Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

817 lines
26 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* module/probe.cpp
*/
#include "../inc/MarlinConfig.h"
#if HAS_BED_PROBE
#include "probe.h"
#include "../libs/buzzer.h"
#include "motion.h"
#include "temperature.h"
#include "endstops.h"
#include "../gcode/gcode.h"
#include "../lcd/marlinui.h"
#include "../MarlinCore.h" // for stop(), disable_e_steppers(), wait_for_user_response()
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(DELTA)
#include "delta.h"
#endif
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
#include "planner.h"
#endif
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
#include "../feature/backlash.h"
#endif
#if ENABLED(BLTOUCH)
#include "../feature/bltouch.h"
#endif
#if ENABLED(HOST_PROMPT_SUPPORT)
#include "../feature/host_actions.h" // for PROMPT_USER_CONTINUE
#endif
#if HAS_Z_SERVO_PROBE
#include "servo.h"
#endif
#if ENABLED(SENSORLESS_PROBING)
#include "stepper.h"
#include "../feature/tmc_util.h"
#endif
#if HAS_QUIET_PROBING
#include "stepper/indirection.h"
#endif
#if ENABLED(EXTENSIBLE_UI)
#include "../lcd/extui/ui_api.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../core/debug_out.h"
Probe probe;
xyz_pos_t Probe::offset; // Initialized by settings.load()
#if HAS_PROBE_XY_OFFSET
const xy_pos_t &Probe::offset_xy = Probe::offset;
#endif
#if ENABLED(Z_PROBE_SLED)
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
/**
* Method to dock/undock a sled designed by Charles Bell.
*
* stow[in] If false, move to MAX_X and engage the solenoid
* If true, move to MAX_X and release the solenoid
*/
static void dock_sled(const bool stow) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("dock_sled(", stow, ")");
// Dock sled a bit closer to ensure proper capturing
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
WRITE(SOL1_PIN, !stow); // switch solenoid
#endif
}
#elif ENABLED(TOUCH_MI_PROBE)
// Move to the magnet to unlock the probe
inline void run_deploy_moves_script() {
#ifndef TOUCH_MI_DEPLOY_XPOS
#define TOUCH_MI_DEPLOY_XPOS X_MIN_POS
#elif TOUCH_MI_DEPLOY_XPOS > X_MAX_BED
TemporaryGlobalEndstopsState unlock_x(false);
#endif
#if TOUCH_MI_DEPLOY_YPOS > Y_MAX_BED
TemporaryGlobalEndstopsState unlock_y(false);
#endif
#if ENABLED(TOUCH_MI_MANUAL_DEPLOY)
const screenFunc_t prev_screen = ui.currentScreen;
LCD_MESSAGEPGM(MSG_MANUAL_DEPLOY_TOUCHMI);
ui.return_to_status();
TERN_(HOST_PROMPT_SUPPORT, host_prompt_do(PROMPT_USER_CONTINUE, PSTR("Deploy TouchMI"), CONTINUE_STR));
wait_for_user_response();
ui.reset_status();
ui.goto_screen(prev_screen);
#elif defined(TOUCH_MI_DEPLOY_XPOS) && defined(TOUCH_MI_DEPLOY_YPOS)
do_blocking_move_to_xy(TOUCH_MI_DEPLOY_XPOS, TOUCH_MI_DEPLOY_YPOS);
#elif defined(TOUCH_MI_DEPLOY_XPOS)
do_blocking_move_to_x(TOUCH_MI_DEPLOY_XPOS);
#elif defined(TOUCH_MI_DEPLOY_YPOS)
do_blocking_move_to_y(TOUCH_MI_DEPLOY_YPOS);
#endif
}
// Move down to the bed to stow the probe
inline void run_stow_moves_script() {
const xyz_pos_t oldpos = current_position;
endstops.enable_z_probe(false);
do_blocking_move_to_z(TOUCH_MI_RETRACT_Z, homing_feedrate(Z_AXIS));
do_blocking_move_to(oldpos, homing_feedrate(Z_AXIS));
}
#elif ENABLED(Z_PROBE_ALLEN_KEY)
inline void run_deploy_moves_script() {
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_1
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
#endif
constexpr xyz_pos_t deploy_1 = Z_PROBE_ALLEN_KEY_DEPLOY_1;
do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_2
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
#endif
constexpr xyz_pos_t deploy_2 = Z_PROBE_ALLEN_KEY_DEPLOY_2;
do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
#endif
constexpr xyz_pos_t deploy_3 = Z_PROBE_ALLEN_KEY_DEPLOY_3;
do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_4
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
#endif
constexpr xyz_pos_t deploy_4 = Z_PROBE_ALLEN_KEY_DEPLOY_4;
do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_5
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
#endif
constexpr xyz_pos_t deploy_5 = Z_PROBE_ALLEN_KEY_DEPLOY_5;
do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
#endif
}
inline void run_stow_moves_script() {
#ifdef Z_PROBE_ALLEN_KEY_STOW_1
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
#endif
constexpr xyz_pos_t stow_1 = Z_PROBE_ALLEN_KEY_STOW_1;
do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_STOW_2
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
#endif
constexpr xyz_pos_t stow_2 = Z_PROBE_ALLEN_KEY_STOW_2;
do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_STOW_3
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
#endif
constexpr xyz_pos_t stow_3 = Z_PROBE_ALLEN_KEY_STOW_3;
do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_STOW_4
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
#endif
constexpr xyz_pos_t stow_4 = Z_PROBE_ALLEN_KEY_STOW_4;
do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_STOW_5
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
#endif
constexpr xyz_pos_t stow_5 = Z_PROBE_ALLEN_KEY_STOW_5;
do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
#endif
}
#endif // Z_PROBE_ALLEN_KEY
#if HAS_QUIET_PROBING
#ifndef DELAY_BEFORE_PROBING
#define DELAY_BEFORE_PROBING 25
#endif
void Probe::set_probing_paused(const bool dopause) {
TERN_(PROBING_HEATERS_OFF, thermalManager.pause(dopause));
TERN_(PROBING_FANS_OFF, thermalManager.set_fans_paused(dopause));
#if ENABLED(PROBING_STEPPERS_OFF)
IF_DISABLED(DELTA, static uint8_t old_trusted);
if (dopause) {
#if DISABLED(DELTA)
old_trusted = axis_trusted;
DISABLE_AXIS_X();
DISABLE_AXIS_Y();
#endif
disable_e_steppers();
}
else {
#if DISABLED(DELTA)
if (TEST(old_trusted, X_AXIS)) ENABLE_AXIS_X();
if (TEST(old_trusted, Y_AXIS)) ENABLE_AXIS_Y();
#endif
axis_trusted = old_trusted;
}
#endif
if (dopause) safe_delay(_MAX(DELAY_BEFORE_PROBING, 25));
}
#endif // HAS_QUIET_PROBING
/**
* Raise Z to a minimum height to make room for a probe to move
*/
void Probe::do_z_raise(const float z_raise) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probe::do_z_raise(", z_raise, ")");
float z_dest = z_raise;
if (offset.z < 0) z_dest -= offset.z;
do_z_clearance(z_dest);
}
FORCE_INLINE void probe_specific_action(const bool deploy) {
#if ENABLED(PAUSE_BEFORE_DEPLOY_STOW)
do {
#if ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED)
if (deploy == PROBE_TRIGGERED()) break;
#endif
BUZZ(100, 659);
BUZZ(100, 698);
PGM_P const ds_str = deploy ? GET_TEXT(MSG_MANUAL_DEPLOY) : GET_TEXT(MSG_MANUAL_STOW);
ui.return_to_status(); // To display the new status message
ui.set_status_P(ds_str, 99);
SERIAL_ECHOLNPGM_P(ds_str);
TERN_(HOST_PROMPT_SUPPORT, host_prompt_do(PROMPT_USER_CONTINUE, PSTR("Stow Probe"), CONTINUE_STR));
TERN_(EXTENSIBLE_UI, ExtUI::onUserConfirmRequired_P(PSTR("Stow Probe")));
wait_for_user_response();
ui.reset_status();
} while (ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED));
#endif // PAUSE_BEFORE_DEPLOY_STOW
#if ENABLED(SOLENOID_PROBE)
#if HAS_SOLENOID_1
WRITE(SOL1_PIN, deploy);
#endif
#elif ENABLED(Z_PROBE_SLED)
dock_sled(!deploy);
#elif ENABLED(BLTOUCH)
deploy ? bltouch.deploy() : bltouch.stow();
#elif HAS_Z_SERVO_PROBE
MOVE_SERVO(Z_PROBE_SERVO_NR, servo_angles[Z_PROBE_SERVO_NR][deploy ? 0 : 1]);
#elif EITHER(TOUCH_MI_PROBE, Z_PROBE_ALLEN_KEY)
deploy ? run_deploy_moves_script() : run_stow_moves_script();
#elif ENABLED(RACK_AND_PINION_PROBE)
do_blocking_move_to_x(deploy ? Z_PROBE_DEPLOY_X : Z_PROBE_RETRACT_X);
#elif DISABLED(PAUSE_BEFORE_DEPLOY_STOW)
UNUSED(deploy);
#endif
}
#if EITHER(PREHEAT_BEFORE_PROBING, PREHEAT_BEFORE_LEVELING)
#if ENABLED(PREHEAT_BEFORE_PROBING)
#ifndef PROBING_NOZZLE_TEMP
#define PROBING_NOZZLE_TEMP 0
#endif
#ifndef PROBING_BED_TEMP
#define PROBING_BED_TEMP 0
#endif
#endif
/**
* Do preheating as required before leveling or probing.
* - If a preheat input is higher than the current target, raise the target temperature.
* - If a preheat input is higher than the current temperature, wait for stabilization.
*/
void Probe::preheat_for_probing(const int16_t hotend_temp, const int16_t bed_temp) {
#if HAS_HOTEND && (PROBING_NOZZLE_TEMP || LEVELING_NOZZLE_TEMP)
#define WAIT_FOR_NOZZLE_HEAT
#endif
#if HAS_HEATED_BED && (PROBING_BED_TEMP || LEVELING_BED_TEMP)
#define WAIT_FOR_BED_HEAT
#endif
DEBUG_ECHOPGM("Preheating ");
#if ENABLED(WAIT_FOR_NOZZLE_HEAT)
const int16_t hotendPreheat = hotend_temp > thermalManager.degTargetHotend(0) ? hotend_temp : 0;
if (hotendPreheat) {
DEBUG_ECHOPAIR("hotend (", hotendPreheat, ")");
thermalManager.setTargetHotend(hotendPreheat, 0);
}
#elif ENABLED(WAIT_FOR_BED_HEAT)
constexpr int16_t hotendPreheat = 0;
#endif
#if ENABLED(WAIT_FOR_BED_HEAT)
const int16_t bedPreheat = bed_temp > thermalManager.degTargetBed() ? bed_temp : 0;
if (bedPreheat) {
if (hotendPreheat) DEBUG_ECHOPGM(" and ");
DEBUG_ECHOPAIR("bed (", bedPreheat, ")");
thermalManager.setTargetBed(bedPreheat);
}
#endif
DEBUG_EOL();
TERN_(WAIT_FOR_NOZZLE_HEAT, if (hotend_temp > thermalManager.degHotend(0) + (TEMP_WINDOW)) thermalManager.wait_for_hotend(0));
TERN_(WAIT_FOR_BED_HEAT, if (bed_temp > thermalManager.degBed() + (TEMP_BED_WINDOW)) thermalManager.wait_for_bed_heating());
}
#endif
/**
* Attempt to deploy or stow the probe
*
* Return TRUE if the probe could not be deployed/stowed
*/
bool Probe::set_deployed(const bool deploy) {
if (DEBUGGING(LEVELING)) {
DEBUG_POS("Probe::set_deployed", current_position);
DEBUG_ECHOLNPAIR("deploy: ", deploy);
}
if (endstops.z_probe_enabled == deploy) return false;
// Make room for probe to deploy (or stow)
// Fix-mounted probe should only raise for deploy
// unless PAUSE_BEFORE_DEPLOY_STOW is enabled
#if EITHER(FIX_MOUNTED_PROBE, NOZZLE_AS_PROBE) && DISABLED(PAUSE_BEFORE_DEPLOY_STOW)
const bool z_raise_wanted = deploy;
#else
constexpr bool z_raise_wanted = true;
#endif
if (z_raise_wanted)
do_z_raise(_MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_CLEARANCE_DEPLOY_PROBE));
#if EITHER(Z_PROBE_SLED, Z_PROBE_ALLEN_KEY)
if (homing_needed_error(TERN_(Z_PROBE_SLED, _BV(X_AXIS)))) {
SERIAL_ERROR_MSG(STR_STOP_UNHOMED);
stop();
return true;
}
#endif
const xy_pos_t old_xy = current_position;
#if ENABLED(PROBE_TRIGGERED_WHEN_STOWED_TEST)
// Only deploy/stow if needed
if (PROBE_TRIGGERED() == deploy) {
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
// otherwise an Allen-Key probe can't be stowed.
probe_specific_action(deploy);
}
if (PROBE_TRIGGERED() == deploy) { // Unchanged after deploy/stow action?
if (IsRunning()) {
SERIAL_ERROR_MSG("Z-Probe failed");
LCD_ALERTMESSAGEPGM_P(PSTR("Err: ZPROBE"));
}
stop();
return true;
}
#else
probe_specific_action(deploy);
#endif
// If preheating is required before any probing...
TERN_(PREHEAT_BEFORE_PROBING, if (deploy) preheat_for_probing(PROBING_NOZZLE_TEMP, PROBING_BED_TEMP));
do_blocking_move_to(old_xy);
endstops.enable_z_probe(deploy);
return false;
}
/**
* @brief Used by run_z_probe to do a single Z probe move.
*
* @param z Z destination
* @param fr_mm_s Feedrate in mm/s
* @return true to indicate an error
*/
/**
* @brief Move down until the probe triggers or the low limit is reached
*
* @details Used by run_z_probe to get each bed Z height measurement.
* Sets current_position.z to the height where the probe triggered
* (according to the Z stepper count). The float Z is propagated
* back to the planner.position to preempt any rounding error.
*
* @return TRUE if the probe failed to trigger.
*/
bool Probe::probe_down_to_z(const float z, const feedRate_t fr_mm_s) {
DEBUG_SECTION(log_probe, "Probe::probe_down_to_z", DEBUGGING(LEVELING));
#if BOTH(HAS_HEATED_BED, WAIT_FOR_BED_HEATER)
thermalManager.wait_for_bed_heating();
#endif
#if BOTH(HAS_TEMP_HOTEND, WAIT_FOR_HOTEND)
thermalManager.wait_for_hotend_heating(active_extruder);
#endif
if (TERN0(BLTOUCH_SLOW_MODE, bltouch.deploy())) return true; // Deploy in LOW SPEED MODE on every probe action
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_PROBING)
sensorless_t stealth_states { false };
#if ENABLED(DELTA)
stealth_states.x = tmc_enable_stallguard(stepperX);
stealth_states.y = tmc_enable_stallguard(stepperY);
#endif
stealth_states.z = tmc_enable_stallguard(stepperZ);
endstops.enable(true);
#endif
TERN_(HAS_QUIET_PROBING, set_probing_paused(true));
// Move down until the probe is triggered
do_blocking_move_to_z(z, fr_mm_s);
// Check to see if the probe was triggered
const bool probe_triggered =
#if BOTH(DELTA, SENSORLESS_PROBING)
endstops.trigger_state() & (_BV(X_MIN) | _BV(Y_MIN) | _BV(Z_MIN))
#else
TEST(endstops.trigger_state(), TERN(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN, Z_MIN, Z_MIN_PROBE))
#endif
;
TERN_(HAS_QUIET_PROBING, set_probing_paused(false));
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_PROBING)
endstops.not_homing();
#if ENABLED(DELTA)
tmc_disable_stallguard(stepperX, stealth_states.x);
tmc_disable_stallguard(stepperY, stealth_states.y);
#endif
tmc_disable_stallguard(stepperZ, stealth_states.z);
#endif
if (probe_triggered && TERN0(BLTOUCH_SLOW_MODE, bltouch.stow())) // Stow in LOW SPEED MODE on every trigger
return true;
// Clear endstop flags
endstops.hit_on_purpose();
// Get Z where the steppers were interrupted
set_current_from_steppers_for_axis(Z_AXIS);
// Tell the planner where we actually are
sync_plan_position();
return !probe_triggered;
}
#if ENABLED(PROBE_TARE)
/**
* @brief Init the tare pin
*
* @details Init tare pin to ON state for a strain gauge, otherwise OFF
*/
void Probe::tare_init() {
OUT_WRITE(PROBE_TARE_PIN, !PROBE_TARE_STATE);
}
/**
* @brief Tare the Z probe
*
* @details Signal to the probe to tare itself
*
* @return TRUE if the tare cold not be completed
*/
bool Probe::tare() {
#if BOTH(PROBE_ACTIVATION_SWITCH, PROBE_TARE_ONLY_WHILE_INACTIVE)
if (endstops.probe_switch_activated()) {
SERIAL_ECHOLNPGM("Cannot tare an active probe");
return true;
}
#endif
SERIAL_ECHOLNPGM("Taring probe");
WRITE(PROBE_TARE_PIN, PROBE_TARE_STATE);
delay(PROBE_TARE_TIME);
WRITE(PROBE_TARE_PIN, !PROBE_TARE_STATE);
delay(PROBE_TARE_DELAY);
endstops.hit_on_purpose();
return false;
}
#endif
/**
* @brief Probe at the current XY (possibly more than once) to find the bed Z.
*
* @details Used by probe_at_point to get the bed Z height at the current XY.
* Leaves current_position.z at the height where the probe triggered.
*
* @return The Z position of the bed at the current XY or NAN on error.
*/
float Probe::run_z_probe(const bool sanity_check/*=true*/) {
DEBUG_SECTION(log_probe, "Probe::run_z_probe", DEBUGGING(LEVELING));
auto try_to_probe = [&](PGM_P const plbl, const float &z_probe_low_point, const feedRate_t fr_mm_s, const bool scheck, const float clearance) -> bool {
// Tare the probe, if supported
if (TERN0(PROBE_TARE, tare())) return true;
// Do a first probe at the fast speed
const bool probe_fail = probe_down_to_z(z_probe_low_point, fr_mm_s), // No probe trigger?
early_fail = (scheck && current_position.z > -offset.z + clearance); // Probe triggered too high?
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING) && (probe_fail || early_fail)) {
DEBUG_ECHOPGM_P(plbl);
DEBUG_ECHOPGM(" Probe fail! -");
if (probe_fail) DEBUG_ECHOPGM(" No trigger.");
if (early_fail) DEBUG_ECHOPGM(" Triggered early.");
DEBUG_EOL();
}
#else
UNUSED(plbl);
#endif
return probe_fail || early_fail;
};
// Stop the probe before it goes too low to prevent damage.
// If Z isn't known then probe to -10mm.
const float z_probe_low_point = axis_is_trusted(Z_AXIS) ? -offset.z + Z_PROBE_LOW_POINT : -10.0;
// Double-probing does a fast probe followed by a slow probe
#if TOTAL_PROBING == 2
// Attempt to tare the probe
if (TERN0(PROBE_TARE, tare())) return NAN;
// Do a first probe at the fast speed
if (try_to_probe(PSTR("FAST"), z_probe_low_point, z_probe_fast_mm_s,
sanity_check, Z_CLEARANCE_BETWEEN_PROBES) ) return NAN;
const float first_probe_z = current_position.z;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("1st Probe Z:", first_probe_z);
// Raise to give the probe clearance
do_blocking_move_to_z(current_position.z + Z_CLEARANCE_MULTI_PROBE, z_probe_fast_mm_s);
#elif Z_PROBE_FEEDRATE_FAST != Z_PROBE_FEEDRATE_SLOW
// If the nozzle is well over the travel height then
// move down quickly before doing the slow probe
const float z = Z_CLEARANCE_DEPLOY_PROBE + 5.0 + (offset.z < 0 ? -offset.z : 0);
if (current_position.z > z) {
// Probe down fast. If the probe never triggered, raise for probe clearance
if (!probe_down_to_z(z, z_probe_fast_mm_s))
do_blocking_move_to_z(current_position.z + Z_CLEARANCE_BETWEEN_PROBES, z_probe_fast_mm_s);
}
#endif
#if EXTRA_PROBING > 0
float probes[TOTAL_PROBING];
#endif
#if TOTAL_PROBING > 2
float probes_z_sum = 0;
for (
#if EXTRA_PROBING > 0
uint8_t p = 0; p < TOTAL_PROBING; p++
#else
uint8_t p = TOTAL_PROBING; p--;
#endif
)
#endif
{
// If the probe won't tare, return
if (TERN0(PROBE_TARE, tare())) return true;
// Probe downward slowly to find the bed
if (try_to_probe(PSTR("SLOW"), z_probe_low_point, MMM_TO_MMS(Z_PROBE_FEEDRATE_SLOW),
sanity_check, Z_CLEARANCE_MULTI_PROBE) ) return NAN;
TERN_(MEASURE_BACKLASH_WHEN_PROBING, backlash.measure_with_probe());
const float z = current_position.z;
#if EXTRA_PROBING > 0
// Insert Z measurement into probes[]. Keep it sorted ascending.
LOOP_LE_N(i, p) { // Iterate the saved Zs to insert the new Z
if (i == p || probes[i] > z) { // Last index or new Z is smaller than this Z
for (int8_t m = p; --m >= i;) probes[m + 1] = probes[m]; // Shift items down after the insertion point
probes[i] = z; // Insert the new Z measurement
break; // Only one to insert. Done!
}
}
#elif TOTAL_PROBING > 2
probes_z_sum += z;
#else
UNUSED(z);
#endif
#if TOTAL_PROBING > 2
// Small Z raise after all but the last probe
if (p
#if EXTRA_PROBING > 0
< TOTAL_PROBING - 1
#endif
) do_blocking_move_to_z(z + Z_CLEARANCE_MULTI_PROBE, z_probe_fast_mm_s);
#endif
}
#if TOTAL_PROBING > 2
#if EXTRA_PROBING > 0
// Take the center value (or average the two middle values) as the median
static constexpr int PHALF = (TOTAL_PROBING - 1) / 2;
const float middle = probes[PHALF],
median = ((TOTAL_PROBING) & 1) ? middle : (middle + probes[PHALF + 1]) * 0.5f;
// Remove values farthest from the median
uint8_t min_avg_idx = 0, max_avg_idx = TOTAL_PROBING - 1;
for (uint8_t i = EXTRA_PROBING; i--;)
if (ABS(probes[max_avg_idx] - median) > ABS(probes[min_avg_idx] - median))
max_avg_idx--; else min_avg_idx++;
// Return the average value of all remaining probes.
LOOP_S_LE_N(i, min_avg_idx, max_avg_idx)
probes_z_sum += probes[i];
#endif
const float measured_z = probes_z_sum * RECIPROCAL(MULTIPLE_PROBING);
#elif TOTAL_PROBING == 2
const float z2 = current_position.z;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("2nd Probe Z:", z2, " Discrepancy:", first_probe_z - z2);
// Return a weighted average of the fast and slow probes
const float measured_z = (z2 * 3.0 + first_probe_z * 2.0) * 0.2;
#else
// Return the single probe result
const float measured_z = current_position.z;
#endif
return measured_z;
}
/**
* - Move to the given XY
* - Deploy the probe, if not already deployed
* - Probe the bed, get the Z position
* - Depending on the 'stow' flag
* - Stow the probe, or
* - Raise to the BETWEEN height
* - Return the probed Z position
*/
float Probe::probe_at_point(const float &rx, const float &ry, const ProbePtRaise raise_after/*=PROBE_PT_NONE*/, const uint8_t verbose_level/*=0*/, const bool probe_relative/*=true*/, const bool sanity_check/*=true*/) {
DEBUG_SECTION(log_probe, "Probe::probe_at_point", DEBUGGING(LEVELING));
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPAIR(
"...(", LOGICAL_X_POSITION(rx), ", ", LOGICAL_Y_POSITION(ry),
", ", raise_after == PROBE_PT_RAISE ? "raise" : raise_after == PROBE_PT_STOW ? "stow" : "none",
", ", verbose_level,
", ", probe_relative ? "probe" : "nozzle", "_relative)"
);
DEBUG_POS("", current_position);
}
#if BOTH(BLTOUCH, BLTOUCH_HS_MODE)
if (bltouch.triggered()) bltouch._reset();
#endif
// On delta keep Z below clip height or do_blocking_move_to will abort
xyz_pos_t npos = { rx, ry, _MIN(TERN(DELTA, delta_clip_start_height, current_position.z), current_position.z) };
if (probe_relative) { // The given position is in terms of the probe
if (!can_reach(npos)) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Position Not Reachable");
return NAN;
}
npos -= offset_xy; // Get the nozzle position
}
else if (!position_is_reachable(npos)) return NAN; // The given position is in terms of the nozzle
// Move the probe to the starting XYZ
do_blocking_move_to(npos, feedRate_t(XY_PROBE_FEEDRATE_MM_S));
float measured_z = NAN;
if (!deploy()) measured_z = run_z_probe(sanity_check) + offset.z;
if (!isnan(measured_z)) {
const bool big_raise = raise_after == PROBE_PT_BIG_RAISE;
if (big_raise || raise_after == PROBE_PT_RAISE)
do_blocking_move_to_z(current_position.z + (big_raise ? 25 : Z_CLEARANCE_BETWEEN_PROBES), z_probe_fast_mm_s);
else if (raise_after == PROBE_PT_STOW)
if (stow()) measured_z = NAN; // Error on stow?
if (verbose_level > 2)
SERIAL_ECHOLNPAIR("Bed X: ", LOGICAL_X_POSITION(rx), " Y: ", LOGICAL_Y_POSITION(ry), " Z: ", measured_z);
}
if (isnan(measured_z)) {
stow();
LCD_MESSAGEPGM(MSG_LCD_PROBING_FAILED);
#if DISABLED(G29_RETRY_AND_RECOVER)
SERIAL_ERROR_MSG(STR_ERR_PROBING_FAILED);
#endif
}
return measured_z;
}
#if HAS_Z_SERVO_PROBE
void Probe::servo_probe_init() {
/**
* Set position of Z Servo Endstop
*
* The servo might be deployed and positioned too low to stow
* when starting up the machine or rebooting the board.
* There's no way to know where the nozzle is positioned until
* homing has been done - no homing with z-probe without init!
*/
STOW_Z_SERVO();
}
#endif // HAS_Z_SERVO_PROBE
#endif // HAS_BED_PROBE