Browse Source

Less use of "this"

pull/1/head
Scott Lahteine 5 years ago
parent
commit
0b4aedf13e
  1. 28
      Marlin/src/HAL/HAL_ESP32/Servo.cpp
  2. 8
      Marlin/src/HAL/HAL_LPC1768/Servo.h
  3. 18
      Marlin/src/HAL/HAL_STM32/Servo.cpp
  4. 73
      Marlin/src/HAL/HAL_STM32F1/SPI.cpp
  5. 38
      Marlin/src/HAL/HAL_STM32F1/SPI.h
  6. 89
      Marlin/src/HAL/HAL_STM32F1/Servo.cpp
  7. 2
      Marlin/src/HAL/HAL_STM32F1/Servo.h
  8. 14
      Marlin/src/HAL/HAL_STM32_F4_F7/Servo.cpp
  9. 22
      Marlin/src/HAL/HAL_TEENSY31_32/Servo.cpp
  10. 43
      Marlin/src/HAL/HAL_TEENSY35_36/Servo.cpp
  11. 56
      Marlin/src/HAL/shared/servo.cpp
  12. 48
      Marlin/src/feature/twibus.cpp
  13. 2
      Marlin/src/feature/twibus.h
  14. 46
      Marlin/src/libs/circularqueue.h

28
Marlin/src/HAL/HAL_ESP32/Servo.cpp

@ -32,25 +32,25 @@
int Servo::channel_next_free = 12; int Servo::channel_next_free = 12;
Servo::Servo() { Servo::Servo() {
this->channel = channel_next_free++; channel = channel_next_free++;
} }
int8_t Servo::attach(const int pin) { int8_t Servo::attach(const int inPin) {
if (this->channel >= CHANNEL_MAX_NUM) return -1; if (channel >= CHANNEL_MAX_NUM) return -1;
if (pin > 0) this->pin = pin; if (pin > 0) pin = inPin;
ledcSetup(this->channel, 50, 16); // channel X, 50 Hz, 16-bit depth ledcSetup(channel, 50, 16); // channel X, 50 Hz, 16-bit depth
ledcAttachPin(this->pin, this->channel); ledcAttachPin(pin, channel);
return true; return true;
} }
void Servo::detach() { ledcDetachPin(this->pin); } void Servo::detach() { ledcDetachPin(pin); }
int Servo::read() { return this->degrees; } int Servo::read() { return degrees; }
void Servo::write(int inDegrees) { void Servo::write(int inDegrees) {
this->degrees = constrain(inDegrees, MIN_ANGLE, MAX_ANGLE); degrees = constrain(inDegrees, MIN_ANGLE, MAX_ANGLE);
int us = map(this->degrees, MIN_ANGLE, MAX_ANGLE, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); int us = map(degrees, MIN_ANGLE, MAX_ANGLE, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
int duty = map(us, 0, TAU_USEC, 0, MAX_COMPARE); int duty = map(us, 0, TAU_USEC, 0, MAX_COMPARE);
ledcWrite(channel, duty); ledcWrite(channel, duty);
} }
@ -58,11 +58,11 @@ void Servo::write(int inDegrees) {
void Servo::move(const int value) { void Servo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY; constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) { if (attach(0) >= 0) {
this->write(value); write(value);
safe_delay(servo_delay[this->channel]); safe_delay(servo_delay[channel]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach(); detach();
#endif #endif
} }
} }

8
Marlin/src/HAL/HAL_LPC1768/Servo.h

@ -57,11 +57,11 @@ class libServo: public Servo {
constexpr uint16_t servo_delay[] = SERVO_DELAY; constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(servo_info[this->servoIndex].Pin.nbr) >= 0) { // try to reattach if (attach(servo_info[servoIndex].Pin.nbr) >= 0) { // try to reattach
this->write(value); write(value);
safe_delay(servo_delay[this->servoIndex]); // delay to allow servo to reach position safe_delay(servo_delay[servoIndex]); // delay to allow servo to reach position
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach(); detach();
#endif #endif
} }

18
Marlin/src/HAL/HAL_STM32/Servo.cpp

@ -31,24 +31,24 @@
uint8_t servoPin[MAX_SERVOS] = { 0 }; uint8_t servoPin[MAX_SERVOS] = { 0 };
int8_t libServo::attach(const int pin) { int8_t libServo::attach(const int pin) {
if (this->servoIndex >= MAX_SERVOS) return -1; if (servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servoPin[this->servoIndex] = pin; if (pin > 0) servoPin[servoIndex] = pin;
return Servo::attach(servoPin[this->servoIndex]); return super::attach(servoPin[servoIndex]);
} }
int8_t libServo::attach(const int pin, const int min, const int max) { int8_t libServo::attach(const int pin, const int min, const int max) {
if (pin > 0) servoPin[this->servoIndex] = pin; if (pin > 0) servoPin[servoIndex] = pin;
return Servo::attach(servoPin[this->servoIndex], min, max); return super::attach(servoPin[servoIndex], min, max);
} }
void libServo::move(const int value) { void libServo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY; constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) { if (attach(0) >= 0) {
this->write(value); write(value);
safe_delay(servo_delay[this->servoIndex]); safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach(); detach();
#endif #endif
} }
} }

73
Marlin/src/HAL/HAL_STM32F1/SPI.cpp

@ -213,30 +213,30 @@ void SPIClass::setDataSize(uint32_t datasize) {
} }
void SPIClass::setDataMode(uint8_t dataMode) { void SPIClass::setDataMode(uint8_t dataMode) {
/* /**
Notes: * Notes:
As far as we know the AVR numbers for dataMode match the numbers required by the STM32. * As far as we know the AVR numbers for dataMode match the numbers required by the STM32.
From the AVR doc http://www.atmel.com/images/doc2585.pdf section 2.4 * From the AVR doc http://www.atmel.com/images/doc2585.pdf section 2.4
*
SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge * SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge
0 0 0 Falling Rising * 0 0 0 Falling Rising
1 0 1 Rising Falling * 1 0 1 Rising Falling
2 1 0 Rising Falling * 2 1 0 Rising Falling
3 1 1 Falling Rising * 3 1 1 Falling Rising
*
On the STM32 it appears to be * On the STM32 it appears to be
*
bit 1 - CPOL : Clock polarity * bit 1 - CPOL : Clock polarity
(This bit should not be changed when communication is ongoing) * (This bit should not be changed when communication is ongoing)
0 : CLK to 0 when idle * 0 : CLK to 0 when idle
1 : CLK to 1 when idle * 1 : CLK to 1 when idle
*
bit 0 - CPHA : Clock phase * bit 0 - CPHA : Clock phase
(This bit should not be changed when communication is ongoing) * (This bit should not be changed when communication is ongoing)
0 : The first clock transition is the first data capture edge * 0 : The first clock transition is the first data capture edge
1 : The second clock transition is the first data capture edge * 1 : The second clock transition is the first data capture edge
*
If someone finds this is not the case or sees a logic error with this let me know ;-) * If someone finds this is not the case or sees a logic error with this let me know ;-)
*/ */
_currentSetting->dataMode = dataMode; _currentSetting->dataMode = dataMode;
uint32_t cr1 = _currentSetting->spi_d->regs->CR1 & ~(SPI_CR1_CPOL|SPI_CR1_CPHA); uint32_t cr1 = _currentSetting->spi_d->regs->CR1 & ~(SPI_CR1_CPOL|SPI_CR1_CPHA);
@ -593,7 +593,7 @@ void SPIClass::detachInterrupt() {
// Should be disableInterrupt() // Should be disableInterrupt()
} }
/* /**
* Pin accessors * Pin accessors
*/ */
@ -613,25 +613,14 @@ uint8_t SPIClass::nssPin() {
return dev_to_spi_pins(_currentSetting->spi_d)->nss; return dev_to_spi_pins(_currentSetting->spi_d)->nss;
} }
/* /**
* Deprecated functions * Deprecated functions
*/ */
uint8_t SPIClass::send(uint8_t data) { write(data); return 1; }
uint8_t SPIClass::send(uint8_t *buf, uint32_t len) { write(buf, len); return len; }
uint8_t SPIClass::recv() { return read(); }
uint8_t SPIClass::send(uint8_t data) { /**
this->write(data);
return 1;
}
uint8_t SPIClass::send(uint8_t *buf, uint32_t len) {
this->write(buf, len);
return len;
}
uint8_t SPIClass::recv() {
return this->read();
}
/*
* DMA call back functions, one per port. * DMA call back functions, one per port.
*/ */
#if BOARD_NR_SPI >= 1 #if BOARD_NR_SPI >= 1
@ -650,7 +639,7 @@ uint8_t SPIClass::recv() {
} }
#endif #endif
/* /**
* Auxiliary functions * Auxiliary functions
*/ */
static const spi_pins* dev_to_spi_pins(spi_dev *dev) { static const spi_pins* dev_to_spi_pins(spi_dev *dev) {

38
Marlin/src/HAL/HAL_STM32F1/SPI.h

@ -96,36 +96,36 @@ typedef enum {
class SPISettings { class SPISettings {
public: public:
SPISettings(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) { SPISettings(uint32_t inClock, BitOrder inBitOrder, uint8_t inDataMode) {
if (__builtin_constant_p(clock)) if (__builtin_constant_p(inClock))
init_AlwaysInline(clock, bitOrder, dataMode, DATA_SIZE_8BIT); init_AlwaysInline(inClock, inBitOrder, inDataMode, DATA_SIZE_8BIT);
else else
init_MightInline(clock, bitOrder, dataMode, DATA_SIZE_8BIT); init_MightInline(inClock, inBitOrder, inDataMode, DATA_SIZE_8BIT);
} }
SPISettings(uint32_t clock, BitOrder bitOrder, uint8_t dataMode, uint32_t dataSize) { SPISettings(uint32_t inClock, BitOrder inBitOrder, uint8_t inDataMode, uint32_t inDataSize) {
if (__builtin_constant_p(clock)) if (__builtin_constant_p(inClock))
init_AlwaysInline(clock, bitOrder, dataMode, dataSize); init_AlwaysInline(inClock, inBitOrder, inDataMode, inDataSize);
else else
init_MightInline(clock, bitOrder, dataMode, dataSize); init_MightInline(inClock, inBitOrder, inDataMode, inDataSize);
} }
SPISettings(uint32_t clock) { SPISettings(uint32_t inClock) {
if (__builtin_constant_p(clock)) if (__builtin_constant_p(inClock))
init_AlwaysInline(clock, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT); init_AlwaysInline(inClock, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT);
else else
init_MightInline(clock, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT); init_MightInline(inClock, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT);
} }
SPISettings() { SPISettings() {
init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT); init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT);
} }
private: private:
void init_MightInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode, uint32_t dataSize) { void init_MightInline(uint32_t inClock, BitOrder inBitOrder, uint8_t inDataMode, uint32_t inDataSize) {
init_AlwaysInline(clock, bitOrder, dataMode, dataSize); init_AlwaysInline(inClock, inBitOrder, inDataMode, inDataSize);
} }
void init_AlwaysInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode, uint32_t dataSize) __attribute__((__always_inline__)) { void init_AlwaysInline(uint32_t inClock, BitOrder inBitOrder, uint8_t inDataMode, uint32_t inDataSize) __attribute__((__always_inline__)) {
this->clock = clock; clock = inClock;
this->bitOrder = bitOrder; bitOrder = inBitOrder;
this->dataMode = dataMode; dataMode = inDataMode;
this->dataSize = dataSize; dataSize = inDataSize;
} }
uint32_t clock; uint32_t clock;
uint32_t dataSize; uint32_t dataSize;

89
Marlin/src/HAL/HAL_STM32F1/Servo.cpp

@ -56,52 +56,50 @@ uint8_t ServoCount = 0;
#define SERVO_OVERFLOW ((uint16_t)round((double)TAU_CYC / SERVO_PRESCALER)) #define SERVO_OVERFLOW ((uint16_t)round((double)TAU_CYC / SERVO_PRESCALER))
// Unit conversions // Unit conversions
#define US_TO_COMPARE(us) ((uint16_t)map((us), 0, TAU_USEC, 0, SERVO_OVERFLOW)) #define US_TO_COMPARE(us) uint16_t(map((us), 0, TAU_USEC, 0, SERVO_OVERFLOW))
#define COMPARE_TO_US(c) ((uint32_t)map((c), 0, SERVO_OVERFLOW, 0, TAU_USEC)) #define COMPARE_TO_US(c) uint32_t(map((c), 0, SERVO_OVERFLOW, 0, TAU_USEC))
#define ANGLE_TO_US(a) ((uint16_t)(map((a), this->minAngle, this->maxAngle, \ #define ANGLE_TO_US(a) uint16_t(map((a), minAngle, maxAngle, SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW))
SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW))) #define US_TO_ANGLE(us) int16_t(map((us), SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW, minAngle, maxAngle))
#define US_TO_ANGLE(us) ((int16_t)(map((us), SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW, \
this->minAngle, this->maxAngle))) void libServo::servoWrite(uint8_t inPin, uint16_t duty_cycle) {
void libServo::servoWrite(uint8_t pin, uint16_t duty_cycle) {
#ifdef SERVO0_TIMER_NUM #ifdef SERVO0_TIMER_NUM
if (this->servoIndex == 0) { if (servoIndex == 0) {
this->pwmSetDuty(duty_cycle); pwmSetDuty(duty_cycle);
return; return;
} }
#endif #endif
timer_dev *tdev = PIN_MAP[pin].timer_device; timer_dev *tdev = PIN_MAP[inPin].timer_device;
uint8_t tchan = PIN_MAP[pin].timer_channel; uint8_t tchan = PIN_MAP[inPin].timer_channel;
if (tdev) timer_set_compare(tdev, tchan, duty_cycle); if (tdev) timer_set_compare(tdev, tchan, duty_cycle);
} }
libServo::libServo() { libServo::libServo() {
this->servoIndex = ServoCount < MAX_SERVOS ? ServoCount++ : INVALID_SERVO; servoIndex = ServoCount < MAX_SERVOS ? ServoCount++ : INVALID_SERVO;
} }
bool libServo::attach(const int32_t pin, const int32_t minAngle, const int32_t maxAngle) { bool libServo::attach(const int32_t inPin, const int32_t inMinAngle, const int32_t inMaxAngle) {
if (this->servoIndex >= MAX_SERVOS) return false; if (servoIndex >= MAX_SERVOS) return false;
if (pin >= BOARD_NR_GPIO_PINS) return false; if (inPin >= BOARD_NR_GPIO_PINS) return false;
this->minAngle = minAngle; minAngle = inMinAngle;
this->maxAngle = maxAngle; maxAngle = inMaxAngle;
this->angle = -1; angle = -1;
#ifdef SERVO0_TIMER_NUM #ifdef SERVO0_TIMER_NUM
if (this->servoIndex == 0 && this->setupSoftPWM(pin)) { if (servoIndex == 0 && setupSoftPWM(inPin)) {
this->pin = pin; // set attached() pin = inPin; // set attached()
return true; return true;
} }
#endif #endif
if (!PWM_PIN(pin)) return false; if (!PWM_PIN(inPin)) return false;
timer_dev *tdev = PIN_MAP[pin].timer_device; timer_dev *tdev = PIN_MAP[inPin].timer_device;
//uint8_t tchan = PIN_MAP[pin].timer_channel; //uint8_t tchan = PIN_MAP[inPin].timer_channel;
SET_PWM(pin); SET_PWM(inPin);
servoWrite(pin, 0); servoWrite(inPin, 0);
timer_pause(tdev); timer_pause(tdev);
timer_set_prescaler(tdev, SERVO_PRESCALER - 1); // prescaler is 1-based timer_set_prescaler(tdev, SERVO_PRESCALER - 1); // prescaler is 1-based
@ -109,25 +107,24 @@ bool libServo::attach(const int32_t pin, const int32_t minAngle, const int32_t m
timer_generate_update(tdev); timer_generate_update(tdev);
timer_resume(tdev); timer_resume(tdev);
this->pin = pin; // set attached() pin = inPin; // set attached()
return true; return true;
} }
bool libServo::detach() { bool libServo::detach() {
if (!this->attached()) return false; if (!attached()) return false;
this->angle = -1; angle = -1;
servoWrite(this->pin, 0); servoWrite(pin, 0);
return true; return true;
} }
int32_t libServo::read() const { int32_t libServo::read() const {
if (this->attached()) { if (attached()) {
#ifdef SERVO0_TIMER_NUM #ifdef SERVO0_TIMER_NUM
if (this->servoIndex == 0) return this->angle; if (servoIndex == 0) return angle;
#endif #endif
timer_dev *tdev = PIN_MAP[this->pin].timer_device; timer_dev *tdev = PIN_MAP[pin].timer_device;
uint8_t tchan = PIN_MAP[this->pin].timer_channel; uint8_t tchan = PIN_MAP[pin].timer_channel;
return US_TO_ANGLE(COMPARE_TO_US(timer_get_compare(tdev, tchan))); return US_TO_ANGLE(COMPARE_TO_US(timer_get_compare(tdev, tchan)));
} }
return 0; return 0;
@ -137,12 +134,12 @@ void libServo::move(const int32_t value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY; constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attached()) { if (attached()) {
this->angle = constrain(value, this->minAngle, this->maxAngle); angle = constrain(value, minAngle, maxAngle);
servoWrite(this->pin, US_TO_COMPARE(ANGLE_TO_US(this->angle))); servoWrite(pin, US_TO_COMPARE(ANGLE_TO_US(angle)));
safe_delay(servo_delay[this->servoIndex]); safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach(); detach();
#endif #endif
} }
} }
@ -169,13 +166,13 @@ void libServo::move(const int32_t value) {
} }
} }
bool libServo::setupSoftPWM(const int32_t pin) { bool libServo::setupSoftPWM(const int32_t inPin) {
timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM); timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM);
if (!tdev) return false; if (!tdev) return false;
#ifdef SERVO0_PWM_OD #ifdef SERVO0_PWM_OD
OUT_WRITE_OD(pin, 1); OUT_WRITE_OD(inPin, 1);
#else #else
OUT_WRITE(pin, 0); OUT_WRITE(inPin, 0);
#endif #endif
timer_pause(tdev); timer_pause(tdev);
@ -206,9 +203,9 @@ void libServo::move(const int32_t value) {
timer_disable_irq(tdev, 1); timer_disable_irq(tdev, 1);
timer_disable_irq(tdev, 2); timer_disable_irq(tdev, 2);
#ifdef SERVO0_PWM_OD #ifdef SERVO0_PWM_OD
OUT_WRITE_OD(this->pin, 1); // off OUT_WRITE_OD(pin, 1); // off
#else #else
OUT_WRITE(this->pin, 0); OUT_WRITE(pin, 0);
#endif #endif
} }
} }
@ -221,7 +218,7 @@ void libServo::move(const int32_t value) {
#else #else
bool libServo::setupSoftPWM(const int32_t pin) { return false; } bool libServo::setupSoftPWM(const int32_t inPin) { return false; }
void libServo::pwmSetDuty(const uint16_t duty_cycle) {} void libServo::pwmSetDuty(const uint16_t duty_cycle) {}
void libServo::pauseSoftPWM() {} void libServo::pauseSoftPWM() {}

2
Marlin/src/HAL/HAL_STM32F1/Servo.h

@ -41,7 +41,7 @@ class libServo {
public: public:
libServo(); libServo();
bool attach(const int32_t pin, const int32_t minAngle=SERVO_DEFAULT_MIN_ANGLE, const int32_t maxAngle=SERVO_DEFAULT_MAX_ANGLE); bool attach(const int32_t pin, const int32_t minAngle=SERVO_DEFAULT_MIN_ANGLE, const int32_t maxAngle=SERVO_DEFAULT_MAX_ANGLE);
bool attached() const { return this->pin != NOT_ATTACHED; } bool attached() const { return pin != NOT_ATTACHED; }
bool detach(); bool detach();
void move(const int32_t value); void move(const int32_t value);
int32_t read() const; int32_t read() const;

14
Marlin/src/HAL/HAL_STM32_F4_F7/Servo.cpp

@ -30,22 +30,22 @@
#include "Servo.h" #include "Servo.h"
int8_t libServo::attach(const int pin) { int8_t libServo::attach(const int pin) {
if (this->servoIndex >= MAX_SERVOS) return -1; if (servoIndex >= MAX_SERVOS) return -1;
return Servo::attach(pin); return super::attach(pin);
} }
int8_t libServo::attach(const int pin, const int min, const int max) { int8_t libServo::attach(const int pin, const int min, const int max) {
return Servo::attach(pin, min, max); return super::attach(pin, min, max);
} }
void libServo::move(const int value) { void libServo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY; constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) { if (attach(0) >= 0) {
this->write(value); write(value);
safe_delay(servo_delay[this->servoIndex]); safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach(); detach();
#endif #endif
} }
} }

22
Marlin/src/HAL/HAL_TEENSY31_32/Servo.cpp

@ -29,25 +29,25 @@
uint8_t servoPin[MAX_SERVOS] = { 0 }; uint8_t servoPin[MAX_SERVOS] = { 0 };
int8_t libServo::attach(const int pin) { int8_t libServo::attach(const int inPin) {
if (this->servoIndex >= MAX_SERVOS) return -1; if (servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servoPin[this->servoIndex] = pin; if (inPin > 0) servoPin[servoIndex] = inPin;
return Servo::attach(servoPin[this->servoIndex]); return super::attach(servoPin[servoIndex]);
} }
int8_t libServo::attach(const int pin, const int min, const int max) { int8_t libServo::attach(const int inPin, const int inMin, const int inMax) {
if (pin > 0) servoPin[this->servoIndex] = pin; if (inPin > 0) servoPin[servoIndex] = inPin;
return Servo::attach(servoPin[this->servoIndex], min, max); return super::attach(servoPin[servoIndex], inMin, inMax);
} }
void libServo::move(const int value) { void libServo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY; constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) { if (attach(0) >= 0) {
this->write(value); write(value);
safe_delay(servo_delay[this->servoIndex]); safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach(); detach();
#endif #endif
} }
} }

43
Marlin/src/HAL/HAL_TEENSY35_36/Servo.cpp

@ -1,3 +1,24 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
@ -8,25 +29,25 @@
uint8_t servoPin[MAX_SERVOS] = { 0 }; uint8_t servoPin[MAX_SERVOS] = { 0 };
int8_t libServo::attach(const int pin) { int8_t libServo::attach(const int inPin) {
if (this->servoIndex >= MAX_SERVOS) return -1; if (servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servoPin[this->servoIndex] = pin; if (inPin > 0) servoPin[servoIndex] = inPin;
return Servo::attach(servoPin[this->servoIndex]); return super::attach(servoPin[servoIndex]);
} }
int8_t libServo::attach(const int pin, const int min, const int max) { int8_t libServo::attach(const int inPin, const int inMin, const int inMax) {
if (pin > 0) servoPin[this->servoIndex] = pin; if (inPin > 0) servoPin[servoIndex] = inPin;
return Servo::attach(servoPin[this->servoIndex], min, max); return super::attach(servoPin[servoIndex], inMin, inMax);
} }
void libServo::move(const int value) { void libServo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY; constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) { if (attach(0) >= 0) {
this->write(value); write(value);
safe_delay(servo_delay[this->servoIndex]); safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach(); detach();
#endif #endif
} }
} }

56
Marlin/src/HAL/shared/servo.cpp

@ -61,8 +61,8 @@
ServoInfo_t servo_info[MAX_SERVOS]; // static array of servo info structures ServoInfo_t servo_info[MAX_SERVOS]; // static array of servo info structures
uint8_t ServoCount = 0; // the total number of attached servos uint8_t ServoCount = 0; // the total number of attached servos
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo #define SERVO_MIN(v) (MIN_PULSE_WIDTH - (v) * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo #define SERVO_MAX(v) (MAX_PULSE_WIDTH - (v) * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/ /************ static functions common to all instances ***********************/
@ -79,54 +79,54 @@ static boolean isTimerActive(timer16_Sequence_t timer) {
Servo::Servo() { Servo::Servo() {
if (ServoCount < MAX_SERVOS) { if (ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance servoIndex = ServoCount++; // assign a servo index to this instance
servo_info[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009 servo_info[servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
} }
else else
this->servoIndex = INVALID_SERVO; // too many servos servoIndex = INVALID_SERVO; // too many servos
} }
int8_t Servo::attach(const int pin) { int8_t Servo::attach(const int inPin) {
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); return attach(inPin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
} }
int8_t Servo::attach(const int pin, const int min, const int max) { int8_t Servo::attach(const int inPin, const int inMin, const int inMax) {
if (this->servoIndex >= MAX_SERVOS) return -1; if (servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servo_info[this->servoIndex].Pin.nbr = pin; if (inPin > 0) servo_info[servoIndex].Pin.nbr = inPin;
pinMode(servo_info[this->servoIndex].Pin.nbr, OUTPUT); // set servo pin to output pinMode(servo_info[servoIndex].Pin.nbr, OUTPUT); // set servo pin to output
// todo min/max check: ABS(min - MIN_PULSE_WIDTH) /4 < 128 // TODO: min/max check: ABS(min - MIN_PULSE_WIDTH) / 4 < 128
this->min = (MIN_PULSE_WIDTH - min) / 4; //resolution of min/max is 4 uS min = (MIN_PULSE_WIDTH - inMin) / 4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max) / 4; max = (MAX_PULSE_WIDTH - inMax) / 4;
// initialize the timer if it has not already been initialized // initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!isTimerActive(timer)) initISR(timer); if (!isTimerActive(timer)) initISR(timer);
servo_info[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive servo_info[servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
return this->servoIndex; return servoIndex;
} }
void Servo::detach() { void Servo::detach() {
servo_info[this->servoIndex].Pin.isActive = false; servo_info[servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!isTimerActive(timer)) finISR(timer); if (!isTimerActive(timer)) finISR(timer);
} }
void Servo::write(int value) { void Servo::write(int value) {
if (value < MIN_PULSE_WIDTH) // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds) if (value < MIN_PULSE_WIDTH) // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX()); value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(min), SERVO_MAX(max));
this->writeMicroseconds(value); writeMicroseconds(value);
} }
void Servo::writeMicroseconds(int value) { void Servo::writeMicroseconds(int value) {
// calculate and store the values for the given channel // calculate and store the values for the given channel
byte channel = this->servoIndex; byte channel = servoIndex;
if (channel < MAX_SERVOS) { // ensure channel is valid if (channel < MAX_SERVOS) { // ensure channel is valid
// ensure pulse width is valid // ensure pulse width is valid
value = constrain(value, SERVO_MIN(), SERVO_MAX()) - (TRIM_DURATION); value = constrain(value, SERVO_MIN(min), SERVO_MAX(max)) - (TRIM_DURATION);
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009 value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
@ -136,22 +136,22 @@ void Servo::writeMicroseconds(int value) {
} }
// return the value as degrees // return the value as degrees
int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); } int Servo::read() { return map(readMicroseconds() + 1, SERVO_MIN(min), SERVO_MAX(max), 0, 180); }
int Servo::readMicroseconds() { int Servo::readMicroseconds() {
return (this->servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[this->servoIndex].ticks) + (TRIM_DURATION); return (servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[servoIndex].ticks) + (TRIM_DURATION);
} }
bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; } bool Servo::attached() { return servo_info[servoIndex].Pin.isActive; }
void Servo::move(const int value) { void Servo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY; constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) { if (attach(0) >= 0) {
this->write(value); write(value);
safe_delay(servo_delay[this->servoIndex]); safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach(); detach();
#endif #endif
} }
} }

48
Marlin/src/feature/twibus.cpp

@ -34,12 +34,12 @@ TWIBus::TWIBus() {
#else #else
Wire.begin(I2C_SLAVE_ADDRESS); // Join the bus as a slave Wire.begin(I2C_SLAVE_ADDRESS); // Join the bus as a slave
#endif #endif
this->reset(); reset();
} }
void TWIBus::reset() { void TWIBus::reset() {
this->buffer_s = 0; buffer_s = 0;
this->buffer[0] = 0x00; buffer[0] = 0x00;
} }
void TWIBus::address(const uint8_t adr) { void TWIBus::address(const uint8_t adr) {
@ -47,7 +47,7 @@ void TWIBus::address(const uint8_t adr) {
SERIAL_ECHO_MSG("Bad I2C address (8-127)"); SERIAL_ECHO_MSG("Bad I2C address (8-127)");
} }
this->addr = adr; addr = adr;
#if ENABLED(DEBUG_TWIBUS) #if ENABLED(DEBUG_TWIBUS)
debug(PSTR("address"), adr); debug(PSTR("address"), adr);
@ -55,8 +55,8 @@ void TWIBus::address(const uint8_t adr) {
} }
void TWIBus::addbyte(const char c) { void TWIBus::addbyte(const char c) {
if (this->buffer_s >= COUNT(this->buffer)) return; if (buffer_s >= COUNT(buffer)) return;
this->buffer[this->buffer_s++] = c; buffer[buffer_s++] = c;
#if ENABLED(DEBUG_TWIBUS) #if ENABLED(DEBUG_TWIBUS)
debug(PSTR("addbyte"), c); debug(PSTR("addbyte"), c);
#endif #endif
@ -66,26 +66,26 @@ void TWIBus::addbytes(char src[], uint8_t bytes) {
#if ENABLED(DEBUG_TWIBUS) #if ENABLED(DEBUG_TWIBUS)
debug(PSTR("addbytes"), bytes); debug(PSTR("addbytes"), bytes);
#endif #endif
while (bytes--) this->addbyte(*src++); while (bytes--) addbyte(*src++);
} }
void TWIBus::addstring(char str[]) { void TWIBus::addstring(char str[]) {
#if ENABLED(DEBUG_TWIBUS) #if ENABLED(DEBUG_TWIBUS)
debug(PSTR("addstring"), str); debug(PSTR("addstring"), str);
#endif #endif
while (char c = *str++) this->addbyte(c); while (char c = *str++) addbyte(c);
} }
void TWIBus::send() { void TWIBus::send() {
#if ENABLED(DEBUG_TWIBUS) #if ENABLED(DEBUG_TWIBUS)
debug(PSTR("send"), this->addr); debug(PSTR("send"), addr);
#endif #endif
Wire.beginTransmission(I2C_ADDRESS(this->addr)); Wire.beginTransmission(I2C_ADDRESS(addr));
Wire.write(this->buffer, this->buffer_s); Wire.write(buffer, buffer_s);
Wire.endTransmission(); Wire.endTransmission();
this->reset(); reset();
} }
// static // static
@ -103,22 +103,22 @@ void TWIBus::echodata(uint8_t bytes, const char prefix[], uint8_t adr) {
} }
void TWIBus::echobuffer(const char prefix[], uint8_t adr) { void TWIBus::echobuffer(const char prefix[], uint8_t adr) {
echoprefix(this->buffer_s, prefix, adr); echoprefix(buffer_s, prefix, adr);
for (uint8_t i = 0; i < this->buffer_s; i++) SERIAL_CHAR(this->buffer[i]); for (uint8_t i = 0; i < buffer_s; i++) SERIAL_CHAR(buffer[i]);
SERIAL_EOL(); SERIAL_EOL();
} }
bool TWIBus::request(const uint8_t bytes) { bool TWIBus::request(const uint8_t bytes) {
if (!this->addr) return false; if (!addr) return false;
#if ENABLED(DEBUG_TWIBUS) #if ENABLED(DEBUG_TWIBUS)
debug(PSTR("request"), bytes); debug(PSTR("request"), bytes);
#endif #endif
// requestFrom() is a blocking function // requestFrom() is a blocking function
if (Wire.requestFrom(this->addr, bytes) == 0) { if (Wire.requestFrom(addr, bytes) == 0) {
#if ENABLED(DEBUG_TWIBUS) #if ENABLED(DEBUG_TWIBUS)
debug("request fail", this->addr); debug("request fail", addr);
#endif #endif
return false; return false;
} }
@ -131,12 +131,12 @@ void TWIBus::relay(const uint8_t bytes) {
debug(PSTR("relay"), bytes); debug(PSTR("relay"), bytes);
#endif #endif
if (this->request(bytes)) if (request(bytes))
echodata(bytes, PSTR("i2c-reply"), this->addr); echodata(bytes, PSTR("i2c-reply"), addr);
} }
uint8_t TWIBus::capture(char *dst, const uint8_t bytes) { uint8_t TWIBus::capture(char *dst, const uint8_t bytes) {
this->reset(); reset();
uint8_t count = 0; uint8_t count = 0;
while (count < bytes && Wire.available()) while (count < bytes && Wire.available())
dst[count++] = Wire.read(); dst[count++] = Wire.read();
@ -168,13 +168,13 @@ void TWIBus::flush() {
#endif #endif
if (str) { if (str) {
this->reset(); reset();
this->addstring(str); addstring(str);
} }
Wire.write(this->buffer, this->buffer_s); Wire.write(buffer, buffer_s);
this->reset(); reset();
} }
#endif #endif

2
Marlin/src/feature/twibus.h

@ -218,7 +218,7 @@ class TWIBus {
* If a string is passed, write it into the buffer first. * If a string is passed, write it into the buffer first.
*/ */
void reply(char str[]=nullptr); void reply(char str[]=nullptr);
inline void reply(const char str[]) { this->reply((char*)str); } inline void reply(const char str[]) { reply((char*)str); }
#endif #endif

46
Marlin/src/libs/circularqueue.h

@ -52,8 +52,8 @@ class CircularQueue {
* items that can be stored on the queue. * items that can be stored on the queue.
*/ */
CircularQueue<T, N>() { CircularQueue<T, N>() {
this->buffer.size = N; buffer.size = N;
this->buffer.count = this->buffer.head = this->buffer.tail = 0; buffer.count = buffer.head = buffer.tail = 0;
} }
/** /**
@ -63,15 +63,15 @@ class CircularQueue {
* @return type T item * @return type T item
*/ */
T dequeue() { T dequeue() {
if (this->isEmpty()) return T(); if (isEmpty()) return T();
uint8_t index = this->buffer.head; uint8_t index = buffer.head;
--this->buffer.count; --buffer.count;
if (++this->buffer.head == this->buffer.size) if (++buffer.head == buffer.size)
this->buffer.head = 0; buffer.head = 0;
return this->buffer.queue[index]; return buffer.queue[index];
} }
/** /**
@ -82,13 +82,13 @@ class CircularQueue {
* @return true if the operation was successful * @return true if the operation was successful
*/ */
bool enqueue(T const &item) { bool enqueue(T const &item) {
if (this->isFull()) return false; if (isFull()) return false;
this->buffer.queue[this->buffer.tail] = item; buffer.queue[buffer.tail] = item;
++this->buffer.count; ++buffer.count;
if (++this->buffer.tail == this->buffer.size) if (++buffer.tail == buffer.size)
this->buffer.tail = 0; buffer.tail = 0;
return true; return true;
} }
@ -98,27 +98,21 @@ class CircularQueue {
* @details Returns true if there are no items on the queue, false otherwise. * @details Returns true if there are no items on the queue, false otherwise.
* @return true if queue is empty * @return true if queue is empty
*/ */
bool isEmpty() { bool isEmpty() { return buffer.count == 0; }
return this->buffer.count == 0;
}
/** /**
* @brief Checks if the queue is full * @brief Checks if the queue is full
* @details Returns true if the queue is full, false otherwise. * @details Returns true if the queue is full, false otherwise.
* @return true if queue is full * @return true if queue is full
*/ */
bool isFull() { bool isFull() { return buffer.count == buffer.size; }
return this->buffer.count == this->buffer.size;
}
/** /**
* @brief Gets the queue size * @brief Gets the queue size
* @details Returns the maximum number of items a queue can have. * @details Returns the maximum number of items a queue can have.
* @return the queue size * @return the queue size
*/ */
uint8_t size() { uint8_t size() { return buffer.size; }
return this->buffer.size;
}
/** /**
* @brief Gets the next item from the queue without removing it * @brief Gets the next item from the queue without removing it
@ -126,16 +120,12 @@ class CircularQueue {
* or updating the pointers. * or updating the pointers.
* @return first item in the queue * @return first item in the queue
*/ */
T peek() { T peek() { return buffer.queue[buffer.head]; }
return this->buffer.queue[this->buffer.head];
}
/** /**
* @brief Gets the number of items on the queue * @brief Gets the number of items on the queue
* @details Returns the current number of items stored on the queue. * @details Returns the current number of items stored on the queue.
* @return number of items in the queue * @return number of items in the queue
*/ */
uint8_t count() { uint8_t count() { return buffer.count; }
return this->buffer.count;
}
}; };

Loading…
Cancel
Save