
|
|
// Step mixing steppers proportionally
|
|
|
|
const bool dir = motor_direction(E_AXIS); |
|
|
|
MIXING_STEPPERS_LOOP(j) { |
|
|
|
counter_m[j] += current_block->steps[E_AXIS]; |
|
|
|
if (counter_m[j] > 0) { |
|
|
|
counter_m[j] -= current_block->mix_event_count[j]; |
|
|
|
dir ? --e_steps[j] : ++e_steps[j]; |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
#else // !LIN_ADVANCE - use linear interpolation for E also
|
|
|
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER) |
|
|
|
// Keep updating the single E axis
|
|
|
|
counter_E += current_block->steps[E_AXIS]; |
|
|
@ -580,6 +578,18 @@ void Stepper::isr() { |
|
|
|
#endif |
|
|
|
#endif // !LIN_ADVANCE
|
|
|
|
|
|
|
|
#if HAS_X_STEP |
|
|
|
STEP_TICK(X); |
|
|
|
#endif |
|
|
|
#if HAS_Y_STEP |
|
|
|
STEP_TICK(Y); |
|
|
|
#endif |
|
|
|
#if HAS_Z_STEP |
|
|
|
STEP_TICK(Z); |
|
|
|
#endif |
|
|
|
|
|
|
|
STEP_TICK(E); // Always tick the single E axis
|
|
|
|
|
|
|
|
// For minimum pulse time wait before stopping pulses
|
|
|
|
#if EXTRA_CYCLES_XYZE > 20 |
|
|
|
while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ } |
|
|
@ -600,11 +610,6 @@ void Stepper::isr() { |
|
|
|
|
|
|
|
#if DISABLED(LIN_ADVANCE) |
|
|
|
#if ENABLED(MIXING_EXTRUDER) |
|
|
|
// Always step the single E axis
|
|
|
|
if (counter_E > 0) { |
|
|
|
counter_E -= current_block->step_event_count; |
|
|
|
count_position[E_AXIS] += count_direction[E_AXIS]; |
|
|
|
} |
|
|
|
MIXING_STEPPERS_LOOP(j) { |
|
|
|
if (counter_m[j] > 0) { |
|
|
|
counter_m[j] -= current_block->mix_event_count[j]; |
|
|
@ -686,6 +691,7 @@ void Stepper::isr() { |
|
|
|
|
|
|
|
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
|
|
|
_NEXT_ISR(ocr_val); |
|
|
|
|
|
|
|
deceleration_time += interval; |
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
@ -714,6 +720,7 @@ void Stepper::isr() { |
|
|
|
|
|
|
|
SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
|
|
|
_NEXT_ISR(ocr_val); |
|
|
|
|
|
|
|
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
|
|
|
step_loops = step_loops_nominal; |
|
|
|
} |
|
|
|