Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

174 lines
5.7 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../platforms.h"
#ifdef HAL_STM32
#include "../../../inc/MarlinConfig.h"
#if HAS_FSMC_TFT
#include "tft_fsmc.h"
#include "pinconfig.h"
SRAM_HandleTypeDef TFT_FSMC::SRAMx;
DMA_HandleTypeDef TFT_FSMC::DMAtx;
LCD_CONTROLLER_TypeDef *TFT_FSMC::LCD;
void TFT_FSMC::Init() {
uint32_t controllerAddress;
FSMC_NORSRAM_TimingTypeDef Timing, ExtTiming;
uint32_t NSBank = (uint32_t)pinmap_peripheral(digitalPinToPinName(TFT_CS_PIN), PinMap_FSMC_CS);
// Perform the SRAM1 memory initialization sequence
SRAMx.Instance = FSMC_NORSRAM_DEVICE;
SRAMx.Extended = FSMC_NORSRAM_EXTENDED_DEVICE;
// SRAMx.Init
SRAMx.Init.NSBank = NSBank;
SRAMx.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
SRAMx.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM;
SRAMx.Init.MemoryDataWidth = TERN(TFT_INTERFACE_FSMC_8BIT, FSMC_NORSRAM_MEM_BUS_WIDTH_8, FSMC_NORSRAM_MEM_BUS_WIDTH_16);
SRAMx.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
SRAMx.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
SRAMx.Init.WrapMode = FSMC_WRAP_MODE_DISABLE;
SRAMx.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
SRAMx.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
SRAMx.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
SRAMx.Init.ExtendedMode = FSMC_EXTENDED_MODE_ENABLE;
SRAMx.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
SRAMx.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE;
#ifdef STM32F4xx
SRAMx.Init.PageSize = FSMC_PAGE_SIZE_NONE;
#endif
// Read Timing - relatively slow to ensure ID information is correctly read from TFT controller
// Can be decreases from 15-15-24 to 4-4-8 with risk of stability loss
Timing.AddressSetupTime = 15;
Timing.AddressHoldTime = 15;
Timing.DataSetupTime = 24;
Timing.BusTurnAroundDuration = 0;
Timing.CLKDivision = 16;
Timing.DataLatency = 17;
Timing.AccessMode = FSMC_ACCESS_MODE_A;
// Write Timing
// Can be decreases from 8-15-8 to 0-0-1 with risk of stability loss
ExtTiming.AddressSetupTime = 8;
ExtTiming.AddressHoldTime = 15;
ExtTiming.DataSetupTime = 8;
ExtTiming.BusTurnAroundDuration = 0;
ExtTiming.CLKDivision = 16;
ExtTiming.DataLatency = 17;
ExtTiming.AccessMode = FSMC_ACCESS_MODE_A;
__HAL_RCC_FSMC_CLK_ENABLE();
for (uint16_t i = 0; PinMap_FSMC[i].pin != NC; i++)
pinmap_pinout(PinMap_FSMC[i].pin, PinMap_FSMC);
pinmap_pinout(digitalPinToPinName(TFT_CS_PIN), PinMap_FSMC_CS);
pinmap_pinout(digitalPinToPinName(TFT_RS_PIN), PinMap_FSMC_RS);
controllerAddress = FSMC_BANK1_1;
#ifdef PF0
switch (NSBank) {
case FSMC_NORSRAM_BANK2: controllerAddress = FSMC_BANK1_2 ; break;
case FSMC_NORSRAM_BANK3: controllerAddress = FSMC_BANK1_3 ; break;
case FSMC_NORSRAM_BANK4: controllerAddress = FSMC_BANK1_4 ; break;
}
#endif
controllerAddress |= (uint32_t)pinmap_peripheral(digitalPinToPinName(TFT_RS_PIN), PinMap_FSMC_RS);
HAL_SRAM_Init(&SRAMx, &Timing, &ExtTiming);
__HAL_RCC_DMA2_CLK_ENABLE();
#ifdef STM32F1xx
DMAtx.Instance = DMA2_Channel1;
#elif defined(STM32F4xx)
DMAtx.Instance = DMA2_Stream0;
DMAtx.Init.Channel = DMA_CHANNEL_0;
DMAtx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
DMAtx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
DMAtx.Init.MemBurst = DMA_MBURST_SINGLE;
DMAtx.Init.PeriphBurst = DMA_PBURST_SINGLE;
#endif
DMAtx.Init.Direction = DMA_MEMORY_TO_MEMORY;
DMAtx.Init.MemInc = DMA_MINC_DISABLE;
DMAtx.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
DMAtx.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
DMAtx.Init.Mode = DMA_NORMAL;
DMAtx.Init.Priority = DMA_PRIORITY_HIGH;
LCD = (LCD_CONTROLLER_TypeDef *)controllerAddress;
}
uint32_t TFT_FSMC::GetID() {
uint32_t id;
WriteReg(0);
id = LCD->RAM;
if (id == 0)
id = ReadID(LCD_READ_ID);
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
id = ReadID(LCD_READ_ID4);
return id;
}
uint32_t TFT_FSMC::ReadID(tft_data_t Reg) {
uint32_t id;
WriteReg(Reg);
id = LCD->RAM; // dummy read
id = Reg << 24;
id |= (LCD->RAM & 0x00FF) << 16;
id |= (LCD->RAM & 0x00FF) << 8;
id |= LCD->RAM & 0x00FF;
return id;
}
bool TFT_FSMC::isBusy() {
#ifdef STM32F1xx
volatile bool dmaEnabled = (DMAtx.Instance->CCR & DMA_CCR_EN) != RESET;
#elif defined(STM32F4xx)
volatile bool dmaEnabled = DMAtx.Instance->CR & DMA_SxCR_EN;
#endif
if (dmaEnabled) {
if (__HAL_DMA_GET_FLAG(&DMAtx, __HAL_DMA_GET_TC_FLAG_INDEX(&DMAtx)) != 0 || __HAL_DMA_GET_FLAG(&DMAtx, __HAL_DMA_GET_TE_FLAG_INDEX(&DMAtx)) != 0)
Abort();
}
else
Abort();
return dmaEnabled;
}
void TFT_FSMC::TransmitDMA(uint32_t MemoryIncrease, uint16_t *Data, uint16_t Count) {
DMAtx.Init.PeriphInc = MemoryIncrease;
HAL_DMA_Init(&DMAtx);
DataTransferBegin();
HAL_DMA_Start(&DMAtx, (uint32_t)Data, (uint32_t)&(LCD->RAM), Count);
HAL_DMA_PollForTransfer(&DMAtx, HAL_DMA_FULL_TRANSFER, HAL_MAX_DELAY);
Abort();
}
#endif // HAS_FSMC_TFT
#endif // HAL_STM32