Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

219 lines
7.7 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "../../inc/MarlinConfigPre.h"
/**
* Busy wait delay cycles routines:
*
* DELAY_CYCLES(count): Delay execution in cycles
* DELAY_NS(count): Delay execution in nanoseconds
* DELAY_US(count): Delay execution in microseconds
*/
#include "../../core/macros.h"
void calibrate_delay_loop();
#if defined(__arm__) || defined(__thumb__)
// We want to have delay_cycle function with the lowest possible overhead, so we adjust at the function at runtime based on the current CPU best feature
typedef void (*DelayImpl)(uint32_t);
extern DelayImpl DelayCycleFnc;
// I've measured 36 cycles on my system to call the cycle waiting method, but it shouldn't change much to have a bit more margin, it only consume a bit more flash
#define TRIP_POINT_FOR_CALLING_FUNCTION 40
// A simple recursive template class that output exactly one 'nop' of code per recursion
template <int N> struct NopWriter {
FORCE_INLINE static void build() {
__asm__ __volatile__("nop");
NopWriter<N-1>::build();
}
};
// End the loop
template <> struct NopWriter<0> { FORCE_INLINE static void build() {} };
namespace Private {
// Split recursing template in 2 different class so we don't reach the maximum template instantiation depth limit
template <bool belowTP, int N> struct Helper {
FORCE_INLINE static void build() {
DelayCycleFnc(N - 2); // Approximative cost of calling the function (might be off by one or 2 cycles)
}
};
template <int N> struct Helper<true, N> {
FORCE_INLINE static void build() {
NopWriter<N - 1>::build();
}
};
template <> struct Helper<true, 0> {
FORCE_INLINE static void build() {}
};
}
// Select a behavior based on the constexpr'ness of the parameter
// If called with a compile-time parameter, then write as many NOP as required to reach the asked cycle count
// (there is some tripping point here to start looping when it's more profitable than gruntly executing NOPs)
// If not called from a compile-time parameter, fallback to a runtime loop counting version instead
template <bool compileTime, int Cycles>
struct SmartDelay {
FORCE_INLINE SmartDelay(int) {
if (Cycles == 0) return;
Private::Helper<Cycles < TRIP_POINT_FOR_CALLING_FUNCTION, Cycles>::build();
}
};
// Runtime version below. There is no way this would run under less than ~TRIP_POINT_FOR_CALLING_FUNCTION cycles
template <int T>
struct SmartDelay<false, T> {
FORCE_INLINE SmartDelay(int v) { DelayCycleFnc(v); }
};
#define DELAY_CYCLES(X) do { SmartDelay<IS_CONSTEXPR(X), IS_CONSTEXPR(X) ? X : 0> _smrtdly_X(X); } while(0)
#if GCC_VERSION <= 70000
#define DELAY_CYCLES_VAR(X) DelayCycleFnc(X)
#else
#define DELAY_CYCLES_VAR DELAY_CYCLES
#endif
// For delay in microseconds, no smart delay selection is required, directly call the delay function
// Teensy compiler is too old and does not accept smart delay compile-time / run-time selection correctly
#define DELAY_US(x) DelayCycleFnc((x) * ((F_CPU) / 1000000UL))
#elif defined(__AVR__)
FORCE_INLINE static void __delay_up_to_3c(uint8_t cycles) {
switch (cycles) {
case 3:
__asm__ __volatile__(A("RJMP .+0") A("NOP"));
break;
case 2:
__asm__ __volatile__(A("RJMP .+0"));
break;
case 1:
__asm__ __volatile__(A("NOP"));
break;
}
}
// Delay in cycles
FORCE_INLINE static void DELAY_CYCLES(uint16_t cycles) {
if (__builtin_constant_p(cycles)) {
if (cycles <= 3) {
__delay_up_to_3c(cycles);
}
else if (cycles == 4) {
__delay_up_to_3c(2);
__delay_up_to_3c(2);
}
else {
cycles -= 1 + 4; // Compensate for the first LDI (1) and the first round (4)
__delay_up_to_3c(cycles % 4);
cycles /= 4;
// The following code burns [1 + 4 * (rounds+1)] cycles
uint16_t dummy;
__asm__ __volatile__(
// "manually" load counter from constants, otherwise the compiler may optimize this part away
A("LDI %A[rounds], %[l]") // 1c
A("LDI %B[rounds], %[h]") // 1c (compensating the non branching BRCC)
L("1")
A("SBIW %[rounds], 1") // 2c
A("BRCC 1b") // 2c when branching, else 1c (end of loop)
: // Outputs ...
[rounds] "=w" (dummy) // Restrict to a wo (=) 16 bit register pair (w)
: // Inputs ...
[l] "M" (cycles%256), // Restrict to 0..255 constant (M)
[h] "M" (cycles/256) // Restrict to 0..255 constant (M)
:// Clobbers ...
"cc" // Indicate we are modifying flags like Carry (cc)
);
}
}
else {
__asm__ __volatile__(
L("1")
A("SBIW %[cycles], 4") // 2c
A("BRCC 1b") // 2c when branching, else 1c (end of loop)
: [cycles] "+w" (cycles) // output: Restrict to a rw (+) 16 bit register pair (w)
: // input: -
: "cc" // clobbers: We are modifying flags like Carry (cc)
);
}
}
// Delay in microseconds
#define DELAY_US(x) DELAY_CYCLES((x) * ((F_CPU) / 1000000UL))
#define DELAY_CYCLES_VAR DELAY_CYCLES
#elif defined(ESP32) || defined(__PLAT_LINUX__) || defined(__PLAT_NATIVE_SIM__)
// DELAY_CYCLES specified inside platform
// Delay in microseconds
#define DELAY_US(x) DELAY_CYCLES((x) * ((F_CPU) / 1000000UL))
#else
#error "Unsupported MCU architecture"
#endif
/**************************************************************
* Delay in nanoseconds. Requires the F_CPU macro.
* These macros follow avr-libc delay conventions.
*
* For AVR there are three possible operation modes, due to its
* slower clock speeds and thus coarser delay resolution. For
* example, when F_CPU = 16000000 the resolution is 62.5ns.
*
* Round up (default)
* Round up the delay according to the CPU clock resolution.
* e.g., 100 will give a delay of 2 cycles (125ns).
*
* Round down (DELAY_NS_ROUND_DOWN)
* Round down the delay according to the CPU clock resolution.
* e.g., 100 will be rounded down to 1 cycle (62.5ns).
*
* Nearest (DELAY_NS_ROUND_CLOSEST)
* Round the delay to the nearest number of clock cycles.
* e.g., 165 will be rounded up to 3 cycles (187.5ns) because
* it's closer to the requested delay than 2 cycle (125ns).
*/
#ifndef __AVR__
#undef DELAY_NS_ROUND_DOWN
#undef DELAY_NS_ROUND_CLOSEST
#endif
#if ENABLED(DELAY_NS_ROUND_DOWN)
#define _NS_TO_CYCLES(x) ( (x) * ((F_CPU) / 1000000UL) / 1000UL) // floor
#elif ENABLED(DELAY_NS_ROUND_CLOSEST)
#define _NS_TO_CYCLES(x) (((x) * ((F_CPU) / 1000000UL) + 500) / 1000UL) // round
#else
#define _NS_TO_CYCLES(x) (((x) * ((F_CPU) / 1000000UL) + 999) / 1000UL) // "ceil"
#endif
#define DELAY_NS(x) DELAY_CYCLES(_NS_TO_CYCLES(x))
#define DELAY_NS_VAR(x) DELAY_CYCLES_VAR(_NS_TO_CYCLES(x))