Browse Source

Merge branch 'Development' into config_testing

Latest upstream commits
pull/1/head
Scott Lahteine 10 years ago
parent
commit
0d81abe1c9
  1. BIN
      Documentation/Logo/marlinwiki.png
  2. 79
      Marlin/Marlin_main.cpp
  3. 1
      Marlin/example_configurations/Felix/Configuration.h
  4. 1
      Marlin/example_configurations/Felix/Configuration_DUAL.h
  5. 83
      Marlin/temperature.cpp
  6. 6
      Marlin/ultralcd.cpp

BIN
Documentation/Logo/marlinwiki.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

79
Marlin/Marlin_main.cpp

@ -4004,18 +4004,13 @@ inline void gcode_M303() {
} }
#ifdef SCARA #ifdef SCARA
bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
/**
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
*/
inline bool gcode_M360() {
SERIAL_ECHOLN(" Cal: Theta 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration //SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled "); //SERIAL_ECHOLN(" Soft endstops disabled ");
if (! Stopped) { if (! Stopped) {
//get_coordinates(); // For X Y Z E F //get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 0; delta[X_AXIS] = delta_x;
delta[Y_AXIS] = 120; delta[Y_AXIS] = delta_y;
calculate_SCARA_forward_Transform(delta); calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS]; destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS]; destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
@ -4026,25 +4021,20 @@ inline void gcode_M303() {
return false; return false;
} }
/**
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
*/
inline bool gcode_M360() {
SERIAL_ECHOLN(" Cal: Theta 0 ");
return SCARA_move_to_cal(0, 120);
}
/** /**
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree) * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
*/ */
inline bool gcode_M361() { inline bool gcode_M361() {
SERIAL_ECHOLN(" Cal: Theta 90 "); SERIAL_ECHOLN(" Cal: Theta 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration return SCARA_move_to_cal(90, 130);
//SERIAL_ECHOLN(" Soft endstops disabled ");
if (! Stopped) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 90;
delta[Y_AXIS] = 130;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return true;
}
return false;
} }
/** /**
@ -4052,20 +4042,7 @@ inline void gcode_M303() {
*/ */
inline bool gcode_M362() { inline bool gcode_M362() {
SERIAL_ECHOLN(" Cal: Psi 0 "); SERIAL_ECHOLN(" Cal: Psi 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration return SCARA_move_to_cal(60, 180);
//SERIAL_ECHOLN(" Soft endstops disabled ");
if (! Stopped) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 60;
delta[Y_AXIS] = 180;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return true;
}
return false;
} }
/** /**
@ -4073,20 +4050,7 @@ inline void gcode_M303() {
*/ */
inline bool gcode_M363() { inline bool gcode_M363() {
SERIAL_ECHOLN(" Cal: Psi 90 "); SERIAL_ECHOLN(" Cal: Psi 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration return SCARA_move_to_cal(50, 90);
//SERIAL_ECHOLN(" Soft endstops disabled ");
if (! Stopped) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 50;
delta[Y_AXIS] = 90;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return true;
}
return false;
} }
/** /**
@ -4094,20 +4058,7 @@ inline void gcode_M303() {
*/ */
inline bool gcode_M364() { inline bool gcode_M364() {
SERIAL_ECHOLN(" Cal: Theta-Psi 90 "); SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
// SoftEndsEnabled = false; // Ignore soft endstops during calibration return SCARA_move_to_cal(45, 135);
//SERIAL_ECHOLN(" Soft endstops disabled ");
if (! Stopped) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 45;
delta[Y_AXIS] = 135;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return true;
}
return false;
} }
/** /**

1
Marlin/example_configurations/Felix/Configuration.h

@ -382,7 +382,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Note: this feature occupies 10'206 byte // Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
home_offset // set the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180 #define BACK_PROBE_BED_POSITION 180

1
Marlin/example_configurations/Felix/Configuration_DUAL.h

@ -382,7 +382,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Note: this feature occupies 10'206 byte // Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
home_offset // set the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180 #define BACK_PROBE_BED_POSITION 180

83
Marlin/temperature.cpp

@ -141,7 +141,7 @@ static volatile bool temp_meas_ready = false;
// Init min and max temp with extreme values to prevent false errors during startup // Init min and max temp with extreme values to prevent false errors during startup
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP); static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP); static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0, 0 ); static int minttemp[EXTRUDERS] = { 0 };
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 ); static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
//static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */ //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
#ifdef BED_MAXTEMP #ifdef BED_MAXTEMP
@ -161,8 +161,8 @@ static float analog2tempBed(int raw);
static void updateTemperaturesFromRawValues(); static void updateTemperaturesFromRawValues();
#ifdef WATCH_TEMP_PERIOD #ifdef WATCH_TEMP_PERIOD
int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0); int watch_start_temp[EXTRUDERS] = { 0 };
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0); unsigned long watchmillis[EXTRUDERS] = { 0 };
#endif //WATCH_TEMP_PERIOD #endif //WATCH_TEMP_PERIOD
#ifndef SOFT_PWM_SCALE #ifndef SOFT_PWM_SCALE
@ -576,12 +576,6 @@ void manage_heater() {
updateTemperaturesFromRawValues(); updateTemperaturesFromRawValues();
#ifdef HEATER_0_USES_MAX6675
float ct = current_temperature[0];
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
#endif //HEATER_0_USES_MAX6675
unsigned long ms = millis(); unsigned long ms = millis();
// Loop through all extruders // Loop through all extruders
@ -1060,28 +1054,28 @@ void disable_heater() {
for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i); for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
setTargetBed(0); setTargetBed(0);
#define DISABLE_HEATER(NR) { \
target_temperature[NR] = 0; \
soft_pwm[NR] = 0; \
WRITE_HEATER_ ## NR (LOW); \
}
#if HAS_TEMP_0 #if HAS_TEMP_0
target_temperature[0] = 0; target_temperature[0] = 0;
soft_pwm[0] = 0; soft_pwm[0] = 0;
WRITE_HEATER_0P(LOW); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0 WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
#endif #endif
#if EXTRUDERS > 1 && HAS_TEMP_1 #if EXTRUDERS > 1 && HAS_TEMP_1
target_temperature[1] = 0; DISABLE_HEATER(1);
soft_pwm[1] = 0;
WRITE_HEATER_1(LOW);
#endif #endif
#if EXTRUDERS > 2 && HAS_TEMP_2 #if EXTRUDERS > 2 && HAS_TEMP_2
target_temperature[2] = 0; DISABLE_HEATER(2);
soft_pwm[2] = 0;
WRITE_HEATER_2(LOW);
#endif #endif
#if EXTRUDERS > 3 && HAS_TEMP_3 #if EXTRUDERS > 3 && HAS_TEMP_3
target_temperature[3] = 0; DISABLE_HEATER(3);
soft_pwm[3] = 0;
WRITE_HEATER_3(LOW);
#endif #endif
#if HAS_TEMP_BED #if HAS_TEMP_BED
@ -1172,9 +1166,15 @@ enum TempState {
// Timer 0 is shared with millies // Timer 0 is shared with millies
// //
ISR(TIMER0_COMPB_vect) { ISR(TIMER0_COMPB_vect) {
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
#define TEMP_SENSOR_COUNT 2
#else
#define TEMP_SENSOR_COUNT EXTRUDERS
#endif
//these variables are only accesible from the ISR, but static, so they don't lose their value //these variables are only accesible from the ISR, but static, so they don't lose their value
static unsigned char temp_count = 0; static unsigned char temp_count = 0;
static unsigned long raw_temp_value[EXTRUDERS] = { 0 }; static unsigned long raw_temp_value[TEMP_SENSOR_COUNT] = { 0 };
static unsigned long raw_temp_bed_value = 0; static unsigned long raw_temp_bed_value = 0;
static TempState temp_state = StartupDelay; static TempState temp_state = StartupDelay;
static unsigned char pwm_count = BIT(SOFT_PWM_SCALE); static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
@ -1390,6 +1390,7 @@ ISR(TIMER0_COMPB_vect) {
#endif #endif
temp_state = PrepareTemp_BED; temp_state = PrepareTemp_BED;
break; break;
case PrepareTemp_BED: case PrepareTemp_BED:
#if HAS_TEMP_BED #if HAS_TEMP_BED
START_ADC(TEMP_BED_PIN); START_ADC(TEMP_BED_PIN);
@ -1403,6 +1404,7 @@ ISR(TIMER0_COMPB_vect) {
#endif #endif
temp_state = PrepareTemp_1; temp_state = PrepareTemp_1;
break; break;
case PrepareTemp_1: case PrepareTemp_1:
#if HAS_TEMP_1 #if HAS_TEMP_1
START_ADC(TEMP_1_PIN); START_ADC(TEMP_1_PIN);
@ -1416,6 +1418,7 @@ ISR(TIMER0_COMPB_vect) {
#endif #endif
temp_state = PrepareTemp_2; temp_state = PrepareTemp_2;
break; break;
case PrepareTemp_2: case PrepareTemp_2:
#if HAS_TEMP_2 #if HAS_TEMP_2
START_ADC(TEMP_2_PIN); START_ADC(TEMP_2_PIN);
@ -1429,6 +1432,7 @@ ISR(TIMER0_COMPB_vect) {
#endif #endif
temp_state = PrepareTemp_3; temp_state = PrepareTemp_3;
break; break;
case PrepareTemp_3: case PrepareTemp_3:
#if HAS_TEMP_3 #if HAS_TEMP_3
START_ADC(TEMP_3_PIN); START_ADC(TEMP_3_PIN);
@ -1442,6 +1446,7 @@ ISR(TIMER0_COMPB_vect) {
#endif #endif
temp_state = Prepare_FILWIDTH; temp_state = Prepare_FILWIDTH;
break; break;
case Prepare_FILWIDTH: case Prepare_FILWIDTH:
#if HAS_FILAMENT_SENSOR #if HAS_FILAMENT_SENSOR
START_ADC(FILWIDTH_PIN); START_ADC(FILWIDTH_PIN);
@ -1460,6 +1465,7 @@ ISR(TIMER0_COMPB_vect) {
temp_state = PrepareTemp_0; temp_state = PrepareTemp_0;
temp_count++; temp_count++;
break; break;
case StartupDelay: case StartupDelay:
temp_state = PrepareTemp_0; temp_state = PrepareTemp_0;
break; break;
@ -1497,49 +1503,50 @@ ISR(TIMER0_COMPB_vect) {
temp_meas_ready = true; temp_meas_ready = true;
temp_count = 0; temp_count = 0;
for (int i = 0; i < EXTRUDERS; i++) raw_temp_value[i] = 0; for (int i = 0; i < TEMP_SENSOR_COUNT; i++) raw_temp_value[i] = 0;
raw_temp_bed_value = 0; raw_temp_bed_value = 0;
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP #ifdef HEATER_0_USES_MAX6675
#define GE0 <= float ct = current_temperature[0];
#define LE0 >= if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
#else #else
#define GE0 >= #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
#define LE0 <= #define GE0 <=
#else
#define GE0 >=
#endif
if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
#endif #endif
if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
if (current_temperature_raw[0] LE0 minttemp_raw[0]) min_temp_error(0);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
#define GE1 <= #define GE1 <=
#define LE1 >=
#else #else
#define GE1 >= #define GE1 >=
#define LE1 <=
#endif #endif
if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1); if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
if (current_temperature_raw[1] LE1 minttemp_raw[1]) min_temp_error(1); if (minttemp_raw[1] GE0 current_temperature_raw[1]) min_temp_error(1);
#if EXTRUDERS > 2 #if EXTRUDERS > 2
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
#define GE2 <= #define GE2 <=
#define LE2 >=
#else #else
#define GE2 >= #define GE2 >=
#define LE2 <=
#endif #endif
if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2); if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
if (current_temperature_raw[2] LE2 minttemp_raw[2]) min_temp_error(2); if (minttemp_raw[2] GE0 current_temperature_raw[2]) min_temp_error(2);
#if EXTRUDERS > 3 #if EXTRUDERS > 3
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
#define GE3 <= #define GE3 <=
#define LE3 >=
#else #else
#define GE3 >= #define GE3 >=
#define LE3 <=
#endif #endif
if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3); if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
if (current_temperature_raw[3] LE3 minttemp_raw[3]) min_temp_error(3); if (minttemp_raw[3] GE0 current_temperature_raw[3]) min_temp_error(3);
#endif // EXTRUDERS > 3 #endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2 #endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1 #endif // EXTRUDERS > 1
@ -1547,10 +1554,8 @@ ISR(TIMER0_COMPB_vect) {
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0) #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
#define GEBED <= #define GEBED <=
#define LEBED >=
#else #else
#define GEBED >= #define GEBED >=
#define LEBED <=
#endif #endif
if (current_temperature_bed_raw GEBED bed_maxttemp_raw) { if (current_temperature_bed_raw GEBED bed_maxttemp_raw) {
target_temperature_bed = 0; target_temperature_bed = 0;

6
Marlin/ultralcd.cpp

@ -911,9 +911,9 @@ static void lcd_control_motion_menu() {
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu); MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, 0.5, 50); MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, 0.0, 50);
#endif #endif
MENU_ITEM_EDIT(float5, MSG_ACC, &acceleration, 500, 99000); MENU_ITEM_EDIT(float5, MSG_ACC, &acceleration, 10, 99000);
MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &max_xy_jerk, 1, 990); MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &max_xy_jerk, 1, 990);
MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &max_z_jerk, 0.1, 990); MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &max_z_jerk, 0.1, 990);
MENU_ITEM_EDIT(float3, MSG_VE_JERK, &max_e_jerk, 1, 990); MENU_ITEM_EDIT(float3, MSG_VE_JERK, &max_e_jerk, 1, 990);
@ -925,7 +925,7 @@ static void lcd_control_motion_menu() {
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &mintravelfeedrate, 0, 999); MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &mintravelfeedrate, 0, 999);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &max_acceleration_units_per_sq_second[Z_AXIS], 100, 99000, reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &max_acceleration_units_per_sq_second[Z_AXIS], 10, 99000, reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, reset_acceleration_rates);
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &retract_acceleration, 100, 99000); MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &retract_acceleration, 100, 99000);
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &travel_acceleration, 100, 99000); MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &travel_acceleration, 100, 99000);

Loading…
Cancel
Save