You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
9685 lines
301 KiB
9685 lines
301 KiB
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* About Marlin
|
|
*
|
|
* This firmware is a mashup between Sprinter and grbl.
|
|
* - https://github.com/kliment/Sprinter
|
|
* - https://github.com/simen/grbl/tree
|
|
*
|
|
* It has preliminary support for Matthew Roberts advance algorithm
|
|
* - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
|
|
#if HAS_ABL
|
|
#include "vector_3.h"
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
#include "qr_solve.h"
|
|
#elif ENABLED(MESH_BED_LEVELING)
|
|
#include "mesh_bed_leveling.h"
|
|
#endif
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
#include "planner_bezier.h"
|
|
#endif
|
|
|
|
#include "ultralcd.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "endstops.h"
|
|
#include "temperature.h"
|
|
#include "cardreader.h"
|
|
#include "configuration_store.h"
|
|
#include "language.h"
|
|
#include "pins_arduino.h"
|
|
#include "math.h"
|
|
#include "nozzle.h"
|
|
#include "duration_t.h"
|
|
#include "types.h"
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
#include "watchdog.h"
|
|
#endif
|
|
|
|
#if ENABLED(BLINKM)
|
|
#include "blinkm.h"
|
|
#include "Wire.h"
|
|
#endif
|
|
|
|
#if HAS_SERVOS
|
|
#include "servo.h"
|
|
#endif
|
|
|
|
#if HAS_DIGIPOTSS
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
#include "stepper_dac.h"
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
#include "twibus.h"
|
|
#endif
|
|
|
|
/**
|
|
* Look here for descriptions of G-codes:
|
|
* - http://linuxcnc.org/handbook/gcode/g-code.html
|
|
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
*
|
|
* Help us document these G-codes online:
|
|
* - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
|
|
* - http://reprap.org/wiki/G-code
|
|
*
|
|
* -----------------
|
|
* Implemented Codes
|
|
* -----------------
|
|
*
|
|
* "G" Codes
|
|
*
|
|
* G0 -> G1
|
|
* G1 - Coordinated Movement X Y Z E
|
|
* G2 - CW ARC
|
|
* G3 - CCW ARC
|
|
* G4 - Dwell S<seconds> or P<milliseconds>
|
|
* G5 - Cubic B-spline with XYZE destination and IJPQ offsets
|
|
* G10 - Retract filament according to settings of M207
|
|
* G11 - Retract recover filament according to settings of M208
|
|
* G12 - Clean tool
|
|
* G20 - Set input units to inches
|
|
* G21 - Set input units to millimeters
|
|
* G28 - Home one or more axes
|
|
* G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
|
* G30 - Single Z probe, probes bed at current XY location.
|
|
* G31 - Dock sled (Z_PROBE_SLED only)
|
|
* G32 - Undock sled (Z_PROBE_SLED only)
|
|
* G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
|
|
* G90 - Use Absolute Coordinates
|
|
* G91 - Use Relative Coordinates
|
|
* G92 - Set current position to coordinates given
|
|
*
|
|
* "M" Codes
|
|
*
|
|
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
* M1 - Same as M0
|
|
* M17 - Enable/Power all stepper motors
|
|
* M18 - Disable all stepper motors; same as M84
|
|
* M20 - List SD card. (Requires SDSUPPORT)
|
|
* M21 - Init SD card. (Requires SDSUPPORT)
|
|
* M22 - Release SD card. (Requires SDSUPPORT)
|
|
* M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
|
|
* M24 - Start/resume SD print. (Requires SDSUPPORT)
|
|
* M25 - Pause SD print. (Requires SDSUPPORT)
|
|
* M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
|
|
* M27 - Report SD print status. (Requires SDSUPPORT)
|
|
* M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
|
|
* M29 - Stop SD write. (Requires SDSUPPORT)
|
|
* M30 - Delete file from SD: "M30 /path/file.gco"
|
|
* M31 - Report time since last M109 or SD card start to serial.
|
|
* M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
|
|
* Use P to run other files as sub-programs: "M32 P !filename#"
|
|
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
* M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
|
|
* M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
|
|
* M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
* M75 - Start the print job timer.
|
|
* M76 - Pause the print job timer.
|
|
* M77 - Stop the print job timer.
|
|
* M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
|
|
* M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
|
|
* M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
|
|
* M82 - Set E codes absolute (default).
|
|
* M83 - Set E codes relative while in Absolute (G90) mode.
|
|
* M84 - Disable steppers until next move, or use S<seconds> to specify an idle
|
|
* duration after which steppers should turn off. S0 disables the timeout.
|
|
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
* M92 - Set planner.axis_steps_per_mm for one or more axes.
|
|
* M104 - Set extruder target temp.
|
|
* M105 - Report current temperatures.
|
|
* M106 - Fan on.
|
|
* M107 - Fan off.
|
|
* M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
|
|
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
* IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
* M110 - Set the current line number. (Used by host printing)
|
|
* M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
|
|
* M112 - Emergency stop.
|
|
* M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
|
|
* M114 - Report current position.
|
|
* M115 - Report capabilities.
|
|
* M117 - Display a message on the controller screen. (Requires an LCD)
|
|
* M119 - Report endstops status.
|
|
* M120 - Enable endstops detection.
|
|
* M121 - Disable endstops detection.
|
|
* M126 - Solenoid Air Valve Open. (Requires BARICUDA)
|
|
* M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
|
|
* M128 - EtoP Open. (Requires BARICUDA)
|
|
* M129 - EtoP Closed. (Requires BARICUDA)
|
|
* M140 - Set bed target temp. S<temp>
|
|
* M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
|
|
* M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
|
|
* M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
|
|
* M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
|
|
* M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
|
|
* M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
|
|
* M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
|
|
* Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
|
|
* M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
|
|
* M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
|
|
* M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
|
|
* M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
|
|
* M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
|
|
* M205 - Set advanced settings. Current units apply:
|
|
S<print> T<travel> minimum speeds
|
|
B<minimum segment time>
|
|
X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
|
|
* M206 - Set additional homing offset.
|
|
* M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
|
|
* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
|
|
* M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
|
|
Every normal extrude-only move will be classified as retract depending on the direction.
|
|
* M211 - Enable, Disable, and/or Report software endstops: S<0|1>
|
|
* M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
|
|
* M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
|
|
* M221 - Set Flow Percentage: "M221 S<percent>"
|
|
* M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
|
|
* M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
|
|
* M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
|
|
* M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
|
|
* M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
* M301 - Set PID parameters P I and D. (Requires PIDTEMP)
|
|
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
|
|
* M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
|
|
* M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
|
|
* M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
|
|
* M381 - Disable all solenoids. (Requires EXT_SOLENOID)
|
|
* M400 - Finish all moves.
|
|
* M401 - Lower Z probe. (Requires a probe)
|
|
* M402 - Raise Z probe. (Requires a probe)
|
|
* M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
|
|
* M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
|
|
* M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
|
|
* M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
|
|
* M410 - Quickstop. Abort all planned moves.
|
|
* M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
|
|
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
|
|
* M428 - Set the home_offset based on the current_position. Nearest edge applies.
|
|
* M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
|
|
* M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
|
|
* M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
|
|
* M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
|
|
* M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
* M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
|
|
* M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
|
|
* M666 - Set delta endstop adjustment. (Requires DELTA)
|
|
* M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
|
|
* M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
|
|
* M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
|
|
* M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
|
|
* M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
|
|
* M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
|
|
* M350 - Set microstepping mode. (Requires digital microstepping pins.)
|
|
* M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
|
|
*
|
|
* ************ SCARA Specific - This can change to suit future G-code regulations
|
|
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
* ************* SCARA End ***************
|
|
*
|
|
* ************ Custom codes - This can change to suit future G-code regulations
|
|
* M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
|
|
* M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
|
|
* M999 - Restart after being stopped by error
|
|
*
|
|
* "T" Codes
|
|
*
|
|
* T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
|
|
*
|
|
*/
|
|
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
void gcode_M100();
|
|
#endif
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
CardReader card;
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
TWIBus i2c;
|
|
#endif
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
bool G38_move = false,
|
|
G38_endstop_hit = false;
|
|
#endif
|
|
|
|
bool Running = true;
|
|
|
|
uint8_t marlin_debug_flags = DEBUG_NONE;
|
|
|
|
float current_position[NUM_AXIS] = { 0.0 };
|
|
static float destination[NUM_AXIS] = { 0.0 };
|
|
bool axis_known_position[XYZ] = { false };
|
|
bool axis_homed[XYZ] = { false };
|
|
|
|
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
|
|
|
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
|
|
static char* current_command, *current_command_args;
|
|
static uint8_t cmd_queue_index_r = 0,
|
|
cmd_queue_index_w = 0,
|
|
commands_in_queue = 0;
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
float linear_unit_factor = 1.0;
|
|
float volumetric_unit_factor = 1.0;
|
|
#endif
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
TempUnit input_temp_units = TEMPUNIT_C;
|
|
#endif
|
|
|
|
/**
|
|
* Feed rates are often configured with mm/m
|
|
* but the planner and stepper like mm/s units.
|
|
*/
|
|
float constexpr homing_feedrate_mm_s[] = {
|
|
#if ENABLED(DELTA)
|
|
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
|
|
#else
|
|
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
|
|
#endif
|
|
MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
|
|
};
|
|
static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
|
|
int feedrate_percentage = 100, saved_feedrate_percentage;
|
|
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
|
|
bool volumetric_enabled = false;
|
|
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
|
|
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
|
|
|
|
// The distance that XYZ has been offset by G92. Reset by G28.
|
|
float position_shift[XYZ] = { 0 };
|
|
|
|
// This offset is added to the configured home position.
|
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
|
float home_offset[XYZ] = { 0 };
|
|
|
|
// Software Endstops are based on the configured limits.
|
|
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
|
|
bool soft_endstops_enabled = true;
|
|
#endif
|
|
float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
|
|
soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
|
|
#if FAN_COUNT > 0
|
|
int fanSpeeds[FAN_COUNT] = { 0 };
|
|
#endif
|
|
|
|
// The active extruder (tool). Set with T<extruder> command.
|
|
uint8_t active_extruder = 0;
|
|
|
|
// Relative Mode. Enable with G91, disable with G90.
|
|
static bool relative_mode = false;
|
|
|
|
volatile bool wait_for_heatup = true;
|
|
|
|
#if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
|
|
volatile bool wait_for_user = false;
|
|
#endif
|
|
|
|
const char errormagic[] PROGMEM = "Error:";
|
|
const char echomagic[] PROGMEM = "echo:";
|
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
|
|
|
static int serial_count = 0;
|
|
|
|
// GCode parameter pointer used by code_seen(), code_value_float(), etc.
|
|
static char* seen_pointer;
|
|
|
|
// Next Immediate GCode Command pointer. NULL if none.
|
|
const char* queued_commands_P = NULL;
|
|
|
|
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
|
|
|
|
// Inactivity shutdown
|
|
millis_t previous_cmd_ms = 0;
|
|
static millis_t max_inactive_time = 0;
|
|
static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
|
|
|
|
// Print Job Timer
|
|
#if ENABLED(PRINTCOUNTER)
|
|
PrintCounter print_job_timer = PrintCounter();
|
|
#else
|
|
Stopwatch print_job_timer = Stopwatch();
|
|
#endif
|
|
|
|
// Buzzer - I2C on the LCD or a BEEPER_PIN
|
|
#if ENABLED(LCD_USE_I2C_BUZZER)
|
|
#define BUZZ(d,f) lcd_buzz(d, f)
|
|
#elif HAS_BUZZER
|
|
Buzzer buzzer;
|
|
#define BUZZ(d,f) buzzer.tone(d, f)
|
|
#else
|
|
#define BUZZ(d,f) NOOP
|
|
#endif
|
|
|
|
static uint8_t target_extruder;
|
|
|
|
#if HAS_BED_PROBE
|
|
float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#endif
|
|
|
|
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
|
|
|
|
#if HAS_ABL
|
|
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
|
|
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
|
|
#elif defined(XY_PROBE_SPEED)
|
|
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
|
|
#else
|
|
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
|
|
#endif
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
float z_endstop_adj = 0;
|
|
#endif
|
|
|
|
// Extruder offsets
|
|
#if HOTENDS > 1
|
|
float hotend_offset[][HOTENDS] = {
|
|
HOTEND_OFFSET_X,
|
|
HOTEND_OFFSET_Y
|
|
#ifdef HOTEND_OFFSET_Z
|
|
, HOTEND_OFFSET_Z
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
#if HAS_Z_SERVO_ENDSTOP
|
|
const int z_servo_angle[2] = Z_SERVO_ANGLES;
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
int baricuda_valve_pressure = 0;
|
|
int baricuda_e_to_p_pressure = 0;
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
bool autoretract_enabled = false;
|
|
bool retracted[EXTRUDERS] = { false };
|
|
bool retracted_swap[EXTRUDERS] = { false };
|
|
|
|
float retract_length = RETRACT_LENGTH;
|
|
float retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
float retract_feedrate_mm_s = RETRACT_FEEDRATE;
|
|
float retract_zlift = RETRACT_ZLIFT;
|
|
float retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
|
|
bool powersupply =
|
|
#if ENABLED(PS_DEFAULT_OFF)
|
|
false
|
|
#else
|
|
true
|
|
#endif
|
|
;
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#define SIN_60 0.8660254037844386
|
|
#define COS_60 0.5
|
|
|
|
float delta[ABC],
|
|
endstop_adj[ABC] = { 0 };
|
|
|
|
// these are the default values, can be overriden with M665
|
|
float delta_radius = DELTA_RADIUS,
|
|
delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
|
|
delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
|
|
delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
|
|
delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
|
|
delta_tower3_x = 0, // back middle tower
|
|
delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
|
|
delta_diagonal_rod = DELTA_DIAGONAL_ROD,
|
|
delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
|
|
delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
|
|
delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
|
|
delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
|
|
delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
|
|
delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
|
|
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
|
|
delta_clip_start_height = Z_MAX_POS;
|
|
|
|
float delta_safe_distance_from_top();
|
|
|
|
#else
|
|
|
|
static bool home_all_axis = true;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
|
|
float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
|
|
#endif
|
|
|
|
#if IS_SCARA
|
|
// Float constants for SCARA calculations
|
|
const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
|
|
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
|
|
L2_2 = sq(float(L2));
|
|
|
|
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
|
|
delta[ABC];
|
|
#endif
|
|
|
|
float cartes[XYZ] = { 0 };
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
|
|
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
|
|
filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
|
|
int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
|
|
int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
|
|
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
static bool filament_ran_out = false;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_CHANGE_FEATURE)
|
|
FilamentChangeMenuResponse filament_change_menu_response;
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
float mixing_factor[MIXING_STEPPERS];
|
|
#if MIXING_VIRTUAL_TOOLS > 1
|
|
float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
|
|
#endif
|
|
#endif
|
|
|
|
static bool send_ok[BUFSIZE];
|
|
|
|
#if HAS_SERVOS
|
|
Servo servo[NUM_SERVOS];
|
|
#define MOVE_SERVO(I, P) servo[I].move(P)
|
|
#if HAS_Z_SERVO_ENDSTOP
|
|
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
|
|
#define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CHDK
|
|
millis_t chdkHigh = 0;
|
|
boolean chdkActive = false;
|
|
#endif
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
int lpq_len = 20;
|
|
#endif
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
static MarlinBusyState busy_state = NOT_BUSY;
|
|
static millis_t next_busy_signal_ms = 0;
|
|
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
|
|
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
|
|
#else
|
|
#define host_keepalive() ;
|
|
#define KEEPALIVE_STATE(n) ;
|
|
#endif // HOST_KEEPALIVE_FEATURE
|
|
|
|
#define DEFINE_PGM_READ_ANY(type, reader) \
|
|
static inline type pgm_read_any(const type *p) \
|
|
{ return pgm_read_##reader##_near(p); }
|
|
|
|
DEFINE_PGM_READ_ANY(float, float);
|
|
DEFINE_PGM_READ_ANY(signed char, byte);
|
|
|
|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
static const PROGMEM type array##_P[XYZ] = \
|
|
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
static inline type array(int axis) \
|
|
{ return pgm_read_any(&array##_P[axis]); }
|
|
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
|
|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
/**
|
|
* ***************************************************************************
|
|
* ******************************** FUNCTIONS ********************************
|
|
* ***************************************************************************
|
|
*/
|
|
|
|
void stop();
|
|
|
|
void get_available_commands();
|
|
void process_next_command();
|
|
void prepare_move_to_destination();
|
|
|
|
void get_cartesian_from_steppers();
|
|
void set_current_from_steppers_for_axis(const AxisEnum axis);
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
|
|
#endif
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
void plan_cubic_move(const float offset[4]);
|
|
#endif
|
|
|
|
void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
|
|
void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
|
|
static void report_current_position();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
|
|
serialprintPGM(prefix);
|
|
SERIAL_ECHOPAIR("(", x);
|
|
SERIAL_ECHOPAIR(", ", y);
|
|
SERIAL_ECHOPAIR(", ", z);
|
|
SERIAL_ECHOPGM(")");
|
|
|
|
if (suffix) serialprintPGM(suffix);
|
|
else SERIAL_EOL;
|
|
}
|
|
|
|
void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
|
|
print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
|
|
}
|
|
|
|
#if HAS_ABL
|
|
void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
|
|
print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
|
|
}
|
|
#endif
|
|
|
|
#define DEBUG_POS(SUFFIX,VAR) do { \
|
|
print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
|
|
#endif
|
|
|
|
/**
|
|
* sync_plan_position
|
|
*
|
|
* Set the planner/stepper positions directly from current_position with
|
|
* no kinematic translation. Used for homing axes and cartesian/core syncing.
|
|
*/
|
|
inline void sync_plan_position() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
|
|
#endif
|
|
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
inline void sync_plan_position_kinematic() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
|
|
#endif
|
|
inverse_kinematics(current_position);
|
|
planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
|
|
}
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
|
|
|
|
#else
|
|
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
|
|
|
|
#endif
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
#include "SdFatUtil.h"
|
|
int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
#else
|
|
extern "C" {
|
|
extern unsigned int __bss_end;
|
|
extern unsigned int __heap_start;
|
|
extern void* __brkval;
|
|
|
|
int freeMemory() {
|
|
int free_memory;
|
|
if ((int)__brkval == 0)
|
|
free_memory = ((int)&free_memory) - ((int)&__bss_end);
|
|
else
|
|
free_memory = ((int)&free_memory) - ((int)__brkval);
|
|
return free_memory;
|
|
}
|
|
}
|
|
#endif //!SDSUPPORT
|
|
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
extern void digipot_i2c_set_current(int channel, float current);
|
|
extern void digipot_i2c_init();
|
|
#endif
|
|
|
|
/**
|
|
* Inject the next "immediate" command, when possible.
|
|
* Return true if any immediate commands remain to inject.
|
|
*/
|
|
static bool drain_queued_commands_P() {
|
|
if (queued_commands_P != NULL) {
|
|
size_t i = 0;
|
|
char c, cmd[30];
|
|
strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
|
|
cmd[sizeof(cmd) - 1] = '\0';
|
|
while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
|
|
cmd[i] = '\0';
|
|
if (enqueue_and_echo_command(cmd)) { // success?
|
|
if (c) // newline char?
|
|
queued_commands_P += i + 1; // advance to the next command
|
|
else
|
|
queued_commands_P = NULL; // nul char? no more commands
|
|
}
|
|
}
|
|
return (queued_commands_P != NULL); // return whether any more remain
|
|
}
|
|
|
|
/**
|
|
* Record one or many commands to run from program memory.
|
|
* Aborts the current queue, if any.
|
|
* Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
|
|
*/
|
|
void enqueue_and_echo_commands_P(const char* pgcode) {
|
|
queued_commands_P = pgcode;
|
|
drain_queued_commands_P(); // first command executed asap (when possible)
|
|
}
|
|
|
|
void clear_command_queue() {
|
|
cmd_queue_index_r = cmd_queue_index_w;
|
|
commands_in_queue = 0;
|
|
}
|
|
|
|
/**
|
|
* Once a new command is in the ring buffer, call this to commit it
|
|
*/
|
|
inline void _commit_command(bool say_ok) {
|
|
send_ok[cmd_queue_index_w] = say_ok;
|
|
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
|
|
commands_in_queue++;
|
|
}
|
|
|
|
/**
|
|
* Copy a command directly into the main command buffer, from RAM.
|
|
* Returns true if successfully adds the command
|
|
*/
|
|
inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
|
|
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
|
|
strcpy(command_queue[cmd_queue_index_w], cmd);
|
|
_commit_command(say_ok);
|
|
return true;
|
|
}
|
|
|
|
void enqueue_and_echo_command_now(const char* cmd) {
|
|
while (!enqueue_and_echo_command(cmd)) idle();
|
|
}
|
|
|
|
/**
|
|
* Enqueue with Serial Echo
|
|
*/
|
|
bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
|
|
if (_enqueuecommand(cmd, say_ok)) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setup_killpin() {
|
|
#if HAS_KILL
|
|
SET_INPUT(KILL_PIN);
|
|
WRITE(KILL_PIN, HIGH);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
void setup_filrunoutpin() {
|
|
SET_INPUT(FIL_RUNOUT_PIN);
|
|
#if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
|
|
WRITE(FIL_RUNOUT_PIN, HIGH);
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
// Set home pin
|
|
void setup_homepin(void) {
|
|
#if HAS_HOME
|
|
SET_INPUT(HOME_PIN);
|
|
WRITE(HOME_PIN, HIGH);
|
|
#endif
|
|
}
|
|
|
|
void setup_photpin() {
|
|
#if HAS_PHOTOGRAPH
|
|
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void setup_powerhold() {
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
#if HAS_POWER_SWITCH
|
|
#if ENABLED(PS_DEFAULT_OFF)
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#else
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void suicide() {
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void servo_init() {
|
|
#if NUM_SERVOS >= 1 && HAS_SERVO_0
|
|
servo[0].attach(SERVO0_PIN);
|
|
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
|
|
#endif
|
|
#if NUM_SERVOS >= 2 && HAS_SERVO_1
|
|
servo[1].attach(SERVO1_PIN);
|
|
servo[1].detach();
|
|
#endif
|
|
#if NUM_SERVOS >= 3 && HAS_SERVO_2
|
|
servo[2].attach(SERVO2_PIN);
|
|
servo[2].detach();
|
|
#endif
|
|
#if NUM_SERVOS >= 4 && HAS_SERVO_3
|
|
servo[3].attach(SERVO3_PIN);
|
|
servo[3].detach();
|
|
#endif
|
|
|
|
#if HAS_Z_SERVO_ENDSTOP
|
|
/**
|
|
* Set position of Z Servo Endstop
|
|
*
|
|
* The servo might be deployed and positioned too low to stow
|
|
* when starting up the machine or rebooting the board.
|
|
* There's no way to know where the nozzle is positioned until
|
|
* homing has been done - no homing with z-probe without init!
|
|
*
|
|
*/
|
|
STOW_Z_SERVO();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Stepper Reset (RigidBoard, et.al.)
|
|
*/
|
|
#if HAS_STEPPER_RESET
|
|
void disableStepperDrivers() {
|
|
OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
|
|
}
|
|
void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
|
|
|
|
void i2c_on_receive(int bytes) { // just echo all bytes received to serial
|
|
i2c.receive(bytes);
|
|
}
|
|
|
|
void i2c_on_request() { // just send dummy data for now
|
|
i2c.reply("Hello World!\n");
|
|
}
|
|
|
|
#endif
|
|
|
|
void gcode_line_error(const char* err, bool doFlush = true) {
|
|
SERIAL_ERROR_START;
|
|
serialprintPGM(err);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
//Serial.println(gcode_N);
|
|
if (doFlush) FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
}
|
|
|
|
inline void get_serial_commands() {
|
|
static char serial_line_buffer[MAX_CMD_SIZE];
|
|
static boolean serial_comment_mode = false;
|
|
|
|
// If the command buffer is empty for too long,
|
|
// send "wait" to indicate Marlin is still waiting.
|
|
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
|
|
static millis_t last_command_time = 0;
|
|
millis_t ms = millis();
|
|
if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
|
|
SERIAL_ECHOLNPGM(MSG_WAIT);
|
|
last_command_time = ms;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Loop while serial characters are incoming and the queue is not full
|
|
*/
|
|
while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
|
|
|
|
char serial_char = MYSERIAL.read();
|
|
|
|
/**
|
|
* If the character ends the line
|
|
*/
|
|
if (serial_char == '\n' || serial_char == '\r') {
|
|
|
|
serial_comment_mode = false; // end of line == end of comment
|
|
|
|
if (!serial_count) continue; // skip empty lines
|
|
|
|
serial_line_buffer[serial_count] = 0; // terminate string
|
|
serial_count = 0; //reset buffer
|
|
|
|
char* command = serial_line_buffer;
|
|
|
|
while (*command == ' ') command++; // skip any leading spaces
|
|
char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
|
|
char* apos = strchr(command, '*');
|
|
|
|
if (npos) {
|
|
|
|
boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
|
|
|
|
if (M110) {
|
|
char* n2pos = strchr(command + 4, 'N');
|
|
if (n2pos) npos = n2pos;
|
|
}
|
|
|
|
gcode_N = strtol(npos + 1, NULL, 10);
|
|
|
|
if (gcode_N != gcode_LastN + 1 && !M110) {
|
|
gcode_line_error(PSTR(MSG_ERR_LINE_NO));
|
|
return;
|
|
}
|
|
|
|
if (apos) {
|
|
byte checksum = 0, count = 0;
|
|
while (command[count] != '*') checksum ^= command[count++];
|
|
|
|
if (strtol(apos + 1, NULL, 10) != checksum) {
|
|
gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
|
|
return;
|
|
}
|
|
// if no errors, continue parsing
|
|
}
|
|
else {
|
|
gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
|
|
return;
|
|
}
|
|
|
|
gcode_LastN = gcode_N;
|
|
// if no errors, continue parsing
|
|
}
|
|
else if (apos) { // No '*' without 'N'
|
|
gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
|
|
return;
|
|
}
|
|
|
|
// Movement commands alert when stopped
|
|
if (IsStopped()) {
|
|
char* gpos = strchr(command, 'G');
|
|
if (gpos) {
|
|
int codenum = strtol(gpos + 1, NULL, 10);
|
|
switch (codenum) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if DISABLED(EMERGENCY_PARSER)
|
|
// If command was e-stop process now
|
|
if (strcmp(command, "M108") == 0) wait_for_heatup = false;
|
|
if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
|
|
if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
|
|
#endif
|
|
|
|
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
|
|
last_command_time = ms;
|
|
#endif
|
|
|
|
// Add the command to the queue
|
|
_enqueuecommand(serial_line_buffer, true);
|
|
}
|
|
else if (serial_count >= MAX_CMD_SIZE - 1) {
|
|
// Keep fetching, but ignore normal characters beyond the max length
|
|
// The command will be injected when EOL is reached
|
|
}
|
|
else if (serial_char == '\\') { // Handle escapes
|
|
if (MYSERIAL.available() > 0) {
|
|
// if we have one more character, copy it over
|
|
serial_char = MYSERIAL.read();
|
|
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
|
|
}
|
|
// otherwise do nothing
|
|
}
|
|
else { // it's not a newline, carriage return or escape char
|
|
if (serial_char == ';') serial_comment_mode = true;
|
|
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
|
|
}
|
|
|
|
} // queue has space, serial has data
|
|
}
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
inline void get_sdcard_commands() {
|
|
static bool stop_buffering = false,
|
|
sd_comment_mode = false;
|
|
|
|
if (!card.sdprinting) return;
|
|
|
|
/**
|
|
* '#' stops reading from SD to the buffer prematurely, so procedural
|
|
* macro calls are possible. If it occurs, stop_buffering is triggered
|
|
* and the buffer is run dry; this character _can_ occur in serial com
|
|
* due to checksums, however, no checksums are used in SD printing.
|
|
*/
|
|
|
|
if (commands_in_queue == 0) stop_buffering = false;
|
|
|
|
uint16_t sd_count = 0;
|
|
bool card_eof = card.eof();
|
|
while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
|
|
int16_t n = card.get();
|
|
char sd_char = (char)n;
|
|
card_eof = card.eof();
|
|
if (card_eof || n == -1
|
|
|| sd_char == '\n' || sd_char == '\r'
|
|
|| ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
|
|
) {
|
|
if (card_eof) {
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
|
|
card.printingHasFinished();
|
|
card.checkautostart(true);
|
|
}
|
|
else if (n == -1) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
|
|
}
|
|
if (sd_char == '#') stop_buffering = true;
|
|
|
|
sd_comment_mode = false; //for new command
|
|
|
|
if (!sd_count) continue; //skip empty lines
|
|
|
|
command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
|
|
sd_count = 0; //clear buffer
|
|
|
|
_commit_command(false);
|
|
}
|
|
else if (sd_count >= MAX_CMD_SIZE - 1) {
|
|
/**
|
|
* Keep fetching, but ignore normal characters beyond the max length
|
|
* The command will be injected when EOL is reached
|
|
*/
|
|
}
|
|
else {
|
|
if (sd_char == ';') sd_comment_mode = true;
|
|
if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* Add to the circular command queue the next command from:
|
|
* - The command-injection queue (queued_commands_P)
|
|
* - The active serial input (usually USB)
|
|
* - The SD card file being actively printed
|
|
*/
|
|
void get_available_commands() {
|
|
|
|
// if any immediate commands remain, don't get other commands yet
|
|
if (drain_queued_commands_P()) return;
|
|
|
|
get_serial_commands();
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
get_sdcard_commands();
|
|
#endif
|
|
}
|
|
|
|
inline bool code_has_value() {
|
|
int i = 1;
|
|
char c = seen_pointer[i];
|
|
while (c == ' ') c = seen_pointer[++i];
|
|
if (c == '-' || c == '+') c = seen_pointer[++i];
|
|
if (c == '.') c = seen_pointer[++i];
|
|
return NUMERIC(c);
|
|
}
|
|
|
|
inline float code_value_float() {
|
|
float ret;
|
|
char* e = strchr(seen_pointer, 'E');
|
|
if (e) {
|
|
*e = 0;
|
|
ret = strtod(seen_pointer + 1, NULL);
|
|
*e = 'E';
|
|
}
|
|
else
|
|
ret = strtod(seen_pointer + 1, NULL);
|
|
return ret;
|
|
}
|
|
|
|
inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
|
|
|
|
inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
|
|
|
|
inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
|
|
|
|
inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
|
|
|
|
inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
|
|
|
|
inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
inline void set_input_linear_units(LinearUnit units) {
|
|
switch (units) {
|
|
case LINEARUNIT_INCH:
|
|
linear_unit_factor = 25.4;
|
|
break;
|
|
case LINEARUNIT_MM:
|
|
default:
|
|
linear_unit_factor = 1.0;
|
|
break;
|
|
}
|
|
volumetric_unit_factor = pow(linear_unit_factor, 3.0);
|
|
}
|
|
|
|
inline float axis_unit_factor(int axis) {
|
|
return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
|
|
}
|
|
|
|
inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
|
|
inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
|
|
inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
|
|
|
|
#else
|
|
|
|
inline float code_value_linear_units() { return code_value_float(); }
|
|
inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
|
|
inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
|
|
|
|
#endif
|
|
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
|
|
|
|
float code_value_temp_abs() {
|
|
switch (input_temp_units) {
|
|
case TEMPUNIT_C:
|
|
return code_value_float();
|
|
case TEMPUNIT_F:
|
|
return (code_value_float() - 32) * 0.5555555556;
|
|
case TEMPUNIT_K:
|
|
return code_value_float() - 272.15;
|
|
default:
|
|
return code_value_float();
|
|
}
|
|
}
|
|
|
|
float code_value_temp_diff() {
|
|
switch (input_temp_units) {
|
|
case TEMPUNIT_C:
|
|
case TEMPUNIT_K:
|
|
return code_value_float();
|
|
case TEMPUNIT_F:
|
|
return code_value_float() * 0.5555555556;
|
|
default:
|
|
return code_value_float();
|
|
}
|
|
}
|
|
#else
|
|
float code_value_temp_abs() { return code_value_float(); }
|
|
float code_value_temp_diff() { return code_value_float(); }
|
|
#endif
|
|
|
|
FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
|
|
inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
|
|
|
|
bool code_seen(char code) {
|
|
seen_pointer = strchr(current_command_args, code);
|
|
return (seen_pointer != NULL); // Return TRUE if the code-letter was found
|
|
}
|
|
|
|
/**
|
|
* Set target_extruder from the T parameter or the active_extruder
|
|
*
|
|
* Returns TRUE if the target is invalid
|
|
*/
|
|
bool get_target_extruder_from_command(int code) {
|
|
if (code_seen('T')) {
|
|
if (code_value_byte() >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_CHAR('M');
|
|
SERIAL_ECHO(code);
|
|
SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
|
|
return true;
|
|
}
|
|
target_extruder = code_value_byte();
|
|
}
|
|
else
|
|
target_extruder = active_extruder;
|
|
|
|
return false;
|
|
}
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
bool extruder_duplication_enabled = false; // Used in Dual X mode 2
|
|
#endif
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
#define DXC_FULL_CONTROL_MODE 0
|
|
#define DXC_AUTO_PARK_MODE 1
|
|
#define DXC_DUPLICATION_MODE 2
|
|
|
|
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
|
|
static float x_home_pos(int extruder) {
|
|
if (extruder == 0)
|
|
return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
|
|
else
|
|
/**
|
|
* In dual carriage mode the extruder offset provides an override of the
|
|
* second X-carriage offset when homed - otherwise X2_HOME_POS is used.
|
|
* This allow soft recalibration of the second extruder offset position
|
|
* without firmware reflash (through the M218 command).
|
|
*/
|
|
return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
|
|
}
|
|
|
|
static int x_home_dir(int extruder) {
|
|
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
|
|
}
|
|
|
|
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
|
|
static bool active_extruder_parked = false; // used in mode 1 & 2
|
|
static float raised_parked_position[NUM_AXIS]; // used in mode 1
|
|
static millis_t delayed_move_time = 0; // used in mode 1
|
|
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
|
|
static float duplicate_extruder_temp_offset = 0; // used in mode 2
|
|
|
|
#endif //DUAL_X_CARRIAGE
|
|
|
|
/**
|
|
* Software endstops can be used to monitor the open end of
|
|
* an axis that has a hardware endstop on the other end. Or
|
|
* they can prevent axes from moving past endstops and grinding.
|
|
*
|
|
* To keep doing their job as the coordinate system changes,
|
|
* the software endstop positions must be refreshed to remain
|
|
* at the same positions relative to the machine.
|
|
*/
|
|
void update_software_endstops(AxisEnum axis) {
|
|
float offs = LOGICAL_POSITION(0, axis);
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (axis == X_AXIS) {
|
|
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
|
|
if (active_extruder != 0) {
|
|
soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
|
|
soft_endstop_max[X_AXIS] = dual_max_x + offs;
|
|
return;
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
|
|
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
soft_endstop_min[axis] = base_min_pos(axis) + offs;
|
|
soft_endstop_max[axis] = base_max_pos(axis) + offs;
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
|
|
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
|
|
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
|
|
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
|
|
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
if (axis == Z_AXIS)
|
|
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
|
|
#endif
|
|
|
|
}
|
|
|
|
/**
|
|
* Change the home offset for an axis, update the current
|
|
* position and the software endstops to retain the same
|
|
* relative distance to the new home.
|
|
*
|
|
* Since this changes the current_position, code should
|
|
* call sync_plan_position soon after this.
|
|
*/
|
|
static void set_home_offset(AxisEnum axis, float v) {
|
|
current_position[axis] += v - home_offset[axis];
|
|
home_offset[axis] = v;
|
|
update_software_endstops(axis);
|
|
}
|
|
|
|
/**
|
|
* Set an axis' current position to its home position (after homing).
|
|
*
|
|
* For Core and Cartesian robots this applies one-to-one when an
|
|
* individual axis has been homed.
|
|
*
|
|
* DELTA should wait until all homing is done before setting the XYZ
|
|
* current_position to home, because homing is a single operation.
|
|
* In the case where the axis positions are already known and previously
|
|
* homed, DELTA could home to X or Y individually by moving either one
|
|
* to the center. However, homing Z always homes XY and Z.
|
|
*
|
|
* SCARA should wait until all XY homing is done before setting the XY
|
|
* current_position to home, because neither X nor Y is at home until
|
|
* both are at home. Z can however be homed individually.
|
|
*
|
|
*/
|
|
static void set_axis_is_at_home(AxisEnum axis) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
axis_known_position[axis] = axis_homed[axis] = true;
|
|
|
|
position_shift[axis] = 0;
|
|
update_software_endstops(axis);
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
|
|
if (active_extruder != 0)
|
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
|
else
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
|
|
update_software_endstops(X_AXIS);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
|
|
/**
|
|
* Morgan SCARA homes XY at the same time
|
|
*/
|
|
if (axis == X_AXIS || axis == Y_AXIS) {
|
|
|
|
float homeposition[XYZ];
|
|
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
|
|
|
|
// SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
|
|
// SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
|
|
|
|
/**
|
|
* Get Home position SCARA arm angles using inverse kinematics,
|
|
* and calculate homing offset using forward kinematics
|
|
*/
|
|
inverse_kinematics(homeposition);
|
|
forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
|
|
|
|
// SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
|
|
// SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
|
|
|
|
current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
|
|
|
|
/**
|
|
* SCARA home positions are based on configuration since the actual
|
|
* limits are determined by the inverse kinematic transform.
|
|
*/
|
|
soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
|
|
soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
|
|
}
|
|
|
|
/**
|
|
* Z Probe Z Homing? Account for the probe's Z offset.
|
|
*/
|
|
#if HAS_BED_PROBE && Z_HOME_DIR < 0
|
|
if (axis == Z_AXIS) {
|
|
#if HOMING_Z_WITH_PROBE
|
|
|
|
current_position[Z_AXIS] -= zprobe_zoffset;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
|
|
SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
|
|
}
|
|
#endif
|
|
|
|
#elif ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
|
|
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
|
|
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
|
|
DEBUG_POS("", current_position);
|
|
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Some planner shorthand inline functions
|
|
*/
|
|
inline float get_homing_bump_feedrate(AxisEnum axis) {
|
|
int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
|
|
int hbd = homing_bump_divisor[axis];
|
|
if (hbd < 1) {
|
|
hbd = 10;
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
|
|
}
|
|
return homing_feedrate_mm_s[axis] / hbd;
|
|
}
|
|
|
|
//
|
|
// line_to_current_position
|
|
// Move the planner to the current position from wherever it last moved
|
|
// (or from wherever it has been told it is located).
|
|
//
|
|
inline void line_to_current_position() {
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
|
|
}
|
|
|
|
//
|
|
// line_to_destination
|
|
// Move the planner, not necessarily synced with current_position
|
|
//
|
|
inline void line_to_destination(float fr_mm_s) {
|
|
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
|
|
}
|
|
inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
|
|
|
|
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
|
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
|
|
|
#if IS_KINEMATIC
|
|
/**
|
|
* Calculate delta, start a line, and set current_position to destination
|
|
*/
|
|
void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
|
|
#endif
|
|
|
|
if ( current_position[X_AXIS] == destination[X_AXIS]
|
|
&& current_position[Y_AXIS] == destination[Y_AXIS]
|
|
&& current_position[Z_AXIS] == destination[Z_AXIS]
|
|
&& current_position[E_AXIS] == destination[E_AXIS]
|
|
) return;
|
|
|
|
refresh_cmd_timeout();
|
|
inverse_kinematics(destination);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
|
|
set_current_to_destination();
|
|
}
|
|
#endif // IS_KINEMATIC
|
|
|
|
/**
|
|
* Plan a move to (X, Y, Z) and set the current_position
|
|
* The final current_position may not be the one that was requested
|
|
*/
|
|
void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
|
|
float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
set_destination_to_current(); // sync destination at the start
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
|
|
#endif
|
|
|
|
// when in the danger zone
|
|
if (current_position[Z_AXIS] > delta_clip_start_height) {
|
|
if (z > delta_clip_start_height) { // staying in the danger zone
|
|
destination[X_AXIS] = x; // move directly (uninterpolated)
|
|
destination[Y_AXIS] = y;
|
|
destination[Z_AXIS] = z;
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
|
|
#endif
|
|
return;
|
|
}
|
|
else {
|
|
destination[Z_AXIS] = delta_clip_start_height;
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (z > current_position[Z_AXIS]) { // raising?
|
|
destination[Z_AXIS] = z;
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
|
|
#endif
|
|
}
|
|
|
|
destination[X_AXIS] = x;
|
|
destination[Y_AXIS] = y;
|
|
prepare_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
|
|
#endif
|
|
|
|
if (z < current_position[Z_AXIS]) { // lowering?
|
|
destination[Z_AXIS] = z;
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
|
|
#endif
|
|
}
|
|
|
|
#elif IS_SCARA
|
|
|
|
set_destination_to_current();
|
|
|
|
// If Z needs to raise, do it before moving XY
|
|
if (destination[Z_AXIS] < z) {
|
|
destination[Z_AXIS] = z;
|
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
|
|
}
|
|
|
|
destination[X_AXIS] = x;
|
|
destination[Y_AXIS] = y;
|
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
|
|
|
|
// If Z needs to lower, do it after moving XY
|
|
if (destination[Z_AXIS] > z) {
|
|
destination[Z_AXIS] = z;
|
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
|
|
}
|
|
|
|
#else
|
|
|
|
// If Z needs to raise, do it before moving XY
|
|
if (current_position[Z_AXIS] < z) {
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
|
|
current_position[Z_AXIS] = z;
|
|
line_to_current_position();
|
|
}
|
|
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
current_position[X_AXIS] = x;
|
|
current_position[Y_AXIS] = y;
|
|
line_to_current_position();
|
|
|
|
// If Z needs to lower, do it after moving XY
|
|
if (current_position[Z_AXIS] > z) {
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
|
|
current_position[Z_AXIS] = z;
|
|
line_to_current_position();
|
|
}
|
|
|
|
#endif
|
|
|
|
stepper.synchronize();
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
|
|
#endif
|
|
}
|
|
void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
|
|
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
|
|
}
|
|
void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
|
|
}
|
|
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
|
|
do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
|
|
}
|
|
|
|
//
|
|
// Prepare to do endstop or probe moves
|
|
// with custom feedrates.
|
|
//
|
|
// - Save current feedrates
|
|
// - Reset the rate multiplier
|
|
// - Reset the command timeout
|
|
// - Enable the endstops (for endstop moves)
|
|
//
|
|
static void setup_for_endstop_or_probe_move() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
|
|
#endif
|
|
saved_feedrate_mm_s = feedrate_mm_s;
|
|
saved_feedrate_percentage = feedrate_percentage;
|
|
feedrate_percentage = 100;
|
|
refresh_cmd_timeout();
|
|
}
|
|
|
|
static void clean_up_after_endstop_or_probe_move() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
|
|
#endif
|
|
feedrate_mm_s = saved_feedrate_mm_s;
|
|
feedrate_percentage = saved_feedrate_percentage;
|
|
refresh_cmd_timeout();
|
|
}
|
|
|
|
#if HAS_BED_PROBE
|
|
/**
|
|
* Raise Z to a minimum height to make room for a probe to move
|
|
*/
|
|
inline void do_probe_raise(float z_raise) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
float z_dest = LOGICAL_Z_POSITION(z_raise);
|
|
if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
|
|
|
|
if (z_dest > current_position[Z_AXIS])
|
|
do_blocking_move_to_z(z_dest);
|
|
}
|
|
|
|
#endif //HAS_BED_PROBE
|
|
|
|
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
|
|
static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
|
|
const bool xx = x && !axis_homed[X_AXIS],
|
|
yy = y && !axis_homed[Y_AXIS],
|
|
zz = z && !axis_homed[Z_AXIS];
|
|
if (xx || yy || zz) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_HOME " ");
|
|
if (xx) SERIAL_ECHOPGM(MSG_X);
|
|
if (yy) SERIAL_ECHOPGM(MSG_Y);
|
|
if (zz) SERIAL_ECHOPGM(MSG_Z);
|
|
SERIAL_ECHOLNPGM(" " MSG_FIRST);
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
|
|
strcat_P(message, PSTR(MSG_HOME " "));
|
|
if (xx) strcat_P(message, PSTR(MSG_X));
|
|
if (yy) strcat_P(message, PSTR(MSG_Y));
|
|
if (zz) strcat_P(message, PSTR(MSG_Z));
|
|
strcat_P(message, PSTR(" " MSG_FIRST));
|
|
lcd_setstatus(message);
|
|
#endif
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
#ifndef SLED_DOCKING_OFFSET
|
|
#define SLED_DOCKING_OFFSET 0
|
|
#endif
|
|
|
|
/**
|
|
* Method to dock/undock a sled designed by Charles Bell.
|
|
*
|
|
* stow[in] If false, move to MAX_X and engage the solenoid
|
|
* If true, move to MAX_X and release the solenoid
|
|
*/
|
|
static void dock_sled(bool stow) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("dock_sled(", stow);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
// Dock sled a bit closer to ensure proper capturing
|
|
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
|
|
|
|
#if PIN_EXISTS(SLED)
|
|
digitalWrite(SLED_PIN, !stow); // switch solenoid
|
|
#endif
|
|
}
|
|
|
|
#endif // Z_PROBE_SLED
|
|
#if ENABLED(Z_PROBE_ALLEN_KEY)
|
|
void run_deploy_moves_script() {
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
|
|
#endif
|
|
}
|
|
void run_stow_moves_script() {
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
|
|
#endif
|
|
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
// TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
|
|
#if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
|
|
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
|
|
#else
|
|
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
|
|
#endif
|
|
#endif
|
|
|
|
#define DEPLOY_PROBE() set_probe_deployed(true)
|
|
#define STOW_PROBE() set_probe_deployed(false)
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
|
|
servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// returns false for ok and true for failure
|
|
static bool set_probe_deployed(bool deploy) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
DEBUG_POS("set_probe_deployed", current_position);
|
|
SERIAL_ECHOLNPAIR("deploy: ", deploy);
|
|
}
|
|
#endif
|
|
|
|
if (endstops.z_probe_enabled == deploy) return false;
|
|
|
|
// Make room for probe
|
|
do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
|
|
|
|
// When deploying make sure BLTOUCH is not already triggered
|
|
#if ENABLED(BLTOUCH)
|
|
if (deploy && TEST_BLTOUCH()) { stop(); return true; }
|
|
#endif
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
if (axis_unhomed_error(true, false, false)) { stop(); return true; }
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
if (axis_unhomed_error(true, true, true )) { stop(); return true; }
|
|
#endif
|
|
|
|
float oldXpos = current_position[X_AXIS],
|
|
oldYpos = current_position[Y_AXIS];
|
|
|
|
#ifdef _TRIGGERED_WHEN_STOWED_TEST
|
|
|
|
// If endstop is already false, the Z probe is deployed
|
|
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
|
|
// Would a goto be less ugly?
|
|
//while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
|
|
// for a triggered when stowed manual probe.
|
|
|
|
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
|
|
// otherwise an Allen-Key probe can't be stowed.
|
|
#endif
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
dock_sled(!deploy);
|
|
|
|
#elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
|
|
|
|
servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
|
|
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
|
deploy ? run_deploy_moves_script() : run_stow_moves_script();
|
|
|
|
#endif
|
|
|
|
#ifdef _TRIGGERED_WHEN_STOWED_TEST
|
|
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
|
|
|
|
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
|
|
|
|
if (IsRunning()) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Z-Probe failed");
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
}
|
|
stop();
|
|
return true;
|
|
|
|
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
|
|
|
|
#endif
|
|
|
|
do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
|
|
endstops.enable_z_probe(deploy);
|
|
return false;
|
|
}
|
|
|
|
static void do_probe_move(float z, float fr_mm_m) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
|
|
#endif
|
|
|
|
// Deploy BLTouch at the start of any probe
|
|
#if ENABLED(BLTOUCH)
|
|
set_bltouch_deployed(true);
|
|
#endif
|
|
|
|
// Move down until probe triggered
|
|
do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
|
|
|
|
// Retract BLTouch immediately after a probe
|
|
#if ENABLED(BLTOUCH)
|
|
set_bltouch_deployed(false);
|
|
#endif
|
|
|
|
// Clear endstop flags
|
|
endstops.hit_on_purpose();
|
|
|
|
// Tell the planner where we actually are
|
|
planner.sync_from_steppers();
|
|
|
|
// Get Z where the steppers were interrupted
|
|
set_current_from_steppers_for_axis(Z_AXIS);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
|
|
#endif
|
|
}
|
|
|
|
// Do a single Z probe and return with current_position[Z_AXIS]
|
|
// at the height where the probe triggered.
|
|
static float run_z_probe() {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
|
|
#endif
|
|
|
|
// Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
|
|
refresh_cmd_timeout();
|
|
|
|
#if ENABLED(PROBE_DOUBLE_TOUCH)
|
|
|
|
// Do a first probe at the fast speed
|
|
do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
float first_probe_z = current_position[Z_AXIS];
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
|
|
#endif
|
|
|
|
// move up by the bump distance
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
|
#else
|
|
|
|
// If the nozzle is above the travel height then
|
|
// move down quickly before doing the slow probe
|
|
float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
|
|
if (zprobe_zoffset < 0) z -= zprobe_zoffset;
|
|
if (z < current_position[Z_AXIS])
|
|
do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
|
#endif
|
|
|
|
// move down slowly to find bed
|
|
do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
|
|
#endif
|
|
|
|
// Debug: compare probe heights
|
|
#if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
|
|
}
|
|
#endif
|
|
return current_position[Z_AXIS];
|
|
}
|
|
|
|
//
|
|
// - Move to the given XY
|
|
// - Deploy the probe, if not already deployed
|
|
// - Probe the bed, get the Z position
|
|
// - Depending on the 'stow' flag
|
|
// - Stow the probe, or
|
|
// - Raise to the BETWEEN height
|
|
// - Return the probed Z position
|
|
//
|
|
static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> probe_pt(", x);
|
|
SERIAL_ECHOPAIR(", ", y);
|
|
SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
DEBUG_POS("", current_position);
|
|
}
|
|
#endif
|
|
|
|
float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
// Ensure a minimum height before moving the probe
|
|
do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
|
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
// Move the probe to the given XY
|
|
do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
|
|
|
|
if (DEPLOY_PROBE()) return NAN;
|
|
|
|
float measured_z = run_z_probe();
|
|
|
|
if (!stow)
|
|
do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
|
|
else
|
|
if (STOW_PROBE()) return NAN;
|
|
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM("Bed X: ");
|
|
SERIAL_PROTOCOL_F(x, 3);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL_F(y, 3);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL_F(measured_z, 3);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
|
|
#endif
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
|
return measured_z;
|
|
}
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if PLANNER_LEVELING
|
|
/**
|
|
* Turn bed leveling on or off, fixing the current
|
|
* position as-needed.
|
|
*
|
|
* Disable: Current position = physical position
|
|
* Enable: Current position = "unleveled" physical position
|
|
*/
|
|
void set_bed_leveling_enabled(bool enable=true) {
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (!enable && mbl.active())
|
|
current_position[Z_AXIS] +=
|
|
mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - (MESH_HOME_SEARCH_Z);
|
|
|
|
mbl.set_active(enable && mbl.has_mesh()); // was set_has_mesh(). Is this not correct?
|
|
|
|
#elif HAS_ABL
|
|
|
|
if (enable != planner.abl_enabled) {
|
|
planner.abl_enabled = !planner.abl_enabled;
|
|
if (!planner.abl_enabled)
|
|
set_current_from_steppers_for_axis(
|
|
#if ABL_PLANAR
|
|
ALL_AXES
|
|
#else
|
|
Z_AXIS
|
|
#endif
|
|
);
|
|
else
|
|
planner.unapply_leveling(current_position);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* Reset calibration results to zero.
|
|
*/
|
|
void reset_bed_level() {
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
if (mbl.has_mesh()) {
|
|
set_bed_leveling_enabled(false);
|
|
mbl.reset();
|
|
mbl.set_has_mesh(false);
|
|
}
|
|
#else
|
|
planner.abl_enabled = false;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
|
|
#endif
|
|
#if ABL_PLANAR
|
|
planner.bed_level_matrix.set_to_identity();
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
|
|
for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
|
|
bed_level_grid[x][y] = 1000.0;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#endif // PLANNER_LEVELING
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
/**
|
|
* Extrapolate a single point from its neighbors
|
|
*/
|
|
static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("Extrapolate [");
|
|
if (x < 10) SERIAL_CHAR(' ');
|
|
SERIAL_ECHO((int)x);
|
|
SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
|
|
SERIAL_CHAR(' ');
|
|
if (y < 10) SERIAL_CHAR(' ');
|
|
SERIAL_ECHO((int)y);
|
|
SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
|
|
SERIAL_ECHOLN(']');
|
|
}
|
|
#endif
|
|
if (bed_level_grid[x][y] < 999.0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
|
|
#endif
|
|
return; // Don't overwrite good values.
|
|
}
|
|
|
|
// Get X neighbors, Y neighbors, and XY neighbors
|
|
float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
|
|
b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
|
|
c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
|
|
|
|
// Treat far unprobed points as zero, near as equal to far
|
|
if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
|
|
if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
|
|
if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
|
|
|
|
float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
|
|
|
|
// Take the average intstead of the median
|
|
bed_level_grid[x][y] = (a + b + c) / 3.0;
|
|
|
|
// Median is robust (ignores outliers).
|
|
// bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
|
|
// : ((c < b) ? b : (a < c) ? a : c);
|
|
}
|
|
|
|
#define EXTRAPOLATE_FROM_EDGE
|
|
|
|
#if ENABLED(EXTRAPOLATE_FROM_EDGE)
|
|
#if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
|
|
#define HALF_IN_X
|
|
#elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
|
|
#define HALF_IN_Y
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* Fill in the unprobed points (corners of circular print surface)
|
|
* using linear extrapolation, away from the center.
|
|
*/
|
|
static void extrapolate_unprobed_bed_level() {
|
|
#ifdef HALF_IN_X
|
|
const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
|
|
#else
|
|
const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
|
|
ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
|
|
xlen = ctrx1;
|
|
#endif
|
|
|
|
#ifdef HALF_IN_Y
|
|
const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
|
|
#else
|
|
const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
|
|
ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
|
|
ylen = ctry1;
|
|
#endif
|
|
|
|
for (uint8_t xo = 0; xo <= xlen; xo++)
|
|
for (uint8_t yo = 0; yo <= ylen; yo++) {
|
|
uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
|
|
#ifndef HALF_IN_X
|
|
uint8_t x1 = ctrx1 - xo;
|
|
#endif
|
|
#ifndef HALF_IN_Y
|
|
uint8_t y1 = ctry1 - yo;
|
|
#ifndef HALF_IN_X
|
|
extrapolate_one_point(x1, y1, +1, +1); // left-below + +
|
|
#endif
|
|
extrapolate_one_point(x2, y1, -1, +1); // right-below - +
|
|
#endif
|
|
#ifndef HALF_IN_X
|
|
extrapolate_one_point(x1, y2, +1, -1); // left-above + -
|
|
#endif
|
|
extrapolate_one_point(x2, y2, -1, -1); // right-above - -
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Print calibration results for plotting or manual frame adjustment.
|
|
*/
|
|
static void print_bed_level() {
|
|
SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
if (x < 10) SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL((int)x);
|
|
}
|
|
SERIAL_EOL;
|
|
for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
|
|
if (y < 9) SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL(y);
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
float offset = bed_level_grid[x][y];
|
|
if (offset < 999.0) {
|
|
if (offset > 0) SERIAL_CHAR('+');
|
|
SERIAL_PROTOCOL_F(offset, 2);
|
|
}
|
|
else
|
|
SERIAL_PROTOCOLPGM(" ====");
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
|
|
/**
|
|
* Home an individual linear axis
|
|
*/
|
|
static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
|
|
SERIAL_ECHOPAIR(", ", distance);
|
|
SERIAL_ECHOPAIR(", ", fr_mm_s);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
|
|
if (deploy_bltouch) set_bltouch_deployed(true);
|
|
#endif
|
|
|
|
// Tell the planner we're at Z=0
|
|
current_position[axis] = 0;
|
|
|
|
#if IS_SCARA
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
current_position[axis] = distance;
|
|
inverse_kinematics(current_position);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
|
|
#else
|
|
sync_plan_position();
|
|
current_position[axis] = distance;
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
|
|
#endif
|
|
|
|
stepper.synchronize();
|
|
|
|
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
if (deploy_bltouch) set_bltouch_deployed(false);
|
|
#endif
|
|
|
|
endstops.hit_on_purpose();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Home an individual "raw axis" to its endstop.
|
|
* This applies to XYZ on Cartesian and Core robots, and
|
|
* to the individual ABC steppers on DELTA and SCARA.
|
|
*
|
|
* At the end of the procedure the axis is marked as
|
|
* homed and the current position of that axis is updated.
|
|
* Kinematic robots should wait till all axes are homed
|
|
* before updating the current position.
|
|
*/
|
|
|
|
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
|
|
|
|
static void homeaxis(AxisEnum axis) {
|
|
|
|
#if IS_SCARA
|
|
// Only Z homing (with probe) is permitted
|
|
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
|
|
#else
|
|
#define CAN_HOME(A) \
|
|
(axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
|
|
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
int axis_home_dir =
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
(axis == X_AXIS) ? x_home_dir(active_extruder) :
|
|
#endif
|
|
home_dir(axis);
|
|
|
|
// Homing Z towards the bed? Deploy the Z probe or endstop.
|
|
#if HOMING_Z_WITH_PROBE
|
|
if (axis == Z_AXIS && DEPLOY_PROBE()) return;
|
|
#endif
|
|
|
|
// Set a flag for Z motor locking
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
if (axis == Z_AXIS) stepper.set_homing_flag(true);
|
|
#endif
|
|
|
|
// Fast move towards endstop until triggered
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
|
|
#endif
|
|
do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
|
|
|
|
// When homing Z with probe respect probe clearance
|
|
const float bump = axis_home_dir * (
|
|
#if HOMING_Z_WITH_PROBE
|
|
(axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
|
|
#endif
|
|
home_bump_mm(axis)
|
|
);
|
|
|
|
// If a second homing move is configured...
|
|
if (bump) {
|
|
// Move away from the endstop by the axis HOME_BUMP_MM
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
|
|
#endif
|
|
do_homing_move(axis, -bump);
|
|
|
|
// Slow move towards endstop until triggered
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
|
|
#endif
|
|
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
|
|
}
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
if (axis == Z_AXIS) {
|
|
float adj = fabs(z_endstop_adj);
|
|
bool lockZ1;
|
|
if (axis_home_dir > 0) {
|
|
adj = -adj;
|
|
lockZ1 = (z_endstop_adj > 0);
|
|
}
|
|
else
|
|
lockZ1 = (z_endstop_adj < 0);
|
|
|
|
if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
|
|
|
|
// Move to the adjusted endstop height
|
|
do_homing_move(axis, adj);
|
|
|
|
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
|
|
stepper.set_homing_flag(false);
|
|
} // Z_AXIS
|
|
#endif
|
|
|
|
#if IS_SCARA
|
|
|
|
set_axis_is_at_home(axis);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
#elif ENABLED(DELTA)
|
|
|
|
// Delta has already moved all three towers up in G28
|
|
// so here it re-homes each tower in turn.
|
|
// Delta homing treats the axes as normal linear axes.
|
|
|
|
// retrace by the amount specified in endstop_adj
|
|
if (endstop_adj[axis] * Z_HOME_DIR < 0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
|
|
#endif
|
|
do_homing_move(axis, endstop_adj[axis]);
|
|
}
|
|
|
|
#else
|
|
|
|
// For cartesian/core machines,
|
|
// set the axis to its home position
|
|
set_axis_is_at_home(axis);
|
|
sync_plan_position();
|
|
|
|
destination[axis] = current_position[axis];
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// Put away the Z probe
|
|
#if HOMING_Z_WITH_PROBE
|
|
if (axis == Z_AXIS && STOW_PROBE()) return;
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
} // homeaxis()
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
void retract(bool retracting, bool swapping = false) {
|
|
|
|
if (retracting == retracted[active_extruder]) return;
|
|
|
|
float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
set_destination_to_current();
|
|
|
|
if (retracting) {
|
|
|
|
feedrate_mm_s = retract_feedrate_mm_s;
|
|
current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
|
|
sync_plan_position_e();
|
|
prepare_move_to_destination();
|
|
|
|
if (retract_zlift > 0.01) {
|
|
current_position[Z_AXIS] -= retract_zlift;
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
prepare_move_to_destination();
|
|
}
|
|
}
|
|
else {
|
|
|
|
if (retract_zlift > 0.01) {
|
|
current_position[Z_AXIS] += retract_zlift;
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
}
|
|
|
|
feedrate_mm_s = retract_recover_feedrate_mm_s;
|
|
float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
|
|
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
|
|
sync_plan_position_e();
|
|
prepare_move_to_destination();
|
|
}
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
retracted[active_extruder] = retracting;
|
|
|
|
} // retract()
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
void normalize_mix() {
|
|
float mix_total = 0.0;
|
|
for (int i = 0; i < MIXING_STEPPERS; i++) {
|
|
float v = mixing_factor[i];
|
|
if (v < 0) v = mixing_factor[i] = 0;
|
|
mix_total += v;
|
|
}
|
|
// Scale all values if they don't add up to ~1.0
|
|
if (mix_total < 0.9999 || mix_total > 1.0001) {
|
|
SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
|
|
float mix_scale = 1.0 / mix_total;
|
|
for (int i = 0; i < MIXING_STEPPERS; i++)
|
|
mixing_factor[i] *= mix_scale;
|
|
}
|
|
}
|
|
|
|
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
// Get mixing parameters from the GCode
|
|
// Factors that are left out are set to 0
|
|
// The total "must" be 1.0 (but it will be normalized)
|
|
void gcode_get_mix() {
|
|
const char* mixing_codes = "ABCDHI";
|
|
for (int i = 0; i < MIXING_STEPPERS; i++)
|
|
mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
|
|
|
|
normalize_mix();
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
/**
|
|
* ***************************************************************************
|
|
* ***************************** G-CODE HANDLING *****************************
|
|
* ***************************************************************************
|
|
*/
|
|
|
|
/**
|
|
* Set XYZE destination and feedrate from the current GCode command
|
|
*
|
|
* - Set destination from included axis codes
|
|
* - Set to current for missing axis codes
|
|
* - Set the feedrate, if included
|
|
*/
|
|
void gcode_get_destination() {
|
|
LOOP_XYZE(i) {
|
|
if (code_seen(axis_codes[i]))
|
|
destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
|
|
else
|
|
destination[i] = current_position[i];
|
|
}
|
|
|
|
if (code_seen('F') && code_value_linear_units() > 0.0)
|
|
feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
if (!DEBUGGING(DRYRUN))
|
|
print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
|
|
#endif
|
|
|
|
// Get ABCDHI mixing factors
|
|
#if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
|
|
gcode_get_mix();
|
|
#endif
|
|
}
|
|
|
|
void unknown_command_error() {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
}
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
/**
|
|
* Output a "busy" message at regular intervals
|
|
* while the machine is not accepting commands.
|
|
*/
|
|
void host_keepalive() {
|
|
millis_t ms = millis();
|
|
if (host_keepalive_interval && busy_state != NOT_BUSY) {
|
|
if (PENDING(ms, next_busy_signal_ms)) return;
|
|
switch (busy_state) {
|
|
case IN_HANDLER:
|
|
case IN_PROCESS:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
|
|
break;
|
|
case PAUSED_FOR_USER:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
|
|
break;
|
|
case PAUSED_FOR_INPUT:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
|
|
}
|
|
|
|
#endif //HOST_KEEPALIVE_FEATURE
|
|
|
|
bool position_is_reachable(float target[XYZ]
|
|
#if HAS_BED_PROBE
|
|
, bool by_probe=false
|
|
#endif
|
|
) {
|
|
float dx = RAW_X_POSITION(target[X_AXIS]),
|
|
dy = RAW_Y_POSITION(target[Y_AXIS]);
|
|
|
|
#if HAS_BED_PROBE
|
|
if (by_probe) {
|
|
dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
}
|
|
#endif
|
|
|
|
#if IS_SCARA
|
|
#if MIDDLE_DEAD_ZONE_R > 0
|
|
const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
|
|
return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
|
|
#else
|
|
return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
|
|
#endif
|
|
#elif ENABLED(DELTA)
|
|
return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
|
|
#else
|
|
const float dz = RAW_Z_POSITION(target[Z_AXIS]);
|
|
return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
|
|
&& dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
|
|
&& dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
|
|
#endif
|
|
}
|
|
|
|
/**************************************************
|
|
***************** GCode Handlers *****************
|
|
**************************************************/
|
|
|
|
/**
|
|
* G0, G1: Coordinated movement of X Y Z E axes
|
|
*/
|
|
inline void gcode_G0_G1(
|
|
#if IS_SCARA
|
|
bool fast_move=false
|
|
#endif
|
|
) {
|
|
if (IsRunning()) {
|
|
gcode_get_destination(); // For X Y Z E F
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
|
float echange = destination[E_AXIS] - current_position[E_AXIS];
|
|
// Is this move an attempt to retract or recover?
|
|
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
|
|
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
|
|
sync_plan_position_e(); // AND from the planner
|
|
retract(!retracted[active_extruder]);
|
|
return;
|
|
}
|
|
}
|
|
|
|
#endif //FWRETRACT
|
|
|
|
#if IS_SCARA
|
|
fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
|
|
#else
|
|
prepare_move_to_destination();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/**
|
|
* G2: Clockwise Arc
|
|
* G3: Counterclockwise Arc
|
|
*
|
|
* This command has two forms: IJ-form and R-form.
|
|
*
|
|
* - I specifies an X offset. J specifies a Y offset.
|
|
* At least one of the IJ parameters is required.
|
|
* X and Y can be omitted to do a complete circle.
|
|
* The given XY is not error-checked. The arc ends
|
|
* based on the angle of the destination.
|
|
* Mixing I or J with R will throw an error.
|
|
*
|
|
* - R specifies the radius. X or Y is required.
|
|
* Omitting both X and Y will throw an error.
|
|
* X or Y must differ from the current XY.
|
|
* Mixing R with I or J will throw an error.
|
|
*
|
|
* Examples:
|
|
*
|
|
* G2 I10 ; CW circle centered at X+10
|
|
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
|
|
*/
|
|
#if ENABLED(ARC_SUPPORT)
|
|
inline void gcode_G2_G3(bool clockwise) {
|
|
if (IsRunning()) {
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
bool relative_mode_backup = relative_mode;
|
|
relative_mode = true;
|
|
#endif
|
|
|
|
gcode_get_destination();
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
relative_mode = relative_mode_backup;
|
|
#endif
|
|
|
|
float arc_offset[2] = { 0.0, 0.0 };
|
|
if (code_seen('R')) {
|
|
const float r = code_value_axis_units(X_AXIS),
|
|
x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
|
|
x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
|
|
if (r && (x2 != x1 || y2 != y1)) {
|
|
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
|
|
dx = x2 - x1, dy = y2 - y1, // X and Y differences
|
|
d = HYPOT(dx, dy), // Linear distance between the points
|
|
h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
|
|
mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
|
|
sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
|
|
cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
|
|
arc_offset[X_AXIS] = cx - x1;
|
|
arc_offset[Y_AXIS] = cy - y1;
|
|
}
|
|
}
|
|
else {
|
|
if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
|
|
if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
|
|
}
|
|
|
|
if (arc_offset[0] || arc_offset[1]) {
|
|
// Send an arc to the planner
|
|
plan_arc(destination, arc_offset, clockwise);
|
|
refresh_cmd_timeout();
|
|
}
|
|
else {
|
|
// Bad arguments
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* G4: Dwell S<seconds> or P<milliseconds>
|
|
*/
|
|
inline void gcode_G4() {
|
|
millis_t dwell_ms = 0;
|
|
|
|
if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
|
|
if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
|
|
|
|
stepper.synchronize();
|
|
refresh_cmd_timeout();
|
|
dwell_ms += previous_cmd_ms; // keep track of when we started waiting
|
|
|
|
if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
|
|
|
|
while (PENDING(millis(), dwell_ms)) idle();
|
|
}
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
|
/**
|
|
* Parameters interpreted according to:
|
|
* http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
|
|
* However I, J omission is not supported at this point; all
|
|
* parameters can be omitted and default to zero.
|
|
*/
|
|
|
|
/**
|
|
* G5: Cubic B-spline
|
|
*/
|
|
inline void gcode_G5() {
|
|
if (IsRunning()) {
|
|
|
|
gcode_get_destination();
|
|
|
|
float offset[] = {
|
|
code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
|
|
code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
|
|
code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
|
|
code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
|
|
};
|
|
|
|
plan_cubic_move(offset);
|
|
}
|
|
}
|
|
|
|
#endif // BEZIER_CURVE_SUPPORT
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
/**
|
|
* G10 - Retract filament according to settings of M207
|
|
* G11 - Recover filament according to settings of M208
|
|
*/
|
|
inline void gcode_G10_G11(bool doRetract=false) {
|
|
#if EXTRUDERS > 1
|
|
if (doRetract) {
|
|
retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
|
|
}
|
|
#endif
|
|
retract(doRetract
|
|
#if EXTRUDERS > 1
|
|
, retracted_swap[active_extruder]
|
|
#endif
|
|
);
|
|
}
|
|
|
|
#endif //FWRETRACT
|
|
|
|
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
|
/**
|
|
* G12: Clean the nozzle
|
|
*/
|
|
inline void gcode_G12() {
|
|
// Don't allow nozzle cleaning without homing first
|
|
if (axis_unhomed_error(true, true, true)) { return; }
|
|
|
|
uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
|
|
uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
|
|
uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
|
|
|
|
Nozzle::clean(pattern, strokes, objects);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
/**
|
|
* G20: Set input mode to inches
|
|
*/
|
|
inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
|
|
|
|
/**
|
|
* G21: Set input mode to millimeters
|
|
*/
|
|
inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
|
|
#endif
|
|
|
|
#if ENABLED(NOZZLE_PARK_FEATURE)
|
|
/**
|
|
* G27: Park the nozzle
|
|
*/
|
|
inline void gcode_G27() {
|
|
// Don't allow nozzle parking without homing first
|
|
if (axis_unhomed_error(true, true, true)) { return; }
|
|
uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
|
|
Nozzle::park(z_action);
|
|
}
|
|
#endif // NOZZLE_PARK_FEATURE
|
|
|
|
#if ENABLED(QUICK_HOME)
|
|
|
|
static void quick_home_xy() {
|
|
|
|
// Pretend the current position is 0,0
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
|
|
sync_plan_position();
|
|
|
|
int x_axis_home_dir =
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
x_home_dir(active_extruder)
|
|
#else
|
|
home_dir(X_AXIS)
|
|
#endif
|
|
;
|
|
|
|
float mlx = max_length(X_AXIS),
|
|
mly = max_length(Y_AXIS),
|
|
mlratio = mlx > mly ? mly / mlx : mlx / mly,
|
|
fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
|
|
|
|
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
|
|
|
|
}
|
|
|
|
#endif // QUICK_HOME
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
void log_machine_info() {
|
|
SERIAL_ECHOPGM("Machine Type: ");
|
|
#if ENABLED(DELTA)
|
|
SERIAL_ECHOLNPGM("Delta");
|
|
#elif IS_SCARA
|
|
SERIAL_ECHOLNPGM("SCARA");
|
|
#elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
|
|
SERIAL_ECHOLNPGM("Core");
|
|
#else
|
|
SERIAL_ECHOLNPGM("Cartesian");
|
|
#endif
|
|
|
|
SERIAL_ECHOPGM("Probe: ");
|
|
#if ENABLED(FIX_MOUNTED_PROBE)
|
|
SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
|
|
#elif ENABLED(BLTOUCH)
|
|
SERIAL_ECHOLNPGM("BLTOUCH");
|
|
#elif HAS_Z_SERVO_ENDSTOP
|
|
SERIAL_ECHOLNPGM("SERVO PROBE");
|
|
#elif ENABLED(Z_PROBE_SLED)
|
|
SERIAL_ECHOLNPGM("Z_PROBE_SLED");
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
|
|
#else
|
|
SERIAL_ECHOLNPGM("NONE");
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
|
|
#if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
|
|
SERIAL_ECHOPGM(" (Right");
|
|
#elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
|
|
SERIAL_ECHOPGM(" (Left");
|
|
#elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
|
|
SERIAL_ECHOPGM(" (Middle");
|
|
#else
|
|
SERIAL_ECHOPGM(" (Aligned With");
|
|
#endif
|
|
#if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
|
|
SERIAL_ECHOPGM("-Back");
|
|
#elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
|
|
SERIAL_ECHOPGM("-Front");
|
|
#elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
|
|
SERIAL_ECHOPGM("-Center");
|
|
#endif
|
|
if (zprobe_zoffset < 0)
|
|
SERIAL_ECHOPGM(" & Below");
|
|
else if (zprobe_zoffset > 0)
|
|
SERIAL_ECHOPGM(" & Above");
|
|
else
|
|
SERIAL_ECHOPGM(" & Same Z as");
|
|
SERIAL_ECHOLNPGM(" Nozzle)");
|
|
#endif
|
|
|
|
#if HAS_ABL
|
|
SERIAL_ECHOPGM("Auto Bed Leveling: ");
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
SERIAL_ECHOPGM("LINEAR");
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
SERIAL_ECHOPGM("BILINEAR");
|
|
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
SERIAL_ECHOPGM("3POINT");
|
|
#endif
|
|
if (planner.abl_enabled) {
|
|
SERIAL_ECHOLNPGM(" (enabled)");
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
float diff[XYZ] = {
|
|
stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
|
|
stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
|
|
stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
|
|
};
|
|
SERIAL_ECHOPGM("ABL Adjustment X");
|
|
if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
|
|
SERIAL_ECHO(diff[X_AXIS]);
|
|
SERIAL_ECHOPGM(" Y");
|
|
if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
|
|
SERIAL_ECHO(diff[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" Z");
|
|
if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
|
|
SERIAL_ECHO(diff[Z_AXIS]);
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
|
|
#endif
|
|
}
|
|
SERIAL_EOL;
|
|
#elif ENABLED(MESH_BED_LEVELING)
|
|
SERIAL_ECHOPGM("Mesh Bed Leveling");
|
|
if (mbl.active()) {
|
|
SERIAL_ECHOLNPGM(" (enabled)");
|
|
SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
|
|
}
|
|
SERIAL_EOL;
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif // DEBUG_LEVELING_FEATURE
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
/**
|
|
* A delta can only safely home all axes at the same time
|
|
* This is like quick_home_xy() but for 3 towers.
|
|
*/
|
|
inline void home_delta() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
|
|
#endif
|
|
// Init the current position of all carriages to 0,0,0
|
|
memset(current_position, 0, sizeof(current_position));
|
|
sync_plan_position();
|
|
|
|
// Move all carriages together linearly until an endstop is hit.
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
|
|
feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
|
|
line_to_current_position();
|
|
stepper.synchronize();
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
|
|
// At least one carriage has reached the top.
|
|
// Now re-home each carriage separately.
|
|
HOMEAXIS(A);
|
|
HOMEAXIS(B);
|
|
HOMEAXIS(C);
|
|
|
|
// Set all carriages to their home positions
|
|
// Do this here all at once for Delta, because
|
|
// XYZ isn't ABC. Applying this per-tower would
|
|
// give the impression that they are the same.
|
|
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
|
|
#endif
|
|
}
|
|
|
|
#endif // DELTA
|
|
|
|
#if ENABLED(Z_SAFE_HOMING)
|
|
|
|
inline void home_z_safely() {
|
|
|
|
// Disallow Z homing if X or Y are unknown
|
|
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
|
LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
|
|
return;
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
|
|
#endif
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
/**
|
|
* Move the Z probe (or just the nozzle) to the safe homing point
|
|
*/
|
|
destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
|
|
destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
|
|
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
|
|
|
|
if (position_is_reachable(
|
|
destination
|
|
#if HOMING_Z_WITH_PROBE
|
|
, true
|
|
#endif
|
|
)
|
|
) {
|
|
#if HOMING_Z_WITH_PROBE
|
|
destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#endif
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
|
|
#endif
|
|
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
|
|
HOMEAXIS(Z);
|
|
}
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
|
|
#endif
|
|
}
|
|
|
|
#endif // Z_SAFE_HOMING
|
|
|
|
/**
|
|
* G28: Home all axes according to settings
|
|
*
|
|
* Parameters
|
|
*
|
|
* None Home to all axes with no parameters.
|
|
* With QUICK_HOME enabled XY will home together, then Z.
|
|
*
|
|
* Cartesian parameters
|
|
*
|
|
* X Home to the X endstop
|
|
* Y Home to the Y endstop
|
|
* Z Home to the Z endstop
|
|
*
|
|
*/
|
|
inline void gcode_G28() {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM(">>> gcode_G28");
|
|
log_machine_info();
|
|
}
|
|
#endif
|
|
|
|
// Wait for planner moves to finish!
|
|
stepper.synchronize();
|
|
|
|
// For auto bed leveling, clear the level matrix
|
|
#if HAS_ABL
|
|
reset_bed_level();
|
|
#endif
|
|
|
|
// Always home with tool 0 active
|
|
#if HOTENDS > 1
|
|
uint8_t old_tool_index = active_extruder;
|
|
tool_change(0, 0, true);
|
|
#endif
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
extruder_duplication_enabled = false;
|
|
#endif
|
|
|
|
/**
|
|
* For mesh bed leveling deactivate the mesh calculations, will be turned
|
|
* on again when homing all axis
|
|
*/
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
float pre_home_z = MESH_HOME_SEARCH_Z;
|
|
if (mbl.active()) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
|
|
#endif
|
|
// Save known Z position if already homed
|
|
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
|
|
pre_home_z = current_position[Z_AXIS];
|
|
pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
|
|
}
|
|
mbl.set_active(false);
|
|
current_position[Z_AXIS] = pre_home_z;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
|
|
#endif
|
|
endstops.enable(true); // Enable endstops for next homing move
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
home_delta();
|
|
|
|
#else // NOT DELTA
|
|
|
|
bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
|
|
|
|
home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
|
|
|
|
set_destination_to_current();
|
|
|
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
|
|
if (home_all_axis || homeZ) {
|
|
HOMEAXIS(Z);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
|
|
#endif
|
|
}
|
|
|
|
#else
|
|
|
|
if (home_all_axis || homeX || homeY) {
|
|
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
|
destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
|
|
if (destination[Z_AXIS] > current_position[Z_AXIS]) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING))
|
|
SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
|
|
#endif
|
|
|
|
do_blocking_move_to_z(destination[Z_AXIS]);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(QUICK_HOME)
|
|
|
|
if (home_all_axis || (homeX && homeY)) quick_home_xy();
|
|
|
|
#endif
|
|
|
|
#if ENABLED(HOME_Y_BEFORE_X)
|
|
|
|
// Home Y
|
|
if (home_all_axis || homeY) {
|
|
HOMEAXIS(Y);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
// Home X
|
|
if (home_all_axis || homeX) {
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
int tmp_extruder = active_extruder;
|
|
active_extruder = !active_extruder;
|
|
HOMEAXIS(X);
|
|
inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
|
|
active_extruder = tmp_extruder;
|
|
HOMEAXIS(X);
|
|
// reset state used by the different modes
|
|
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
|
delayed_move_time = 0;
|
|
active_extruder_parked = true;
|
|
#else
|
|
HOMEAXIS(X);
|
|
#endif
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
|
|
#endif
|
|
}
|
|
|
|
#if DISABLED(HOME_Y_BEFORE_X)
|
|
// Home Y
|
|
if (home_all_axis || homeY) {
|
|
HOMEAXIS(Y);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Home Z last if homing towards the bed
|
|
#if Z_HOME_DIR < 0
|
|
if (home_all_axis || homeZ) {
|
|
#if ENABLED(Z_SAFE_HOMING)
|
|
home_z_safely();
|
|
#else
|
|
HOMEAXIS(Z);
|
|
#endif
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
|
|
#endif
|
|
} // home_all_axis || homeZ
|
|
#endif // Z_HOME_DIR < 0
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
#endif // !DELTA (gcode_G28)
|
|
|
|
endstops.not_homing();
|
|
|
|
#if ENABLED(DELTA)
|
|
// move to a height where we can use the full xy-area
|
|
do_blocking_move_to_z(delta_clip_start_height);
|
|
#endif
|
|
|
|
// Enable mesh leveling again
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
if (mbl.has_mesh()) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
|
|
#endif
|
|
if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
|
|
#endif
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
|
|
#if Z_HOME_DIR > 0
|
|
+ Z_MAX_POS
|
|
#endif
|
|
;
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
mbl.set_active(true);
|
|
#if ENABLED(MESH_G28_REST_ORIGIN)
|
|
current_position[Z_AXIS] = 0.0;
|
|
set_destination_to_current();
|
|
line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
|
|
stepper.synchronize();
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
|
|
#endif
|
|
#else
|
|
planner.unapply_leveling(current_position);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
|
|
#endif
|
|
#endif
|
|
}
|
|
else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
|
|
current_position[Z_AXIS] = pre_home_z;
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
mbl.set_active(true);
|
|
planner.unapply_leveling(current_position);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
|
|
#endif
|
|
|
|
// Restore the active tool after homing
|
|
#if HOTENDS > 1
|
|
tool_change(old_tool_index, 0, true);
|
|
#endif
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#if HAS_PROBING_PROCEDURE
|
|
|
|
void out_of_range_error(const char* p_edge) {
|
|
SERIAL_PROTOCOLPGM("?Probe ");
|
|
serialprintPGM(p_edge);
|
|
SERIAL_PROTOCOLLNPGM(" position out of range.");
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
inline void _mbl_goto_xy(float x, float y) {
|
|
float old_feedrate_mm_s = feedrate_mm_s;
|
|
feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
|
|
#if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
|
|
+ Z_CLEARANCE_BETWEEN_PROBES
|
|
#elif Z_HOMING_HEIGHT > 0
|
|
+ Z_HOMING_HEIGHT
|
|
#endif
|
|
;
|
|
line_to_current_position();
|
|
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(x);
|
|
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
|
|
line_to_current_position();
|
|
|
|
#if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
|
|
current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
|
|
line_to_current_position();
|
|
#endif
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
stepper.synchronize();
|
|
}
|
|
|
|
/**
|
|
* G29: Mesh-based Z probe, probes a grid and produces a
|
|
* mesh to compensate for variable bed height
|
|
*
|
|
* Parameters With MESH_BED_LEVELING:
|
|
*
|
|
* S0 Produce a mesh report
|
|
* S1 Start probing mesh points
|
|
* S2 Probe the next mesh point
|
|
* S3 Xn Yn Zn.nn Manually modify a single point
|
|
* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
|
|
* S5 Reset and disable mesh
|
|
*
|
|
* The S0 report the points as below
|
|
*
|
|
* +----> X-axis 1-n
|
|
* |
|
|
* |
|
|
* v Y-axis 1-n
|
|
*
|
|
*/
|
|
inline void gcode_G29() {
|
|
|
|
static int probe_point = -1;
|
|
MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
|
|
if (state < 0 || state > 5) {
|
|
SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
|
|
return;
|
|
}
|
|
|
|
int8_t px, py;
|
|
|
|
switch (state) {
|
|
case MeshReport:
|
|
if (mbl.has_mesh()) {
|
|
SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
|
|
SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
|
|
SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
|
|
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
|
|
for (px = 0; px < MESH_NUM_X_POINTS; px++) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
else
|
|
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
|
|
break;
|
|
|
|
case MeshStart:
|
|
mbl.reset();
|
|
probe_point = 0;
|
|
enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
|
|
break;
|
|
|
|
case MeshNext:
|
|
if (probe_point < 0) {
|
|
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
|
|
return;
|
|
}
|
|
// For each G29 S2...
|
|
if (probe_point == 0) {
|
|
// For the initial G29 S2 make Z a positive value (e.g., 4.0)
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
|
|
#if Z_HOME_DIR > 0
|
|
+ Z_MAX_POS
|
|
#endif
|
|
;
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
}
|
|
else {
|
|
// For G29 S2 after adjusting Z.
|
|
mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
|
|
}
|
|
// If there's another point to sample, move there with optional lift.
|
|
if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
|
|
mbl.zigzag(probe_point, px, py);
|
|
_mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
|
|
probe_point++;
|
|
}
|
|
else {
|
|
// One last "return to the bed" (as originally coded) at completion
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
|
|
#if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
|
|
+ Z_CLEARANCE_BETWEEN_PROBES
|
|
#elif Z_HOMING_HEIGHT > 0
|
|
+ Z_HOMING_HEIGHT
|
|
#endif
|
|
;
|
|
line_to_current_position();
|
|
stepper.synchronize();
|
|
|
|
// After recording the last point, activate the mbl and home
|
|
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
|
|
probe_point = -1;
|
|
mbl.set_has_mesh(true);
|
|
enqueue_and_echo_commands_P(PSTR("G28"));
|
|
}
|
|
break;
|
|
|
|
case MeshSet:
|
|
if (code_seen('X')) {
|
|
px = code_value_int() - 1;
|
|
if (px < 0 || px >= MESH_NUM_X_POINTS) {
|
|
SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("X not entered.");
|
|
return;
|
|
}
|
|
if (code_seen('Y')) {
|
|
py = code_value_int() - 1;
|
|
if (py < 0 || py >= MESH_NUM_Y_POINTS) {
|
|
SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("Y not entered.");
|
|
return;
|
|
}
|
|
if (code_seen('Z')) {
|
|
mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("Z not entered.");
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case MeshSetZOffset:
|
|
if (code_seen('Z')) {
|
|
mbl.z_offset = code_value_axis_units(Z_AXIS);
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("Z not entered.");
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case MeshReset:
|
|
if (mbl.active()) {
|
|
current_position[Z_AXIS] +=
|
|
mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
|
|
mbl.reset();
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
}
|
|
else
|
|
mbl.reset();
|
|
|
|
} // switch(state)
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#elif HAS_ABL
|
|
|
|
/**
|
|
* G29: Detailed Z probe, probes the bed at 3 or more points.
|
|
* Will fail if the printer has not been homed with G28.
|
|
*
|
|
* Enhanced G29 Auto Bed Leveling Probe Routine
|
|
*
|
|
* Parameters With ABL_GRID:
|
|
*
|
|
* P Set the size of the grid that will be probed (P x P points).
|
|
* Not supported by non-linear delta printer bed leveling.
|
|
* Example: "G29 P4"
|
|
*
|
|
* S Set the XY travel speed between probe points (in units/min)
|
|
*
|
|
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
|
|
* or clean the rotation Matrix. Useful to check the topology
|
|
* after a first run of G29.
|
|
*
|
|
* V Set the verbose level (0-4). Example: "G29 V3"
|
|
*
|
|
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
|
* This is useful for manual bed leveling and finding flaws in the bed (to
|
|
* assist with part placement).
|
|
* Not supported by non-linear delta printer bed leveling.
|
|
*
|
|
* F Set the Front limit of the probing grid
|
|
* B Set the Back limit of the probing grid
|
|
* L Set the Left limit of the probing grid
|
|
* R Set the Right limit of the probing grid
|
|
*
|
|
* Global Parameters:
|
|
*
|
|
* E/e By default G29 will engage the Z probe, test the bed, then disengage.
|
|
* Include "E" to engage/disengage the Z probe for each sample.
|
|
* There's no extra effect if you have a fixed Z probe.
|
|
* Usage: "G29 E" or "G29 e"
|
|
*
|
|
*/
|
|
inline void gcode_G29() {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
bool query = code_seen('Q');
|
|
uint8_t old_debug_flags = marlin_debug_flags;
|
|
if (query) marlin_debug_flags |= DEBUG_LEVELING;
|
|
if (DEBUGGING(LEVELING)) {
|
|
DEBUG_POS(">>> gcode_G29", current_position);
|
|
log_machine_info();
|
|
}
|
|
marlin_debug_flags = old_debug_flags;
|
|
if (query) return;
|
|
#endif
|
|
|
|
// Don't allow auto-leveling without homing first
|
|
if (axis_unhomed_error(true, true, true)) return;
|
|
|
|
int verbose_level = code_seen('V') ? code_value_int() : 1;
|
|
if (verbose_level < 0 || verbose_level > 4) {
|
|
SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
|
|
return;
|
|
}
|
|
|
|
bool dryrun = code_seen('D'),
|
|
stow_probe_after_each = code_seen('E');
|
|
|
|
#if ABL_GRID
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
|
|
if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
|
|
}
|
|
|
|
#if ABL_PLANAR
|
|
|
|
bool do_topography_map = verbose_level > 2 || code_seen('T');
|
|
|
|
// X and Y specify points in each direction, overriding the default
|
|
// These values may be saved with the completed mesh
|
|
int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X,
|
|
abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y;
|
|
|
|
if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
|
|
|
|
if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
|
|
SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
|
|
return;
|
|
}
|
|
|
|
#else
|
|
|
|
const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y;
|
|
|
|
#endif
|
|
|
|
xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
|
|
|
|
int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
|
|
right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
|
|
front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
|
|
back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
|
|
|
|
bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
|
|
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
|
|
right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
|
|
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
|
front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
|
|
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
|
|
back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
|
|
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
|
|
|
|
if (left_out || right_out || front_out || back_out) {
|
|
if (left_out) {
|
|
out_of_range_error(PSTR("(L)eft"));
|
|
left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
|
|
}
|
|
if (right_out) {
|
|
out_of_range_error(PSTR("(R)ight"));
|
|
right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
if (front_out) {
|
|
out_of_range_error(PSTR("(F)ront"));
|
|
front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
|
|
}
|
|
if (back_out) {
|
|
out_of_range_error(PSTR("(B)ack"));
|
|
back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
#endif // ABL_GRID
|
|
|
|
stepper.synchronize();
|
|
|
|
// Disable auto bed leveling during G29
|
|
bool abl_should_enable = planner.abl_enabled;
|
|
|
|
planner.abl_enabled = false;
|
|
|
|
if (!dryrun) {
|
|
// Re-orient the current position without leveling
|
|
// based on where the steppers are positioned.
|
|
set_current_from_steppers_for_axis(ALL_AXES);
|
|
|
|
// Sync the planner to where the steppers stopped
|
|
planner.sync_from_steppers();
|
|
}
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
// Deploy the probe. Probe will raise if needed.
|
|
if (DEPLOY_PROBE()) {
|
|
planner.abl_enabled = abl_should_enable;
|
|
return;
|
|
}
|
|
|
|
float xProbe = 0, yProbe = 0, measured_z = 0;
|
|
|
|
#if ABL_GRID
|
|
|
|
// probe at the points of a lattice grid
|
|
const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
|
|
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
float zoffset = zprobe_zoffset;
|
|
if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
|
|
|
|
if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
|
|
|| yGridSpacing != bilinear_grid_spacing[Y_AXIS]
|
|
|| left_probe_bed_position != bilinear_start[X_AXIS]
|
|
|| front_probe_bed_position != bilinear_start[Y_AXIS]
|
|
) {
|
|
bilinear_grid_spacing[X_AXIS] = xGridSpacing;
|
|
bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
|
|
bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
|
|
bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
|
|
// Can't re-enable (on error) until the new grid is written
|
|
abl_should_enable = false;
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
|
/**
|
|
* solve the plane equation ax + by + d = z
|
|
* A is the matrix with rows [x y 1] for all the probed points
|
|
* B is the vector of the Z positions
|
|
* the normal vector to the plane is formed by the coefficients of the
|
|
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
*/
|
|
|
|
int abl2 = abl_grid_points_x * abl_grid_points_y,
|
|
indexIntoAB[abl_grid_points_x][abl_grid_points_y],
|
|
probePointCounter = -1;
|
|
|
|
float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
|
eqnBVector[abl2], // "B" vector of Z points
|
|
mean = 0.0;
|
|
|
|
#endif // AUTO_BED_LEVELING_LINEAR
|
|
|
|
#if ENABLED(PROBE_Y_FIRST)
|
|
#define PR_OUTER_VAR xCount
|
|
#define PR_OUTER_END abl_grid_points_x
|
|
#define PR_INNER_VAR yCount
|
|
#define PR_INNER_END abl_grid_points_y
|
|
#else
|
|
#define PR_OUTER_VAR yCount
|
|
#define PR_OUTER_END abl_grid_points_y
|
|
#define PR_INNER_VAR xCount
|
|
#define PR_INNER_END abl_grid_points_x
|
|
#endif
|
|
|
|
bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
|
|
|
|
// Outer loop is Y with PROBE_Y_FIRST disabled
|
|
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
|
|
|
|
int8_t inStart, inStop, inInc;
|
|
|
|
if (zig) { // away from origin
|
|
inStart = 0;
|
|
inStop = PR_INNER_END;
|
|
inInc = 1;
|
|
}
|
|
else { // towards origin
|
|
inStart = PR_INNER_END - 1;
|
|
inStop = -1;
|
|
inInc = -1;
|
|
}
|
|
|
|
zig = !zig; // zag
|
|
|
|
// Inner loop is Y with PROBE_Y_FIRST enabled
|
|
for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
|
|
|
|
float xBase = left_probe_bed_position + xGridSpacing * xCount,
|
|
yBase = front_probe_bed_position + yGridSpacing * yCount;
|
|
|
|
xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
|
|
yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
indexIntoAB[xCount][yCount] = ++probePointCounter;
|
|
#endif
|
|
|
|
#if IS_KINEMATIC
|
|
// Avoid probing outside the round or hexagonal area
|
|
float pos[XYZ] = { xProbe, yProbe, 0 };
|
|
if (!position_is_reachable(pos, true)) continue;
|
|
#endif
|
|
|
|
measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
|
|
|
if (measured_z == NAN) {
|
|
planner.abl_enabled = abl_should_enable;
|
|
return;
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
|
mean += measured_z;
|
|
eqnBVector[probePointCounter] = measured_z;
|
|
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
|
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
|
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
bed_level_grid[xCount][yCount] = measured_z + zoffset;
|
|
|
|
#endif
|
|
|
|
idle();
|
|
|
|
} //xProbe
|
|
} //yProbe
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
|
|
#endif
|
|
|
|
// Probe at 3 arbitrary points
|
|
vector_3 points[3] = {
|
|
vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
|
|
vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
|
|
vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
|
|
};
|
|
|
|
for (uint8_t i = 0; i < 3; ++i) {
|
|
// Retain the last probe position
|
|
xProbe = LOGICAL_X_POSITION(points[i].x);
|
|
yProbe = LOGICAL_Y_POSITION(points[i].y);
|
|
measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
|
}
|
|
|
|
if (measured_z == NAN) {
|
|
planner.abl_enabled = abl_should_enable;
|
|
return;
|
|
}
|
|
|
|
if (!dryrun) {
|
|
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
|
|
if (planeNormal.z < 0) {
|
|
planeNormal.x *= -1;
|
|
planeNormal.y *= -1;
|
|
planeNormal.z *= -1;
|
|
}
|
|
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
// Can't re-enable (on error) until the new grid is written
|
|
abl_should_enable = false;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_3POINT
|
|
|
|
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
|
|
if (STOW_PROBE()) {
|
|
planner.abl_enabled = abl_should_enable;
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Unless this is a dry run, auto bed leveling will
|
|
// definitely be enabled after this point
|
|
//
|
|
|
|
// Restore state after probing
|
|
clean_up_after_endstop_or_probe_move();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
|
|
#endif
|
|
|
|
// Calculate leveling, print reports, correct the position
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
if (!dryrun) extrapolate_unprobed_bed_level();
|
|
print_bed_level();
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
|
// For LINEAR leveling calculate matrix, print reports, correct the position
|
|
|
|
// solve lsq problem
|
|
float plane_equation_coefficients[3];
|
|
qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
|
|
|
|
mean /= abl2;
|
|
|
|
if (verbose_level) {
|
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
|
SERIAL_PROTOCOLPGM(" b: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
|
SERIAL_PROTOCOLPGM(" d: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
|
SERIAL_EOL;
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
|
SERIAL_PROTOCOL_F(mean, 8);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
// Create the matrix but don't correct the position yet
|
|
if (!dryrun) {
|
|
planner.bed_level_matrix = matrix_3x3::create_look_at(
|
|
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
|
|
);
|
|
}
|
|
|
|
// Show the Topography map if enabled
|
|
if (do_topography_map) {
|
|
|
|
SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
|
|
" +--- BACK --+\n"
|
|
" | |\n"
|
|
" L | (+) | R\n"
|
|
" E | | I\n"
|
|
" F | (-) N (+) | G\n"
|
|
" T | | H\n"
|
|
" | (-) | T\n"
|
|
" | |\n"
|
|
" O-- FRONT --+\n"
|
|
" (0,0)");
|
|
|
|
float min_diff = 999;
|
|
|
|
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
|
|
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
|
|
int ind = indexIntoAB[xx][yy];
|
|
float diff = eqnBVector[ind] - mean,
|
|
x_tmp = eqnAMatrix[ind + 0 * abl2],
|
|
y_tmp = eqnAMatrix[ind + 1 * abl2],
|
|
z_tmp = 0;
|
|
|
|
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
|
|
|
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
|
|
|
|
if (diff >= 0.0)
|
|
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
|
else
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
} // xx
|
|
SERIAL_EOL;
|
|
} // yy
|
|
SERIAL_EOL;
|
|
|
|
if (verbose_level > 3) {
|
|
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
|
|
|
|
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
|
|
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
|
|
int ind = indexIntoAB[xx][yy];
|
|
float x_tmp = eqnAMatrix[ind + 0 * abl2],
|
|
y_tmp = eqnAMatrix[ind + 1 * abl2],
|
|
z_tmp = 0;
|
|
|
|
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
|
|
|
float diff = eqnBVector[ind] - z_tmp - min_diff;
|
|
if (diff >= 0.0)
|
|
SERIAL_PROTOCOLPGM(" +");
|
|
// Include + for column alignment
|
|
else
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
} // xx
|
|
SERIAL_EOL;
|
|
} // yy
|
|
SERIAL_EOL;
|
|
}
|
|
} //do_topography_map
|
|
|
|
#endif // AUTO_BED_LEVELING_LINEAR
|
|
|
|
#if ABL_PLANAR
|
|
|
|
// For LINEAR and 3POINT leveling correct the current position
|
|
|
|
if (verbose_level > 0)
|
|
planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
|
|
|
|
if (!dryrun) {
|
|
//
|
|
// Correct the current XYZ position based on the tilted plane.
|
|
//
|
|
|
|
// 1. Get the distance from the current position to the reference point.
|
|
float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
|
|
y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
|
|
z_real = current_position[Z_AXIS],
|
|
z_zero = 0;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
|
|
#endif
|
|
|
|
matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
|
|
|
|
// 2. Apply the inverse matrix to the distance
|
|
// from the reference point to X, Y, and zero.
|
|
apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
|
|
|
|
// 3. Get the matrix-based corrected Z.
|
|
// (Even if not used, get it for comparison.)
|
|
float new_z = z_real + z_zero;
|
|
|
|
// 4. Use the last measured distance to the bed, if possible
|
|
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
|
|
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
|
|
) {
|
|
float simple_z = z_real - (measured_z - (-zprobe_zoffset));
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("Z from Probe:", simple_z);
|
|
SERIAL_ECHOPAIR(" Matrix:", new_z);
|
|
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
|
|
}
|
|
#endif
|
|
new_z = simple_z;
|
|
}
|
|
|
|
// 5. The rotated XY and corrected Z are now current_position
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
|
|
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
|
|
current_position[Z_AXIS] = new_z;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
|
|
#endif
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
if (!dryrun) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
|
|
#endif
|
|
|
|
// Unapply the offset because it is going to be immediately applied
|
|
// and cause compensation movement in Z
|
|
current_position[Z_AXIS] -= bilinear_z_offset(current_position);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
#endif // ABL_PLANAR
|
|
|
|
#ifdef Z_PROBE_END_SCRIPT
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
|
|
#endif
|
|
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
|
|
stepper.synchronize();
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
|
|
#endif
|
|
|
|
report_current_position();
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
// Auto Bed Leveling is complete! Enable if possible.
|
|
planner.abl_enabled = dryrun ? abl_should_enable : true;
|
|
|
|
if (planner.abl_enabled)
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
}
|
|
|
|
#endif // HAS_ABL
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
/**
|
|
* G30: Do a single Z probe at the current XY
|
|
*/
|
|
inline void gcode_G30() {
|
|
|
|
// Disable leveling so the planner won't mess with us
|
|
#if PLANNER_LEVELING
|
|
set_bed_leveling_enabled(false);
|
|
#endif
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
|
|
current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
|
true, 1);
|
|
|
|
SERIAL_PROTOCOLPGM("Bed X: ");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL(measured_z + 0.0001);
|
|
SERIAL_EOL;
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
/**
|
|
* G31: Deploy the Z probe
|
|
*/
|
|
inline void gcode_G31() { DEPLOY_PROBE(); }
|
|
|
|
/**
|
|
* G32: Stow the Z probe
|
|
*/
|
|
inline void gcode_G32() { STOW_PROBE(); }
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
|
|
static bool G38_run_probe() {
|
|
|
|
bool G38_pass_fail = false;
|
|
|
|
// Get direction of move and retract
|
|
float retract_mm[XYZ];
|
|
LOOP_XYZ(i) {
|
|
float dist = destination[i] - current_position[i];
|
|
retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm(i) * (dist > 0 ? -1 : 1);
|
|
}
|
|
|
|
stepper.synchronize(); // wait until the machine is idle
|
|
|
|
// Move until destination reached or target hit
|
|
endstops.enable(true);
|
|
G38_move = true;
|
|
G38_endstop_hit = false;
|
|
prepare_move_to_destination();
|
|
stepper.synchronize();
|
|
G38_move = false;
|
|
|
|
endstops.hit_on_purpose();
|
|
set_current_from_steppers_for_axis(ALL_AXES);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
// Only do remaining moves if target was hit
|
|
if (G38_endstop_hit) {
|
|
|
|
G38_pass_fail = true;
|
|
|
|
// Move away by the retract distance
|
|
set_destination_to_current();
|
|
LOOP_XYZ(i) destination[i] += retract_mm[i];
|
|
endstops.enable(false);
|
|
prepare_move_to_destination();
|
|
stepper.synchronize();
|
|
|
|
feedrate_mm_s /= 4;
|
|
|
|
// Bump the target more slowly
|
|
LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
|
|
|
|
endstops.enable(true);
|
|
G38_move = true;
|
|
prepare_move_to_destination();
|
|
stepper.synchronize();
|
|
G38_move = false;
|
|
|
|
set_current_from_steppers_for_axis(ALL_AXES);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
}
|
|
|
|
endstops.hit_on_purpose();
|
|
endstops.not_homing();
|
|
return G38_pass_fail;
|
|
}
|
|
|
|
/**
|
|
* G38.2 - probe toward workpiece, stop on contact, signal error if failure
|
|
* G38.3 - probe toward workpiece, stop on contact
|
|
*
|
|
* Like G28 except uses Z min endstop for all axes
|
|
*/
|
|
inline void gcode_G38(bool is_38_2) {
|
|
// Get X Y Z E F
|
|
gcode_get_destination();
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
// If any axis has enough movement, do the move
|
|
LOOP_XYZ(i)
|
|
if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
|
|
if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
|
|
// If G38.2 fails throw an error
|
|
if (!G38_run_probe() && is_38_2) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Failed to reach target");
|
|
}
|
|
break;
|
|
}
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
}
|
|
|
|
#endif // G38_PROBE_TARGET
|
|
|
|
/**
|
|
* G92: Set current position to given X Y Z E
|
|
*/
|
|
inline void gcode_G92() {
|
|
bool didXYZ = false,
|
|
didE = code_seen('E');
|
|
|
|
if (!didE) stepper.synchronize();
|
|
|
|
LOOP_XYZE(i) {
|
|
if (code_seen(axis_codes[i])) {
|
|
#if IS_SCARA
|
|
current_position[i] = code_value_axis_units(i);
|
|
if (i != E_AXIS) didXYZ = true;
|
|
#else
|
|
float p = current_position[i],
|
|
v = code_value_axis_units(i);
|
|
|
|
current_position[i] = v;
|
|
|
|
if (i != E_AXIS) {
|
|
didXYZ = true;
|
|
position_shift[i] += v - p; // Offset the coordinate space
|
|
update_software_endstops((AxisEnum)i);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
if (didXYZ)
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
else if (didE)
|
|
sync_plan_position_e();
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
|
|
|
|
/**
|
|
* M0: Unconditional stop - Wait for user button press on LCD
|
|
* M1: Conditional stop - Wait for user button press on LCD
|
|
*/
|
|
inline void gcode_M0_M1() {
|
|
char* args = current_command_args;
|
|
|
|
millis_t codenum = 0;
|
|
bool hasP = false, hasS = false;
|
|
if (code_seen('P')) {
|
|
codenum = code_value_millis(); // milliseconds to wait
|
|
hasP = codenum > 0;
|
|
}
|
|
if (code_seen('S')) {
|
|
codenum = code_value_millis_from_seconds(); // seconds to wait
|
|
hasS = codenum > 0;
|
|
}
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
if (!hasP && !hasS && *args != '\0')
|
|
lcd_setstatus(args, true);
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_USERWAIT);
|
|
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
|
|
dontExpireStatus();
|
|
#endif
|
|
}
|
|
lcd_ignore_click();
|
|
|
|
#else
|
|
|
|
if (!hasP && !hasS && *args != '\0') {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(args);
|
|
}
|
|
|
|
#endif
|
|
|
|
stepper.synchronize();
|
|
refresh_cmd_timeout();
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
if (codenum > 0) {
|
|
codenum += previous_cmd_ms; // wait until this time for a click
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
|
|
lcd_ignore_click(false);
|
|
}
|
|
else if (lcd_detected()) {
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
while (!lcd_clicked()) idle();
|
|
}
|
|
else return;
|
|
|
|
if (IS_SD_PRINTING)
|
|
LCD_MESSAGEPGM(MSG_RESUMING);
|
|
else
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
|
|
#else
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
wait_for_user = true;
|
|
|
|
if (codenum > 0) {
|
|
codenum += previous_cmd_ms; // wait until this time for an M108
|
|
while (PENDING(millis(), codenum) && wait_for_user) idle();
|
|
}
|
|
else while (wait_for_user) idle();
|
|
|
|
wait_for_user = false;
|
|
|
|
#endif
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
|
|
#endif // ULTIPANEL || EMERGENCY_PARSER
|
|
|
|
/**
|
|
* M17: Enable power on all stepper motors
|
|
*/
|
|
inline void gcode_M17() {
|
|
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
|
enable_all_steppers();
|
|
}
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
/**
|
|
* M20: List SD card to serial output
|
|
*/
|
|
inline void gcode_M20() {
|
|
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
|
card.ls();
|
|
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
|
}
|
|
|
|
/**
|
|
* M21: Init SD Card
|
|
*/
|
|
inline void gcode_M21() { card.initsd(); }
|
|
|
|
/**
|
|
* M22: Release SD Card
|
|
*/
|
|
inline void gcode_M22() { card.release(); }
|
|
|
|
/**
|
|
* M23: Open a file
|
|
*/
|
|
inline void gcode_M23() { card.openFile(current_command_args, true); }
|
|
|
|
/**
|
|
* M24: Start SD Print
|
|
*/
|
|
inline void gcode_M24() {
|
|
card.startFileprint();
|
|
print_job_timer.start();
|
|
}
|
|
|
|
/**
|
|
* M25: Pause SD Print
|
|
*/
|
|
inline void gcode_M25() { card.pauseSDPrint(); }
|
|
|
|
/**
|
|
* M26: Set SD Card file index
|
|
*/
|
|
inline void gcode_M26() {
|
|
if (card.cardOK && code_seen('S'))
|
|
card.setIndex(code_value_long());
|
|
}
|
|
|
|
/**
|
|
* M27: Get SD Card status
|
|
*/
|
|
inline void gcode_M27() { card.getStatus(); }
|
|
|
|
/**
|
|
* M28: Start SD Write
|
|
*/
|
|
inline void gcode_M28() { card.openFile(current_command_args, false); }
|
|
|
|
/**
|
|
* M29: Stop SD Write
|
|
* Processed in write to file routine above
|
|
*/
|
|
inline void gcode_M29() {
|
|
// card.saving = false;
|
|
}
|
|
|
|
/**
|
|
* M30 <filename>: Delete SD Card file
|
|
*/
|
|
inline void gcode_M30() {
|
|
if (card.cardOK) {
|
|
card.closefile();
|
|
card.removeFile(current_command_args);
|
|
}
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* M31: Get the time since the start of SD Print (or last M109)
|
|
*/
|
|
inline void gcode_M31() {
|
|
char buffer[21];
|
|
duration_t elapsed = print_job_timer.duration();
|
|
elapsed.toString(buffer);
|
|
|
|
lcd_setstatus(buffer);
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPAIR("Print time: ", buffer);
|
|
|
|
thermalManager.autotempShutdown();
|
|
}
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
/**
|
|
* M32: Select file and start SD Print
|
|
*/
|
|
inline void gcode_M32() {
|
|
if (card.sdprinting)
|
|
stepper.synchronize();
|
|
|
|
char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
|
|
if (!namestartpos)
|
|
namestartpos = current_command_args; // Default name position, 4 letters after the M
|
|
else
|
|
namestartpos++; //to skip the '!'
|
|
|
|
bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
|
|
|
|
if (card.cardOK) {
|
|
card.openFile(namestartpos, true, call_procedure);
|
|
|
|
if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
|
|
card.setIndex(code_value_long());
|
|
|
|
card.startFileprint();
|
|
|
|
// Procedure calls count as normal print time.
|
|
if (!call_procedure) print_job_timer.start();
|
|
}
|
|
}
|
|
|
|
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
|
|
|
/**
|
|
* M33: Get the long full path of a file or folder
|
|
*
|
|
* Parameters:
|
|
* <dospath> Case-insensitive DOS-style path to a file or folder
|
|
*
|
|
* Example:
|
|
* M33 miscel~1/armchair/armcha~1.gco
|
|
*
|
|
* Output:
|
|
* /Miscellaneous/Armchair/Armchair.gcode
|
|
*/
|
|
inline void gcode_M33() {
|
|
card.printLongPath(current_command_args);
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* M928: Start SD Write
|
|
*/
|
|
inline void gcode_M928() {
|
|
card.openLogFile(current_command_args);
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* M42: Change pin status via GCode
|
|
*
|
|
* P<pin> Pin number (LED if omitted)
|
|
* S<byte> Pin status from 0 - 255
|
|
*/
|
|
inline void gcode_M42() {
|
|
if (!code_seen('S')) return;
|
|
|
|
int pin_status = code_value_int();
|
|
if (pin_status < 0 || pin_status > 255) return;
|
|
|
|
int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
|
|
if (pin_number < 0) return;
|
|
|
|
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
|
|
if (pin_number == sensitive_pins[i]) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
|
|
return;
|
|
}
|
|
|
|
pinMode(pin_number, OUTPUT);
|
|
digitalWrite(pin_number, pin_status);
|
|
analogWrite(pin_number, pin_status);
|
|
|
|
#if FAN_COUNT > 0
|
|
switch (pin_number) {
|
|
#if HAS_FAN0
|
|
case FAN_PIN: fanSpeeds[0] = pin_status; break;
|
|
#endif
|
|
#if HAS_FAN1
|
|
case FAN1_PIN: fanSpeeds[1] = pin_status; break;
|
|
#endif
|
|
#if HAS_FAN2
|
|
case FAN2_PIN: fanSpeeds[2] = pin_status; break;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
|
|
/**
|
|
* M48: Z probe repeatability measurement function.
|
|
*
|
|
* Usage:
|
|
* M48 <P#> <X#> <Y#> <V#> <E> <L#>
|
|
* P = Number of sampled points (4-50, default 10)
|
|
* X = Sample X position
|
|
* Y = Sample Y position
|
|
* V = Verbose level (0-4, default=1)
|
|
* E = Engage Z probe for each reading
|
|
* L = Number of legs of movement before probe
|
|
* S = Schizoid (Or Star if you prefer)
|
|
*
|
|
* This function assumes the bed has been homed. Specifically, that a G28 command
|
|
* as been issued prior to invoking the M48 Z probe repeatability measurement function.
|
|
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
* regenerated.
|
|
*/
|
|
inline void gcode_M48() {
|
|
|
|
if (axis_unhomed_error(true, true, true)) return;
|
|
|
|
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
|
|
if (verbose_level < 0 || verbose_level > 4) {
|
|
SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
|
|
return;
|
|
}
|
|
|
|
if (verbose_level > 0)
|
|
SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
|
|
|
|
int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
|
|
if (n_samples < 4 || n_samples > 50) {
|
|
SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
|
|
return;
|
|
}
|
|
|
|
float X_current = current_position[X_AXIS],
|
|
Y_current = current_position[Y_AXIS];
|
|
|
|
bool stow_probe_after_each = code_seen('E');
|
|
|
|
float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#if DISABLED(DELTA)
|
|
if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
|
|
out_of_range_error(PSTR("X"));
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#if DISABLED(DELTA)
|
|
if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
|
|
out_of_range_error(PSTR("Y"));
|
|
return;
|
|
}
|
|
#else
|
|
float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
|
|
if (!position_is_reachable(pos, true)) {
|
|
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
bool seen_L = code_seen('L');
|
|
uint8_t n_legs = seen_L ? code_value_byte() : 0;
|
|
if (n_legs > 15) {
|
|
SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
|
|
return;
|
|
}
|
|
if (n_legs == 1) n_legs = 2;
|
|
|
|
bool schizoid_flag = code_seen('S');
|
|
if (schizoid_flag && !seen_L) n_legs = 7;
|
|
|
|
/**
|
|
* Now get everything to the specified probe point So we can safely do a
|
|
* probe to get us close to the bed. If the Z-Axis is far from the bed,
|
|
* we don't want to use that as a starting point for each probe.
|
|
*/
|
|
if (verbose_level > 2)
|
|
SERIAL_PROTOCOLLNPGM("Positioning the probe...");
|
|
|
|
// Disable bed level correction in M48 because we want the raw data when we probe
|
|
#if HAS_ABL
|
|
reset_bed_level();
|
|
#endif
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
// Move to the first point, deploy, and probe
|
|
probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
|
|
|
|
randomSeed(millis());
|
|
|
|
double mean = 0, sigma = 0, sample_set[n_samples];
|
|
for (uint8_t n = 0; n < n_samples; n++) {
|
|
if (n_legs) {
|
|
int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
|
float angle = random(0.0, 360.0),
|
|
radius = random(
|
|
#if ENABLED(DELTA)
|
|
DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
|
|
#else
|
|
5, X_MAX_LENGTH / 8
|
|
#endif
|
|
);
|
|
|
|
if (verbose_level > 3) {
|
|
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
|
SERIAL_ECHOPAIR(" angle: ", angle);
|
|
SERIAL_ECHOPGM(" Direction: ");
|
|
if (dir > 0) SERIAL_ECHOPGM("Counter-");
|
|
SERIAL_ECHOLNPGM("Clockwise");
|
|
}
|
|
|
|
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
|
double delta_angle;
|
|
|
|
if (schizoid_flag)
|
|
// The points of a 5 point star are 72 degrees apart. We need to
|
|
// skip a point and go to the next one on the star.
|
|
delta_angle = dir * 2.0 * 72.0;
|
|
|
|
else
|
|
// If we do this line, we are just trying to move further
|
|
// around the circle.
|
|
delta_angle = dir * (float) random(25, 45);
|
|
|
|
angle += delta_angle;
|
|
|
|
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
|
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
|
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
|
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
|
|
|
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
|
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
|
|
|
#if DISABLED(DELTA)
|
|
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
|
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
|
#else
|
|
// If we have gone out too far, we can do a simple fix and scale the numbers
|
|
// back in closer to the origin.
|
|
while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
|
|
X_current /= 1.25;
|
|
Y_current /= 1.25;
|
|
if (verbose_level > 3) {
|
|
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
|
SERIAL_ECHOLNPAIR(", ", Y_current);
|
|
}
|
|
}
|
|
#endif
|
|
if (verbose_level > 3) {
|
|
SERIAL_PROTOCOLPGM("Going to:");
|
|
SERIAL_ECHOPAIR(" X", X_current);
|
|
SERIAL_ECHOPAIR(" Y", Y_current);
|
|
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
|
|
}
|
|
do_blocking_move_to_xy(X_current, Y_current);
|
|
} // n_legs loop
|
|
} // n_legs
|
|
|
|
// Probe a single point
|
|
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
|
|
|
|
/**
|
|
* Get the current mean for the data points we have so far
|
|
*/
|
|
double sum = 0.0;
|
|
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
|
mean = sum / (n + 1);
|
|
|
|
/**
|
|
* Now, use that mean to calculate the standard deviation for the
|
|
* data points we have so far
|
|
*/
|
|
sum = 0.0;
|
|
for (uint8_t j = 0; j <= n; j++)
|
|
sum += sq(sample_set[j] - mean);
|
|
|
|
sigma = sqrt(sum / (n + 1));
|
|
if (verbose_level > 0) {
|
|
if (verbose_level > 1) {
|
|
SERIAL_PROTOCOL(n + 1);
|
|
SERIAL_PROTOCOLPGM(" of ");
|
|
SERIAL_PROTOCOL((int)n_samples);
|
|
SERIAL_PROTOCOLPGM(" z: ");
|
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM(" mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_PROTOCOLPGM(" sigma: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
}
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
} // End of probe loop
|
|
|
|
if (STOW_PROBE()) return;
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
SERIAL_EOL; SERIAL_EOL;
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
|
|
|
/**
|
|
* M75: Start print timer
|
|
*/
|
|
inline void gcode_M75() { print_job_timer.start(); }
|
|
|
|
/**
|
|
* M76: Pause print timer
|
|
*/
|
|
inline void gcode_M76() { print_job_timer.pause(); }
|
|
|
|
/**
|
|
* M77: Stop print timer
|
|
*/
|
|
inline void gcode_M77() { print_job_timer.stop(); }
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
/**
|
|
* M78: Show print statistics
|
|
*/
|
|
inline void gcode_M78() {
|
|
// "M78 S78" will reset the statistics
|
|
if (code_seen('S') && code_value_int() == 78)
|
|
print_job_timer.initStats();
|
|
else
|
|
print_job_timer.showStats();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* M104: Set hot end temperature
|
|
*/
|
|
inline void gcode_M104() {
|
|
if (get_target_extruder_from_command(104)) return;
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
|
|
#if ENABLED(SINGLENOZZLE)
|
|
if (target_extruder != active_extruder) return;
|
|
#endif
|
|
|
|
if (code_seen('S')) {
|
|
thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
|
|
#endif
|
|
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
/**
|
|
* Stop the timer at the end of print, starting is managed by
|
|
* 'heat and wait' M109.
|
|
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
|
|
* stand by mode, for instance in a dual extruder setup, without affecting
|
|
* the running print timer.
|
|
*/
|
|
if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
|
|
print_job_timer.stop();
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
#endif
|
|
|
|
if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
|
|
}
|
|
}
|
|
|
|
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
|
|
|
void print_heaterstates() {
|
|
#if HAS_TEMP_HOTEND
|
|
SERIAL_PROTOCOLPGM(" T:");
|
|
SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
|
|
SERIAL_CHAR(')');
|
|
#endif
|
|
#endif
|
|
#if HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
|
|
SERIAL_CHAR(')');
|
|
#endif
|
|
#endif
|
|
#if HOTENDS > 1
|
|
HOTEND_LOOP() {
|
|
SERIAL_PROTOCOLPAIR(" T", e);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
|
|
SERIAL_CHAR(')');
|
|
#endif
|
|
}
|
|
#endif
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
|
|
#if HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(" B@:");
|
|
SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
|
|
#endif
|
|
#if HOTENDS > 1
|
|
HOTEND_LOOP() {
|
|
SERIAL_PROTOCOLPAIR(" @", e);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* M105: Read hot end and bed temperature
|
|
*/
|
|
inline void gcode_M105() {
|
|
if (get_target_extruder_from_command(105)) return;
|
|
|
|
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(MSG_OK);
|
|
print_heaterstates();
|
|
#else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
|
#endif
|
|
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#if FAN_COUNT > 0
|
|
|
|
/**
|
|
* M106: Set Fan Speed
|
|
*
|
|
* S<int> Speed between 0-255
|
|
* P<index> Fan index, if more than one fan
|
|
*/
|
|
inline void gcode_M106() {
|
|
uint16_t s = code_seen('S') ? code_value_ushort() : 255,
|
|
p = code_seen('P') ? code_value_ushort() : 0;
|
|
NOMORE(s, 255);
|
|
if (p < FAN_COUNT) fanSpeeds[p] = s;
|
|
}
|
|
|
|
/**
|
|
* M107: Fan Off
|
|
*/
|
|
inline void gcode_M107() {
|
|
uint16_t p = code_seen('P') ? code_value_ushort() : 0;
|
|
if (p < FAN_COUNT) fanSpeeds[p] = 0;
|
|
}
|
|
|
|
#endif // FAN_COUNT > 0
|
|
|
|
#if DISABLED(EMERGENCY_PARSER)
|
|
|
|
/**
|
|
* M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
|
|
*/
|
|
inline void gcode_M108() { wait_for_heatup = false; }
|
|
|
|
|
|
/**
|
|
* M112: Emergency Stop
|
|
*/
|
|
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
|
|
|
|
|
|
/**
|
|
* M410: Quickstop - Abort all planned moves
|
|
*
|
|
* This will stop the carriages mid-move, so most likely they
|
|
* will be out of sync with the stepper position after this.
|
|
*/
|
|
inline void gcode_M410() { quickstop_stepper(); }
|
|
|
|
#endif
|
|
|
|
#ifndef MIN_COOLING_SLOPE_DEG
|
|
#define MIN_COOLING_SLOPE_DEG 1.50
|
|
#endif
|
|
#ifndef MIN_COOLING_SLOPE_TIME
|
|
#define MIN_COOLING_SLOPE_TIME 60
|
|
#endif
|
|
|
|
/**
|
|
* M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
|
|
* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
|
|
*/
|
|
inline void gcode_M109() {
|
|
|
|
if (get_target_extruder_from_command(109)) return;
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
|
|
#if ENABLED(SINGLENOZZLE)
|
|
if (target_extruder != active_extruder) return;
|
|
#endif
|
|
|
|
bool no_wait_for_cooling = code_seen('S');
|
|
if (no_wait_for_cooling || code_seen('R')) {
|
|
thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
|
|
#endif
|
|
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
/**
|
|
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
|
|
* stand by mode, for instance in a dual extruder setup, without affecting
|
|
* the running print timer.
|
|
*/
|
|
if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
|
|
print_job_timer.stop();
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
/**
|
|
* We do not check if the timer is already running because this check will
|
|
* be done for us inside the Stopwatch::start() method thus a running timer
|
|
* will not restart.
|
|
*/
|
|
else print_job_timer.start();
|
|
#endif
|
|
|
|
if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
|
|
}
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
planner.autotemp_M109();
|
|
#endif
|
|
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
|
|
#endif //TEMP_RESIDENCY_TIME > 0
|
|
|
|
float theTarget = -1.0, old_temp = 9999.0;
|
|
bool wants_to_cool = false;
|
|
wait_for_heatup = true;
|
|
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
|
do {
|
|
// Target temperature might be changed during the loop
|
|
if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
|
|
wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
|
|
theTarget = thermalManager.degTargetHotend(target_extruder);
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
}
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
|
|
next_temp_ms = now + 1000UL;
|
|
print_heaterstates();
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residency_start_ms) {
|
|
long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
|
|
SERIAL_PROTOCOLLN(rem);
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("?");
|
|
}
|
|
#else
|
|
SERIAL_EOL;
|
|
#endif
|
|
}
|
|
|
|
idle();
|
|
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
|
|
|
|
float temp = thermalManager.degHotend(target_extruder);
|
|
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
|
|
float temp_diff = fabs(theTarget - temp);
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
|
|
}
|
|
else if (temp_diff > TEMP_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = now;
|
|
}
|
|
|
|
#endif //TEMP_RESIDENCY_TIME > 0
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M109 R0
|
|
if (wants_to_cool) {
|
|
// break after MIN_COOLING_SLOPE_TIME seconds
|
|
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
|
|
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
|
|
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
|
|
old_temp = temp;
|
|
}
|
|
}
|
|
|
|
} while (wait_for_heatup && TEMP_CONDITIONS);
|
|
|
|
if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
|
|
#if HAS_TEMP_BED
|
|
|
|
#ifndef MIN_COOLING_SLOPE_DEG_BED
|
|
#define MIN_COOLING_SLOPE_DEG_BED 1.50
|
|
#endif
|
|
#ifndef MIN_COOLING_SLOPE_TIME_BED
|
|
#define MIN_COOLING_SLOPE_TIME_BED 60
|
|
#endif
|
|
|
|
/**
|
|
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
*/
|
|
inline void gcode_M190() {
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
|
|
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
|
bool no_wait_for_cooling = code_seen('S');
|
|
if (no_wait_for_cooling || code_seen('R')) {
|
|
thermalManager.setTargetBed(code_value_temp_abs());
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
if (code_value_temp_abs() > BED_MINTEMP) {
|
|
/**
|
|
* We start the timer when 'heating and waiting' command arrives, LCD
|
|
* functions never wait. Cooling down managed by extruders.
|
|
*
|
|
* We do not check if the timer is already running because this check will
|
|
* be done for us inside the Stopwatch::start() method thus a running timer
|
|
* will not restart.
|
|
*/
|
|
print_job_timer.start();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
|
|
#endif //TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
float theTarget = -1.0, old_temp = 9999.0;
|
|
bool wants_to_cool = false;
|
|
wait_for_heatup = true;
|
|
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
|
target_extruder = active_extruder; // for print_heaterstates
|
|
|
|
do {
|
|
// Target temperature might be changed during the loop
|
|
if (theTarget != thermalManager.degTargetBed()) {
|
|
wants_to_cool = thermalManager.isCoolingBed();
|
|
theTarget = thermalManager.degTargetBed();
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
}
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
|
|
next_temp_ms = now + 1000UL;
|
|
print_heaterstates();
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residency_start_ms) {
|
|
long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
|
|
SERIAL_PROTOCOLLN(rem);
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("?");
|
|
}
|
|
#else
|
|
SERIAL_EOL;
|
|
#endif
|
|
}
|
|
|
|
idle();
|
|
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
|
|
|
|
float temp = thermalManager.degBed();
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
float temp_diff = fabs(theTarget - temp);
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
|
|
}
|
|
else if (temp_diff > TEMP_BED_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = now;
|
|
}
|
|
|
|
#endif //TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M190 R0
|
|
if (wants_to_cool) {
|
|
// break after MIN_COOLING_SLOPE_TIME_BED seconds
|
|
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
|
|
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
|
|
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
|
|
old_temp = temp;
|
|
}
|
|
}
|
|
|
|
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
|
|
|
|
if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
|
|
#endif // HAS_TEMP_BED
|
|
|
|
/**
|
|
* M110: Set Current Line Number
|
|
*/
|
|
inline void gcode_M110() {
|
|
if (code_seen('N')) gcode_N = code_value_long();
|
|
}
|
|
|
|
/**
|
|
* M111: Set the debug level
|
|
*/
|
|
inline void gcode_M111() {
|
|
marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
|
|
|
|
const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
|
|
const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
|
|
const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
|
|
const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
|
|
const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
|
|
#endif
|
|
|
|
const static char* const debug_strings[] PROGMEM = {
|
|
str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
str_debug_32
|
|
#endif
|
|
};
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
|
|
if (marlin_debug_flags) {
|
|
uint8_t comma = 0;
|
|
for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
|
|
if (TEST(marlin_debug_flags, i)) {
|
|
if (comma++) SERIAL_CHAR(',');
|
|
serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ECHOPGM(MSG_DEBUG_OFF);
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
/**
|
|
* M113: Get or set Host Keepalive interval (0 to disable)
|
|
*
|
|
* S<seconds> Optional. Set the keepalive interval.
|
|
*/
|
|
inline void gcode_M113() {
|
|
if (code_seen('S')) {
|
|
host_keepalive_interval = code_value_byte();
|
|
NOMORE(host_keepalive_interval, 60);
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
|
|
#if HAS_HEATER_1
|
|
/**
|
|
* M126: Heater 1 valve open
|
|
*/
|
|
inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
|
|
/**
|
|
* M127: Heater 1 valve close
|
|
*/
|
|
inline void gcode_M127() { baricuda_valve_pressure = 0; }
|
|
#endif
|
|
|
|
#if HAS_HEATER_2
|
|
/**
|
|
* M128: Heater 2 valve open
|
|
*/
|
|
inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
|
|
/**
|
|
* M129: Heater 2 valve close
|
|
*/
|
|
inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
|
|
#endif
|
|
|
|
#endif //BARICUDA
|
|
|
|
/**
|
|
* M140: Set bed temperature
|
|
*/
|
|
inline void gcode_M140() {
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
|
|
}
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
/**
|
|
* M145: Set the heatup state for a material in the LCD menu
|
|
* S<material> (0=PLA, 1=ABS)
|
|
* H<hotend temp>
|
|
* B<bed temp>
|
|
* F<fan speed>
|
|
*/
|
|
inline void gcode_M145() {
|
|
int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
|
|
if (material < 0 || material > 1) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
|
|
}
|
|
else {
|
|
int v;
|
|
switch (material) {
|
|
case 0:
|
|
if (code_seen('H')) {
|
|
v = code_value_int();
|
|
preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
|
|
}
|
|
if (code_seen('F')) {
|
|
v = code_value_int();
|
|
preheatFanSpeed1 = constrain(v, 0, 255);
|
|
}
|
|
#if TEMP_SENSOR_BED != 0
|
|
if (code_seen('B')) {
|
|
v = code_value_int();
|
|
preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
|
|
}
|
|
#endif
|
|
break;
|
|
case 1:
|
|
if (code_seen('H')) {
|
|
v = code_value_int();
|
|
preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
|
|
}
|
|
if (code_seen('F')) {
|
|
v = code_value_int();
|
|
preheatFanSpeed2 = constrain(v, 0, 255);
|
|
}
|
|
#if TEMP_SENSOR_BED != 0
|
|
if (code_seen('B')) {
|
|
v = code_value_int();
|
|
preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // ULTIPANEL
|
|
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
/**
|
|
* M149: Set temperature units
|
|
*/
|
|
inline void gcode_M149() {
|
|
if (code_seen('C')) {
|
|
set_input_temp_units(TEMPUNIT_C);
|
|
} else if (code_seen('K')) {
|
|
set_input_temp_units(TEMPUNIT_K);
|
|
} else if (code_seen('F')) {
|
|
set_input_temp_units(TEMPUNIT_F);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
/**
|
|
* M80: Turn on Power Supply
|
|
*/
|
|
inline void gcode_M80() {
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
|
|
|
|
/**
|
|
* If you have a switch on suicide pin, this is useful
|
|
* if you want to start another print with suicide feature after
|
|
* a print without suicide...
|
|
*/
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
powersupply = true;
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
lcd_update();
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_POWER_SWITCH
|
|
|
|
/**
|
|
* M81: Turn off Power, including Power Supply, if there is one.
|
|
*
|
|
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
|
|
*/
|
|
inline void gcode_M81() {
|
|
thermalManager.disable_all_heaters();
|
|
stepper.finish_and_disable();
|
|
#if FAN_COUNT > 0
|
|
#if FAN_COUNT > 1
|
|
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
|
|
#else
|
|
fanSpeeds[0] = 0;
|
|
#endif
|
|
#endif
|
|
delay(1000); // Wait 1 second before switching off
|
|
#if HAS_SUICIDE
|
|
stepper.synchronize();
|
|
suicide();
|
|
#elif HAS_POWER_SWITCH
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#endif
|
|
#if ENABLED(ULTIPANEL)
|
|
#if HAS_POWER_SWITCH
|
|
powersupply = false;
|
|
#endif
|
|
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
|
|
lcd_update();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M82: Set E codes absolute (default)
|
|
*/
|
|
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
|
|
|
|
/**
|
|
* M83: Set E codes relative while in Absolute Coordinates (G90) mode
|
|
*/
|
|
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
|
|
|
|
/**
|
|
* M18, M84: Disable all stepper motors
|
|
*/
|
|
inline void gcode_M18_M84() {
|
|
if (code_seen('S')) {
|
|
stepper_inactive_time = code_value_millis_from_seconds();
|
|
}
|
|
else {
|
|
bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
|
|
if (all_axis) {
|
|
stepper.finish_and_disable();
|
|
}
|
|
else {
|
|
stepper.synchronize();
|
|
if (code_seen('X')) disable_x();
|
|
if (code_seen('Y')) disable_y();
|
|
if (code_seen('Z')) disable_z();
|
|
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
|
if (code_seen('E')) {
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
*/
|
|
inline void gcode_M85() {
|
|
if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
|
|
}
|
|
|
|
/**
|
|
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
|
|
* (Follows the same syntax as G92)
|
|
*/
|
|
inline void gcode_M92() {
|
|
LOOP_XYZE(i) {
|
|
if (code_seen(axis_codes[i])) {
|
|
if (i == E_AXIS) {
|
|
float value = code_value_per_axis_unit(i);
|
|
if (value < 20.0) {
|
|
float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
|
|
planner.max_jerk[E_AXIS] *= factor;
|
|
planner.max_feedrate_mm_s[E_AXIS] *= factor;
|
|
planner.max_acceleration_steps_per_s2[E_AXIS] *= factor;
|
|
}
|
|
planner.axis_steps_per_mm[E_AXIS] = value;
|
|
}
|
|
else {
|
|
planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
|
|
}
|
|
}
|
|
}
|
|
planner.refresh_positioning();
|
|
}
|
|
|
|
/**
|
|
* Output the current position to serial
|
|
*/
|
|
static void report_current_position() {
|
|
SERIAL_PROTOCOLPGM("X:");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
stepper.report_positions();
|
|
|
|
#if IS_SCARA
|
|
SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
|
|
SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
|
|
SERIAL_EOL;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M114: Output current position to serial port
|
|
*/
|
|
inline void gcode_M114() { report_current_position(); }
|
|
|
|
/**
|
|
* M115: Capabilities string
|
|
*/
|
|
inline void gcode_M115() {
|
|
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
|
|
}
|
|
|
|
/**
|
|
* M117: Set LCD Status Message
|
|
*/
|
|
inline void gcode_M117() {
|
|
lcd_setstatus(current_command_args);
|
|
}
|
|
|
|
/**
|
|
* M119: Output endstop states to serial output
|
|
*/
|
|
inline void gcode_M119() { endstops.M119(); }
|
|
|
|
/**
|
|
* M120: Enable endstops and set non-homing endstop state to "enabled"
|
|
*/
|
|
inline void gcode_M120() { endstops.enable_globally(true); }
|
|
|
|
/**
|
|
* M121: Disable endstops and set non-homing endstop state to "disabled"
|
|
*/
|
|
inline void gcode_M121() { endstops.enable_globally(false); }
|
|
|
|
#if ENABLED(BLINKM)
|
|
|
|
/**
|
|
* M150: Set Status LED Color - Use R-U-B for R-G-B
|
|
*/
|
|
inline void gcode_M150() {
|
|
SendColors(
|
|
code_seen('R') ? code_value_byte() : 0,
|
|
code_seen('U') ? code_value_byte() : 0,
|
|
code_seen('B') ? code_value_byte() : 0
|
|
);
|
|
}
|
|
|
|
#endif // BLINKM
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
|
/**
|
|
* M155: Send data to a I2C slave device
|
|
*
|
|
* This is a PoC, the formating and arguments for the GCODE will
|
|
* change to be more compatible, the current proposal is:
|
|
*
|
|
* M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
|
|
*
|
|
* M155 B<byte-1 value in base 10>
|
|
* M155 B<byte-2 value in base 10>
|
|
* M155 B<byte-3 value in base 10>
|
|
*
|
|
* M155 S1 ; Send the buffered data and reset the buffer
|
|
* M155 R1 ; Reset the buffer without sending data
|
|
*
|
|
*/
|
|
inline void gcode_M155() {
|
|
// Set the target address
|
|
if (code_seen('A')) i2c.address(code_value_byte());
|
|
|
|
// Add a new byte to the buffer
|
|
if (code_seen('B')) i2c.addbyte(code_value_byte());
|
|
|
|
// Flush the buffer to the bus
|
|
if (code_seen('S')) i2c.send();
|
|
|
|
// Reset and rewind the buffer
|
|
else if (code_seen('R')) i2c.reset();
|
|
}
|
|
|
|
/**
|
|
* M156: Request X bytes from I2C slave device
|
|
*
|
|
* Usage: M156 A<slave device address base 10> B<number of bytes>
|
|
*/
|
|
inline void gcode_M156() {
|
|
if (code_seen('A')) i2c.address(code_value_byte());
|
|
|
|
uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
|
|
|
|
if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
|
|
i2c.relay(bytes);
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLN("Bad i2c request");
|
|
}
|
|
}
|
|
|
|
#endif // EXPERIMENTAL_I2CBUS
|
|
|
|
/**
|
|
* M200: Set filament diameter and set E axis units to cubic units
|
|
*
|
|
* T<extruder> - Optional extruder number. Current extruder if omitted.
|
|
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
|
|
*/
|
|
inline void gcode_M200() {
|
|
|
|
if (get_target_extruder_from_command(200)) return;
|
|
|
|
if (code_seen('D')) {
|
|
// setting any extruder filament size disables volumetric on the assumption that
|
|
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
// for all extruders
|
|
volumetric_enabled = (code_value_linear_units() != 0.0);
|
|
if (volumetric_enabled) {
|
|
filament_size[target_extruder] = code_value_linear_units();
|
|
// make sure all extruders have some sane value for the filament size
|
|
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
|
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
}
|
|
}
|
|
else {
|
|
//reserved for setting filament diameter via UFID or filament measuring device
|
|
return;
|
|
}
|
|
calculate_volumetric_multipliers();
|
|
}
|
|
|
|
/**
|
|
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
*/
|
|
inline void gcode_M201() {
|
|
LOOP_XYZE(i) {
|
|
if (code_seen(axis_codes[i])) {
|
|
planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
|
|
}
|
|
}
|
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
planner.reset_acceleration_rates();
|
|
}
|
|
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
inline void gcode_M202() {
|
|
LOOP_XYZE(i) {
|
|
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
|
|
*/
|
|
inline void gcode_M203() {
|
|
LOOP_XYZE(i)
|
|
if (code_seen(axis_codes[i]))
|
|
planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
|
|
}
|
|
|
|
/**
|
|
* M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
|
|
*
|
|
* P = Printing moves
|
|
* R = Retract only (no X, Y, Z) moves
|
|
* T = Travel (non printing) moves
|
|
*
|
|
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
*/
|
|
inline void gcode_M204() {
|
|
if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
|
|
planner.travel_acceleration = planner.acceleration = code_value_linear_units();
|
|
SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
|
|
}
|
|
if (code_seen('P')) {
|
|
planner.acceleration = code_value_linear_units();
|
|
SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
|
|
}
|
|
if (code_seen('R')) {
|
|
planner.retract_acceleration = code_value_linear_units();
|
|
SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
|
|
}
|
|
if (code_seen('T')) {
|
|
planner.travel_acceleration = code_value_linear_units();
|
|
SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M205: Set Advanced Settings
|
|
*
|
|
* S = Min Feed Rate (units/s)
|
|
* T = Min Travel Feed Rate (units/s)
|
|
* B = Min Segment Time (µs)
|
|
* X = Max X Jerk (units/sec^2)
|
|
* Y = Max Y Jerk (units/sec^2)
|
|
* Z = Max Z Jerk (units/sec^2)
|
|
* E = Max E Jerk (units/sec^2)
|
|
*/
|
|
inline void gcode_M205() {
|
|
if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
|
|
if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
|
|
if (code_seen('B')) planner.min_segment_time = code_value_millis();
|
|
if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
|
|
if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
|
|
if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
|
|
if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
|
|
}
|
|
|
|
/**
|
|
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
|
*/
|
|
inline void gcode_M206() {
|
|
LOOP_XYZ(i)
|
|
if (code_seen(axis_codes[i]))
|
|
set_home_offset((AxisEnum)i, code_value_axis_units(i));
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
|
|
if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
|
|
#endif
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
report_current_position();
|
|
}
|
|
|
|
#if ENABLED(DELTA)
|
|
/**
|
|
* M665: Set delta configurations
|
|
*
|
|
* L = diagonal rod
|
|
* R = delta radius
|
|
* S = segments per second
|
|
* A = Alpha (Tower 1) diagonal rod trim
|
|
* B = Beta (Tower 2) diagonal rod trim
|
|
* C = Gamma (Tower 3) diagonal rod trim
|
|
*/
|
|
inline void gcode_M665() {
|
|
if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
|
|
if (code_seen('R')) delta_radius = code_value_linear_units();
|
|
if (code_seen('S')) delta_segments_per_second = code_value_float();
|
|
if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
|
|
if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
|
|
if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
}
|
|
/**
|
|
* M666: Set delta endstop adjustment
|
|
*/
|
|
inline void gcode_M666() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM(">>> gcode_M666");
|
|
}
|
|
#endif
|
|
LOOP_XYZ(i) {
|
|
if (code_seen(axis_codes[i])) {
|
|
endstop_adj[i] = code_value_axis_units(i);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
|
|
SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("<<< gcode_M666");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
/**
|
|
* M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
|
|
*/
|
|
inline void gcode_M666() {
|
|
if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
|
|
SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
|
|
}
|
|
|
|
#endif // !DELTA && Z_DUAL_ENDSTOPS
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
/**
|
|
* M207: Set firmware retraction values
|
|
*
|
|
* S[+units] retract_length
|
|
* W[+units] retract_length_swap (multi-extruder)
|
|
* F[units/min] retract_feedrate_mm_s
|
|
* Z[units] retract_zlift
|
|
*/
|
|
inline void gcode_M207() {
|
|
if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
|
|
if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
|
|
if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
|
|
#if EXTRUDERS > 1
|
|
if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M208: Set firmware un-retraction values
|
|
*
|
|
* S[+units] retract_recover_length (in addition to M207 S*)
|
|
* W[+units] retract_recover_length_swap (multi-extruder)
|
|
* F[units/min] retract_recover_feedrate_mm_s
|
|
*/
|
|
inline void gcode_M208() {
|
|
if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
|
|
if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
|
|
#if EXTRUDERS > 1
|
|
if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M209: Enable automatic retract (M209 S1)
|
|
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
*/
|
|
inline void gcode_M209() {
|
|
if (code_seen('S')) {
|
|
autoretract_enabled = code_value_bool();
|
|
for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
|
|
}
|
|
}
|
|
|
|
#endif // FWRETRACT
|
|
|
|
/**
|
|
* M211: Enable, Disable, and/or Report software endstops
|
|
*
|
|
* Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
|
|
*/
|
|
inline void gcode_M211() {
|
|
SERIAL_ECHO_START;
|
|
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
|
|
if (code_seen('S')) soft_endstops_enabled = code_value_bool();
|
|
#endif
|
|
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
|
|
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
|
|
serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
|
|
#else
|
|
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
|
|
SERIAL_ECHOPGM(MSG_OFF);
|
|
#endif
|
|
SERIAL_ECHOPGM(MSG_SOFT_MIN);
|
|
SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
|
|
SERIAL_ECHOPGM(MSG_SOFT_MAX);
|
|
SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
|
|
}
|
|
|
|
#if HOTENDS > 1
|
|
|
|
/**
|
|
* M218 - set hotend offset (in linear units)
|
|
*
|
|
* T<tool>
|
|
* X<xoffset>
|
|
* Y<yoffset>
|
|
* Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
|
|
*/
|
|
inline void gcode_M218() {
|
|
if (get_target_extruder_from_command(218)) return;
|
|
|
|
if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
|
|
if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
|
|
if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
|
|
#endif
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
HOTEND_LOOP() {
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(hotend_offset[X_AXIS][e]);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
|
|
#endif
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // HOTENDS > 1
|
|
|
|
/**
|
|
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
|
|
*/
|
|
inline void gcode_M220() {
|
|
if (code_seen('S')) feedrate_percentage = code_value_int();
|
|
}
|
|
|
|
/**
|
|
* M221: Set extrusion percentage (M221 T0 S95)
|
|
*/
|
|
inline void gcode_M221() {
|
|
if (get_target_extruder_from_command(221)) return;
|
|
if (code_seen('S'))
|
|
flow_percentage[target_extruder] = code_value_int();
|
|
}
|
|
|
|
/**
|
|
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
|
|
*/
|
|
inline void gcode_M226() {
|
|
if (code_seen('P')) {
|
|
int pin_number = code_value_int();
|
|
int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
|
|
|
|
if (pin_state >= -1 && pin_state <= 1) {
|
|
|
|
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
|
|
if (sensitive_pins[i] == pin_number) {
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pin_number > -1) {
|
|
int target = LOW;
|
|
|
|
stepper.synchronize();
|
|
|
|
pinMode(pin_number, INPUT);
|
|
|
|
switch (pin_state) {
|
|
case 1:
|
|
target = HIGH;
|
|
break;
|
|
|
|
case 0:
|
|
target = LOW;
|
|
break;
|
|
|
|
case -1:
|
|
target = !digitalRead(pin_number);
|
|
break;
|
|
}
|
|
|
|
while (digitalRead(pin_number) != target) idle();
|
|
|
|
} // pin_number > -1
|
|
} // pin_state -1 0 1
|
|
} // code_seen('P')
|
|
}
|
|
|
|
#if HAS_SERVOS
|
|
|
|
/**
|
|
* M280: Get or set servo position. P<index> [S<angle>]
|
|
*/
|
|
inline void gcode_M280() {
|
|
if (!code_seen('P')) return;
|
|
int servo_index = code_value_int();
|
|
if (servo_index >= 0 && servo_index < NUM_SERVOS) {
|
|
if (code_seen('S'))
|
|
MOVE_SERVO(servo_index, code_value_int());
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(" Servo ", servo_index);
|
|
SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ECHOPAIR("Servo ", servo_index);
|
|
SERIAL_ECHOLNPGM(" out of range");
|
|
}
|
|
}
|
|
|
|
#endif // HAS_SERVOS
|
|
|
|
#if HAS_BUZZER
|
|
|
|
/**
|
|
* M300: Play beep sound S<frequency Hz> P<duration ms>
|
|
*/
|
|
inline void gcode_M300() {
|
|
uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
|
|
uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
|
|
|
|
// Limits the tone duration to 0-5 seconds.
|
|
NOMORE(duration, 5000);
|
|
|
|
BUZZ(duration, frequency);
|
|
}
|
|
|
|
#endif // HAS_BUZZER
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
/**
|
|
* M301: Set PID parameters P I D (and optionally C, L)
|
|
*
|
|
* P[float] Kp term
|
|
* I[float] Ki term (unscaled)
|
|
* D[float] Kd term (unscaled)
|
|
*
|
|
* With PID_EXTRUSION_SCALING:
|
|
*
|
|
* C[float] Kc term
|
|
* L[float] LPQ length
|
|
*/
|
|
inline void gcode_M301() {
|
|
|
|
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
|
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
|
int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
|
|
|
|
if (e < HOTENDS) { // catch bad input value
|
|
if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
|
|
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
|
|
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
|
|
if (code_seen('L')) lpq_len = code_value_float();
|
|
NOMORE(lpq_len, LPQ_MAX_LEN);
|
|
#endif
|
|
|
|
thermalManager.updatePID();
|
|
SERIAL_ECHO_START;
|
|
#if ENABLED(PID_PARAMS_PER_HOTEND)
|
|
SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
|
|
#endif // PID_PARAMS_PER_HOTEND
|
|
SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
|
|
SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
|
|
SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
//Kc does not have scaling applied above, or in resetting defaults
|
|
SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
|
|
}
|
|
}
|
|
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
inline void gcode_M304() {
|
|
if (code_seen('P')) thermalManager.bedKp = code_value_float();
|
|
if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
|
|
if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
|
|
|
|
thermalManager.updatePID();
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
|
|
SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
|
|
SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
|
|
}
|
|
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
|
|
/**
|
|
* M240: Trigger a camera by emulating a Canon RC-1
|
|
* See http://www.doc-diy.net/photo/rc-1_hacked/
|
|
*/
|
|
inline void gcode_M240() {
|
|
#ifdef CHDK
|
|
|
|
OUT_WRITE(CHDK, HIGH);
|
|
chdkHigh = millis();
|
|
chdkActive = true;
|
|
|
|
#elif HAS_PHOTOGRAPH
|
|
|
|
const uint8_t NUM_PULSES = 16;
|
|
const float PULSE_LENGTH = 0.01524;
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
delay(7.33);
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
|
|
#endif // !CHDK && HAS_PHOTOGRAPH
|
|
}
|
|
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
|
|
/**
|
|
* M250: Read and optionally set the LCD contrast
|
|
*/
|
|
inline void gcode_M250() {
|
|
if (code_seen('C')) set_lcd_contrast(code_value_int());
|
|
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
SERIAL_PROTOCOL(lcd_contrast);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // HAS_LCD_CONTRAST
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
|
/**
|
|
* M302: Allow cold extrudes, or set the minimum extrude temperature
|
|
*
|
|
* S<temperature> sets the minimum extrude temperature
|
|
* P<bool> enables (1) or disables (0) cold extrusion
|
|
*
|
|
* Examples:
|
|
*
|
|
* M302 ; report current cold extrusion state
|
|
* M302 P0 ; enable cold extrusion checking
|
|
* M302 P1 ; disables cold extrusion checking
|
|
* M302 S0 ; always allow extrusion (disables checking)
|
|
* M302 S170 ; only allow extrusion above 170
|
|
* M302 S170 P1 ; set min extrude temp to 170 but leave disabled
|
|
*/
|
|
inline void gcode_M302() {
|
|
bool seen_S = code_seen('S');
|
|
if (seen_S) {
|
|
thermalManager.extrude_min_temp = code_value_temp_abs();
|
|
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
|
|
}
|
|
|
|
if (code_seen('P'))
|
|
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
|
|
else if (!seen_S) {
|
|
// Report current state
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
|
|
SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
|
|
SERIAL_ECHOLNPGM("C)");
|
|
}
|
|
}
|
|
|
|
#endif // PREVENT_COLD_EXTRUSION
|
|
|
|
/**
|
|
* M303: PID relay autotune
|
|
*
|
|
* S<temperature> sets the target temperature. (default 150C)
|
|
* E<extruder> (-1 for the bed) (default 0)
|
|
* C<cycles>
|
|
* U<bool> with a non-zero value will apply the result to current settings
|
|
*/
|
|
inline void gcode_M303() {
|
|
#if HAS_PID_HEATING
|
|
int e = code_seen('E') ? code_value_int() : 0;
|
|
int c = code_seen('C') ? code_value_int() : 5;
|
|
bool u = code_seen('U') && code_value_bool();
|
|
|
|
float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
|
|
|
|
if (e >= 0 && e < HOTENDS)
|
|
target_extruder = e;
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
|
|
|
|
thermalManager.PID_autotune(temp, e, c, u);
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
#else
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
|
|
bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
|
|
if (IsRunning()) {
|
|
forward_kinematics_SCARA(delta_a, delta_b);
|
|
destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
|
|
destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
|
|
destination[Z_AXIS] = current_position[Z_AXIS];
|
|
prepare_move_to_destination();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M360() {
|
|
SERIAL_ECHOLNPGM(" Cal: Theta 0");
|
|
return SCARA_move_to_cal(0, 120);
|
|
}
|
|
|
|
/**
|
|
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M361() {
|
|
SERIAL_ECHOLNPGM(" Cal: Theta 90");
|
|
return SCARA_move_to_cal(90, 130);
|
|
}
|
|
|
|
/**
|
|
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M362() {
|
|
SERIAL_ECHOLNPGM(" Cal: Psi 0");
|
|
return SCARA_move_to_cal(60, 180);
|
|
}
|
|
|
|
/**
|
|
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M363() {
|
|
SERIAL_ECHOLNPGM(" Cal: Psi 90");
|
|
return SCARA_move_to_cal(50, 90);
|
|
}
|
|
|
|
/**
|
|
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
*/
|
|
inline bool gcode_M364() {
|
|
SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
|
|
return SCARA_move_to_cal(45, 135);
|
|
}
|
|
|
|
#endif // SCARA
|
|
|
|
#if ENABLED(EXT_SOLENOID)
|
|
|
|
void enable_solenoid(uint8_t num) {
|
|
switch (num) {
|
|
case 0:
|
|
OUT_WRITE(SOL0_PIN, HIGH);
|
|
break;
|
|
#if HAS_SOLENOID_1
|
|
case 1:
|
|
OUT_WRITE(SOL1_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if HAS_SOLENOID_2
|
|
case 2:
|
|
OUT_WRITE(SOL2_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if HAS_SOLENOID_3
|
|
case 3:
|
|
OUT_WRITE(SOL3_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
default:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
|
|
|
void disable_all_solenoids() {
|
|
OUT_WRITE(SOL0_PIN, LOW);
|
|
OUT_WRITE(SOL1_PIN, LOW);
|
|
OUT_WRITE(SOL2_PIN, LOW);
|
|
OUT_WRITE(SOL3_PIN, LOW);
|
|
}
|
|
|
|
/**
|
|
* M380: Enable solenoid on the active extruder
|
|
*/
|
|
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
|
|
|
|
/**
|
|
* M381: Disable all solenoids
|
|
*/
|
|
inline void gcode_M381() { disable_all_solenoids(); }
|
|
|
|
#endif // EXT_SOLENOID
|
|
|
|
/**
|
|
* M400: Finish all moves
|
|
*/
|
|
inline void gcode_M400() { stepper.synchronize(); }
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
/**
|
|
* M401: Engage Z Servo endstop if available
|
|
*/
|
|
inline void gcode_M401() { DEPLOY_PROBE(); }
|
|
|
|
/**
|
|
* M402: Retract Z Servo endstop if enabled
|
|
*/
|
|
inline void gcode_M402() { STOW_PROBE(); }
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
/**
|
|
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
|
|
*/
|
|
inline void gcode_M404() {
|
|
if (code_seen('W')) {
|
|
filament_width_nominal = code_value_linear_units();
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M405: Turn on filament sensor for control
|
|
*/
|
|
inline void gcode_M405() {
|
|
// This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
|
|
// everything else, it uses code_value_int() instead of code_value_linear_units().
|
|
if (code_seen('D')) meas_delay_cm = code_value_int();
|
|
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
|
|
|
|
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
|
|
int temp_ratio = thermalManager.widthFil_to_size_ratio();
|
|
|
|
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
|
|
measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
|
|
|
|
filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
|
|
}
|
|
|
|
filament_sensor = true;
|
|
|
|
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
//SERIAL_PROTOCOL(filament_width_meas);
|
|
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
//SERIAL_PROTOCOL(flow_percentage[active_extruder]);
|
|
}
|
|
|
|
/**
|
|
* M406: Turn off filament sensor for control
|
|
*/
|
|
inline void gcode_M406() { filament_sensor = false; }
|
|
|
|
/**
|
|
* M407: Get measured filament diameter on serial output
|
|
*/
|
|
inline void gcode_M407() {
|
|
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_meas);
|
|
}
|
|
|
|
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
|
void quickstop_stepper() {
|
|
stepper.quick_stop();
|
|
stepper.synchronize();
|
|
set_current_from_steppers_for_axis(ALL_AXES);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
}
|
|
|
|
#if PLANNER_LEVELING
|
|
/**
|
|
* M420: Enable/Disable Bed Leveling
|
|
*/
|
|
inline void gcode_M420() { if (code_seen('S')) set_bed_leveling_enabled(code_value_bool()); }
|
|
#endif
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
/**
|
|
* M421: Set a single Mesh Bed Leveling Z coordinate
|
|
* Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
|
|
*/
|
|
inline void gcode_M421() {
|
|
int8_t px = 0, py = 0;
|
|
float z = 0;
|
|
bool hasX, hasY, hasZ, hasI, hasJ;
|
|
if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
|
|
if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
|
|
if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
|
|
if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
|
|
if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
|
|
|
|
if (hasX && hasY && hasZ) {
|
|
|
|
if (px >= 0 && py >= 0)
|
|
mbl.set_z(px, py, z);
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
|
}
|
|
}
|
|
else if (hasI && hasJ && hasZ) {
|
|
if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
|
|
mbl.set_z(px, py, z);
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* M428: Set home_offset based on the distance between the
|
|
* current_position and the nearest "reference point."
|
|
* If an axis is past center its endstop position
|
|
* is the reference-point. Otherwise it uses 0. This allows
|
|
* the Z offset to be set near the bed when using a max endstop.
|
|
*
|
|
* M428 can't be used more than 2cm away from 0 or an endstop.
|
|
*
|
|
* Use M206 to set these values directly.
|
|
*/
|
|
inline void gcode_M428() {
|
|
bool err = false;
|
|
LOOP_XYZ(i) {
|
|
if (axis_homed[i]) {
|
|
float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
|
|
diff = current_position[i] - LOGICAL_POSITION(base, i);
|
|
if (diff > -20 && diff < 20) {
|
|
set_home_offset((AxisEnum)i, home_offset[i] - diff);
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
|
|
LCD_ALERTMESSAGEPGM("Err: Too far!");
|
|
BUZZ(200, 40);
|
|
err = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!err) {
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
report_current_position();
|
|
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
|
|
BUZZ(200, 659);
|
|
BUZZ(200, 698);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M500: Store settings in EEPROM
|
|
*/
|
|
inline void gcode_M500() {
|
|
Config_StoreSettings();
|
|
}
|
|
|
|
/**
|
|
* M501: Read settings from EEPROM
|
|
*/
|
|
inline void gcode_M501() {
|
|
Config_RetrieveSettings();
|
|
}
|
|
|
|
/**
|
|
* M502: Revert to default settings
|
|
*/
|
|
inline void gcode_M502() {
|
|
Config_ResetDefault();
|
|
}
|
|
|
|
/**
|
|
* M503: print settings currently in memory
|
|
*/
|
|
inline void gcode_M503() {
|
|
Config_PrintSettings(code_seen('S') && !code_value_bool());
|
|
}
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
|
/**
|
|
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
|
|
*/
|
|
inline void gcode_M540() {
|
|
if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
|
|
}
|
|
|
|
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
inline void gcode_M851() {
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
|
|
SERIAL_CHAR(' ');
|
|
|
|
if (code_seen('Z')) {
|
|
float value = code_value_axis_units(Z_AXIS);
|
|
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
|
|
zprobe_zoffset = value;
|
|
SERIAL_ECHO(zprobe_zoffset);
|
|
}
|
|
else {
|
|
SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ECHOPAIR(": ", zprobe_zoffset);
|
|
}
|
|
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(FILAMENT_CHANGE_FEATURE)
|
|
|
|
/**
|
|
* M600: Pause for filament change
|
|
*
|
|
* E[distance] - Retract the filament this far (negative value)
|
|
* Z[distance] - Move the Z axis by this distance
|
|
* X[position] - Move to this X position, with Y
|
|
* Y[position] - Move to this Y position, with X
|
|
* L[distance] - Retract distance for removal (manual reload)
|
|
*
|
|
* Default values are used for omitted arguments.
|
|
*
|
|
*/
|
|
inline void gcode_M600() {
|
|
|
|
if (thermalManager.tooColdToExtrude(active_extruder)) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
|
|
return;
|
|
}
|
|
|
|
// Show initial message and wait for synchronize steppers
|
|
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
|
|
stepper.synchronize();
|
|
|
|
float lastpos[NUM_AXIS];
|
|
|
|
// Save current position of all axes
|
|
LOOP_XYZE(i)
|
|
lastpos[i] = destination[i] = current_position[i];
|
|
|
|
// Define runplan for move axes
|
|
#if IS_KINEMATIC
|
|
#define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
|
|
#else
|
|
#define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
|
|
#endif
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
// Initial retract before move to filament change position
|
|
if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
|
|
#if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
|
|
else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
|
|
#endif
|
|
|
|
RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
|
|
|
|
// Lift Z axis
|
|
float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
|
|
#if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
|
|
FILAMENT_CHANGE_Z_ADD
|
|
#else
|
|
0
|
|
#endif
|
|
;
|
|
|
|
if (z_lift > 0) {
|
|
destination[Z_AXIS] += z_lift;
|
|
NOMORE(destination[Z_AXIS], Z_MAX_POS);
|
|
RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
|
|
}
|
|
|
|
// Move XY axes to filament exchange position
|
|
if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
|
|
#ifdef FILAMENT_CHANGE_X_POS
|
|
else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
|
|
#endif
|
|
|
|
if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
|
|
#ifdef FILAMENT_CHANGE_Y_POS
|
|
else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
|
|
#endif
|
|
|
|
RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
|
|
|
|
stepper.synchronize();
|
|
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
|
|
|
|
// Unload filament
|
|
if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
|
|
#if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
|
|
else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
|
|
#endif
|
|
|
|
RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
|
|
|
|
// Synchronize steppers and then disable extruders steppers for manual filament changing
|
|
stepper.synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
delay(100);
|
|
|
|
#if HAS_BUZZER
|
|
millis_t next_tick = 0;
|
|
#endif
|
|
|
|
// Wait for filament insert by user and press button
|
|
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
|
|
|
|
while (!lcd_clicked()) {
|
|
#if HAS_BUZZER
|
|
millis_t ms = millis();
|
|
if (ms >= next_tick) {
|
|
BUZZ(300, 2000);
|
|
next_tick = ms + 2500; // Beep every 2.5s while waiting
|
|
}
|
|
#endif
|
|
idle(true);
|
|
}
|
|
delay(100);
|
|
while (lcd_clicked()) idle(true);
|
|
delay(100);
|
|
|
|
// Show load message
|
|
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
|
|
|
|
// Load filament
|
|
if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
|
|
#if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
|
|
else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
|
|
#endif
|
|
|
|
RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
|
|
stepper.synchronize();
|
|
|
|
#if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
|
|
do {
|
|
// Extrude filament to get into hotend
|
|
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
|
|
destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
|
|
RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
|
|
stepper.synchronize();
|
|
// Ask user if more filament should be extruded
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
|
|
while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
} while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
|
|
#endif
|
|
|
|
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
// Set extruder to saved position
|
|
current_position[E_AXIS] = lastpos[E_AXIS];
|
|
destination[E_AXIS] = lastpos[E_AXIS];
|
|
planner.set_e_position_mm(current_position[E_AXIS]);
|
|
|
|
#if IS_KINEMATIC
|
|
// Move XYZ to starting position, then E
|
|
inverse_kinematics(lastpos);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
|
#else
|
|
// Move XY to starting position, then Z, then E
|
|
destination[X_AXIS] = lastpos[X_AXIS];
|
|
destination[Y_AXIS] = lastpos[Y_AXIS];
|
|
RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
|
|
destination[Z_AXIS] = lastpos[Z_AXIS];
|
|
RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
|
|
#endif
|
|
stepper.synchronize();
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
filament_ran_out = false;
|
|
#endif
|
|
|
|
// Show status screen
|
|
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
|
|
}
|
|
|
|
#endif // FILAMENT_CHANGE_FEATURE
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
/**
|
|
* M605: Set dual x-carriage movement mode
|
|
*
|
|
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
|
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
|
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
|
* units x-offset and an optional differential hotend temperature of
|
|
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
|
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
|
*
|
|
* Note: the X axis should be homed after changing dual x-carriage mode.
|
|
*/
|
|
inline void gcode_M605() {
|
|
stepper.synchronize();
|
|
if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
|
|
switch (dual_x_carriage_mode) {
|
|
case DXC_DUPLICATION_MODE:
|
|
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
|
|
if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(hotend_offset[X_AXIS][0]);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(duplicate_extruder_x_offset);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
|
|
break;
|
|
case DXC_FULL_CONTROL_MODE:
|
|
case DXC_AUTO_PARK_MODE:
|
|
break;
|
|
default:
|
|
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
break;
|
|
}
|
|
active_extruder_parked = false;
|
|
extruder_duplication_enabled = false;
|
|
delayed_move_time = 0;
|
|
}
|
|
|
|
#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
|
|
inline void gcode_M605() {
|
|
stepper.synchronize();
|
|
extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
|
|
}
|
|
|
|
#endif // M605
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
/**
|
|
* M905: Set advance factor
|
|
*/
|
|
inline void gcode_M905() {
|
|
stepper.synchronize();
|
|
stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
|
*/
|
|
inline void gcode_M907() {
|
|
#if HAS_DIGIPOTSS
|
|
LOOP_XYZE(i)
|
|
if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
|
|
if (code_seen('B')) stepper.digipot_current(4, code_value_int());
|
|
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
|
|
#elif HAS_MOTOR_CURRENT_PWM
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
if (code_seen('X')) stepper.digipot_current(0, code_value_int());
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
if (code_seen('E')) stepper.digipot_current(2, code_value_int());
|
|
#endif
|
|
#endif
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
// this one uses actual amps in floating point
|
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
|
|
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
|
|
#endif
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
if (code_seen('S')) {
|
|
float dac_percent = code_value_float();
|
|
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
|
|
}
|
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
|
|
#endif
|
|
}
|
|
|
|
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
|
|
|
/**
|
|
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
|
*/
|
|
inline void gcode_M908() {
|
|
#if HAS_DIGIPOTSS
|
|
stepper.digitalPotWrite(
|
|
code_seen('P') ? code_value_int() : 0,
|
|
code_seen('S') ? code_value_int() : 0
|
|
);
|
|
#endif
|
|
#ifdef DAC_STEPPER_CURRENT
|
|
dac_current_raw(
|
|
code_seen('P') ? code_value_byte() : -1,
|
|
code_seen('S') ? code_value_ushort() : 0
|
|
);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
|
|
|
inline void gcode_M909() { dac_print_values(); }
|
|
|
|
inline void gcode_M910() { dac_commit_eeprom(); }
|
|
|
|
#endif
|
|
|
|
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
inline void gcode_M350() {
|
|
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
|
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
|
|
if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
|
|
stepper.microstep_readings();
|
|
}
|
|
|
|
/**
|
|
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
|
|
* S# determines MS1 or MS2, X# sets the pin high/low.
|
|
*/
|
|
inline void gcode_M351() {
|
|
if (code_seen('S')) switch (code_value_byte()) {
|
|
case 1:
|
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
|
|
if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
|
|
break;
|
|
case 2:
|
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
|
|
if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
|
|
break;
|
|
}
|
|
stepper.microstep_readings();
|
|
}
|
|
|
|
#endif // HAS_MICROSTEPS
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
/**
|
|
* M163: Set a single mix factor for a mixing extruder
|
|
* This is called "weight" by some systems.
|
|
*
|
|
* S[index] The channel index to set
|
|
* P[float] The mix value
|
|
*
|
|
*/
|
|
inline void gcode_M163() {
|
|
int mix_index = code_seen('S') ? code_value_int() : 0;
|
|
float mix_value = code_seen('P') ? code_value_float() : 0.0;
|
|
if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
|
|
}
|
|
|
|
#if MIXING_VIRTUAL_TOOLS > 1
|
|
|
|
/**
|
|
* M164: Store the current mix factors as a virtual tool.
|
|
*
|
|
* S[index] The virtual tool to store
|
|
*
|
|
*/
|
|
inline void gcode_M164() {
|
|
int tool_index = code_seen('S') ? code_value_int() : 0;
|
|
if (tool_index < MIXING_VIRTUAL_TOOLS) {
|
|
normalize_mix();
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
/**
|
|
* M165: Set multiple mix factors for a mixing extruder.
|
|
* Factors that are left out will be set to 0.
|
|
* All factors together must add up to 1.0.
|
|
*
|
|
* A[factor] Mix factor for extruder stepper 1
|
|
* B[factor] Mix factor for extruder stepper 2
|
|
* C[factor] Mix factor for extruder stepper 3
|
|
* D[factor] Mix factor for extruder stepper 4
|
|
* H[factor] Mix factor for extruder stepper 5
|
|
* I[factor] Mix factor for extruder stepper 6
|
|
*
|
|
*/
|
|
inline void gcode_M165() { gcode_get_mix(); }
|
|
#endif
|
|
|
|
#endif // MIXING_EXTRUDER
|
|
|
|
/**
|
|
* M999: Restart after being stopped
|
|
*
|
|
* Default behaviour is to flush the serial buffer and request
|
|
* a resend to the host starting on the last N line received.
|
|
*
|
|
* Sending "M999 S1" will resume printing without flushing the
|
|
* existing command buffer.
|
|
*
|
|
*/
|
|
inline void gcode_M999() {
|
|
Running = true;
|
|
lcd_reset_alert_level();
|
|
|
|
if (code_seen('S') && code_value_bool()) return;
|
|
|
|
// gcode_LastN = Stopped_gcode_LastN;
|
|
FlushSerialRequestResend();
|
|
}
|
|
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
inline void move_extruder_servo(uint8_t e) {
|
|
const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
|
|
MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
|
|
}
|
|
#endif
|
|
|
|
inline void invalid_extruder_error(const uint8_t &e) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_CHAR('T');
|
|
SERIAL_PROTOCOL_F(e, DEC);
|
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
|
}
|
|
|
|
/**
|
|
* Perform a tool-change, which may result in moving the
|
|
* previous tool out of the way and the new tool into place.
|
|
*/
|
|
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
|
|
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
|
|
|
|
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
|
|
invalid_extruder_error(tmp_extruder);
|
|
return;
|
|
}
|
|
|
|
// T0-Tnnn: Switch virtual tool by changing the mix
|
|
for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
|
|
mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
|
|
|
|
#else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
|
|
|
|
#if HOTENDS > 1
|
|
|
|
if (tmp_extruder >= EXTRUDERS) {
|
|
invalid_extruder_error(tmp_extruder);
|
|
return;
|
|
}
|
|
|
|
float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
if (tmp_extruder != active_extruder) {
|
|
if (!no_move && axis_unhomed_error(true, true, true)) {
|
|
SERIAL_ECHOLNPGM("No move on toolchange");
|
|
no_move = true;
|
|
}
|
|
|
|
// Save current position to destination, for use later
|
|
set_destination_to_current();
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("Dual X Carriage Mode ");
|
|
switch (dual_x_carriage_mode) {
|
|
case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
|
|
case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
|
|
case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
|
|
(delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
|
|
) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
|
|
SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
|
|
SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
|
|
}
|
|
#endif
|
|
// Park old head: 1) raise 2) move to park position 3) lower
|
|
for (uint8_t i = 0; i < 3; i++)
|
|
planner.buffer_line(
|
|
i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
|
|
current_position[E_AXIS],
|
|
planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
|
|
active_extruder
|
|
);
|
|
stepper.synchronize();
|
|
}
|
|
|
|
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
|
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
|
|
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
|
|
active_extruder = tmp_extruder;
|
|
|
|
// This function resets the max/min values - the current position may be overwritten below.
|
|
set_axis_is_at_home(X_AXIS);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
|
|
#endif
|
|
|
|
switch (dual_x_carriage_mode) {
|
|
case DXC_FULL_CONTROL_MODE:
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
|
|
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
|
|
break;
|
|
case DXC_DUPLICATION_MODE:
|
|
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
|
|
if (active_extruder_parked)
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
|
|
else
|
|
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
|
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
|
|
extruder_duplication_enabled = false;
|
|
break;
|
|
default:
|
|
// record raised toolhead position for use by unpark
|
|
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
|
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
|
active_extruder_parked = true;
|
|
delayed_move_time = 0;
|
|
break;
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
|
|
DEBUG_POS("New extruder (parked)", current_position);
|
|
}
|
|
#endif
|
|
|
|
// No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
|
|
#else // !DUAL_X_CARRIAGE
|
|
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
// <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
|
|
float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
|
|
z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
|
|
|
|
// Always raise by some amount
|
|
planner.buffer_line(
|
|
current_position[X_AXIS],
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS] + z_raise,
|
|
current_position[E_AXIS],
|
|
planner.max_feedrate_mm_s[Z_AXIS],
|
|
active_extruder
|
|
);
|
|
stepper.synchronize();
|
|
|
|
move_extruder_servo(active_extruder);
|
|
delay(500);
|
|
|
|
// Move back down, if needed
|
|
if (z_raise != z_diff) {
|
|
planner.buffer_line(
|
|
current_position[X_AXIS],
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS] + z_diff,
|
|
current_position[E_AXIS],
|
|
planner.max_feedrate_mm_s[Z_AXIS],
|
|
active_extruder
|
|
);
|
|
stepper.synchronize();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Set current_position to the position of the new nozzle.
|
|
* Offsets are based on linear distance, so we need to get
|
|
* the resulting position in coordinate space.
|
|
*
|
|
* - With grid or 3-point leveling, offset XYZ by a tilted vector
|
|
* - With mesh leveling, update Z for the new position
|
|
* - Otherwise, just use the raw linear distance
|
|
*
|
|
* Software endstops are altered here too. Consider a case where:
|
|
* E0 at X=0 ... E1 at X=10
|
|
* When we switch to E1 now X=10, but E1 can't move left.
|
|
* To express this we apply the change in XY to the software endstops.
|
|
* E1 can move farther right than E0, so the right limit is extended.
|
|
*
|
|
* Note that we don't adjust the Z software endstops. Why not?
|
|
* Consider a case where Z=0 (here) and switching to E1 makes Z=1
|
|
* because the bed is 1mm lower at the new position. As long as
|
|
* the first nozzle is out of the way, the carriage should be
|
|
* allowed to move 1mm lower. This technically "breaks" the
|
|
* Z software endstop. But this is technically correct (and
|
|
* there is no viable alternative).
|
|
*/
|
|
#if ABL_PLANAR
|
|
// Offset extruder, make sure to apply the bed level rotation matrix
|
|
vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
|
|
hotend_offset[Y_AXIS][tmp_extruder],
|
|
0),
|
|
act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
|
|
hotend_offset[Y_AXIS][active_extruder],
|
|
0),
|
|
offset_vec = tmp_offset_vec - act_offset_vec;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
tmp_offset_vec.debug("tmp_offset_vec");
|
|
act_offset_vec.debug("act_offset_vec");
|
|
offset_vec.debug("offset_vec (BEFORE)");
|
|
}
|
|
#endif
|
|
|
|
offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
|
|
#endif
|
|
|
|
// Adjustments to the current position
|
|
float xydiff[2] = { offset_vec.x, offset_vec.y };
|
|
current_position[Z_AXIS] += offset_vec.z;
|
|
|
|
#else // !ABL_PLANAR
|
|
|
|
float xydiff[2] = {
|
|
hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
|
|
hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
|
|
};
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (mbl.active()) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
|
|
#endif
|
|
float xpos = RAW_CURRENT_POSITION(X_AXIS),
|
|
ypos = RAW_CURRENT_POSITION(Y_AXIS);
|
|
current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING))
|
|
SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#endif // !HAS_ABL
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
|
|
SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
|
|
SERIAL_ECHOLNPGM(" }");
|
|
}
|
|
#endif
|
|
|
|
// The newly-selected extruder XY is actually at...
|
|
current_position[X_AXIS] += xydiff[X_AXIS];
|
|
current_position[Y_AXIS] += xydiff[Y_AXIS];
|
|
for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
|
|
position_shift[i] += xydiff[i];
|
|
update_software_endstops((AxisEnum)i);
|
|
}
|
|
|
|
// Set the new active extruder
|
|
active_extruder = tmp_extruder;
|
|
|
|
#endif // !DUAL_X_CARRIAGE
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
|
|
#endif
|
|
|
|
// Tell the planner the new "current position"
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
// Move to the "old position" (move the extruder into place)
|
|
if (!no_move && IsRunning()) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
|
|
#endif
|
|
prepare_move_to_destination();
|
|
}
|
|
|
|
} // (tmp_extruder != active_extruder)
|
|
|
|
stepper.synchronize();
|
|
|
|
#if ENABLED(EXT_SOLENOID)
|
|
disable_all_solenoids();
|
|
enable_solenoid_on_active_extruder();
|
|
#endif // EXT_SOLENOID
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
|
#else // HOTENDS <= 1
|
|
|
|
// Set the new active extruder
|
|
active_extruder = tmp_extruder;
|
|
|
|
UNUSED(fr_mm_s);
|
|
UNUSED(no_move);
|
|
|
|
#endif // HOTENDS <= 1
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
|
|
|
|
#endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
|
|
}
|
|
|
|
/**
|
|
* T0-T3: Switch tool, usually switching extruders
|
|
*
|
|
* F[units/min] Set the movement feedrate
|
|
* S1 Don't move the tool in XY after change
|
|
*/
|
|
inline void gcode_T(uint8_t tmp_extruder) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
DEBUG_POS("BEFORE", current_position);
|
|
}
|
|
#endif
|
|
|
|
#if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
|
|
|
|
tool_change(tmp_extruder);
|
|
|
|
#elif HOTENDS > 1
|
|
|
|
tool_change(
|
|
tmp_extruder,
|
|
code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
|
|
(tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
|
|
);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
DEBUG_POS("AFTER", current_position);
|
|
SERIAL_ECHOLNPGM("<<< gcode_T");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Process a single command and dispatch it to its handler
|
|
* This is called from the main loop()
|
|
*/
|
|
void process_next_command() {
|
|
current_command = command_queue[cmd_queue_index_r];
|
|
|
|
if (DEBUGGING(ECHO)) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(current_command);
|
|
}
|
|
|
|
// Sanitize the current command:
|
|
// - Skip leading spaces
|
|
// - Bypass N[-0-9][0-9]*[ ]*
|
|
// - Overwrite * with nul to mark the end
|
|
while (*current_command == ' ') ++current_command;
|
|
if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
|
|
current_command += 2; // skip N[-0-9]
|
|
while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
|
|
while (*current_command == ' ') ++current_command; // skip [ ]*
|
|
}
|
|
char* starpos = strchr(current_command, '*'); // * should always be the last parameter
|
|
if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
|
|
|
|
char *cmd_ptr = current_command;
|
|
|
|
// Get the command code, which must be G, M, or T
|
|
char command_code = *cmd_ptr++;
|
|
|
|
// Skip spaces to get the numeric part
|
|
while (*cmd_ptr == ' ') cmd_ptr++;
|
|
|
|
// Allow for decimal point in command
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
uint8_t subcode = 0;
|
|
#endif
|
|
|
|
uint16_t codenum = 0; // define ahead of goto
|
|
|
|
// Bail early if there's no code
|
|
bool code_is_good = NUMERIC(*cmd_ptr);
|
|
if (!code_is_good) goto ExitUnknownCommand;
|
|
|
|
// Get and skip the code number
|
|
do {
|
|
codenum = (codenum * 10) + (*cmd_ptr - '0');
|
|
cmd_ptr++;
|
|
} while (NUMERIC(*cmd_ptr));
|
|
|
|
// Allow for decimal point in command
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
if (*cmd_ptr == '.') {
|
|
cmd_ptr++;
|
|
while (NUMERIC(*cmd_ptr))
|
|
subcode = (subcode * 10) + (*cmd_ptr++ - '0');
|
|
}
|
|
#endif
|
|
|
|
// Skip all spaces to get to the first argument, or nul
|
|
while (*cmd_ptr == ' ') cmd_ptr++;
|
|
|
|
// The command's arguments (if any) start here, for sure!
|
|
current_command_args = cmd_ptr;
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
// Handle a known G, M, or T
|
|
switch (command_code) {
|
|
case 'G': switch (codenum) {
|
|
|
|
// G0, G1
|
|
case 0:
|
|
case 1:
|
|
#if IS_SCARA
|
|
gcode_G0_G1(codenum == 0);
|
|
#else
|
|
gcode_G0_G1();
|
|
#endif
|
|
break;
|
|
|
|
// G2, G3
|
|
#if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
|
|
case 2: // G2 - CW ARC
|
|
case 3: // G3 - CCW ARC
|
|
gcode_G2_G3(codenum == 2);
|
|
break;
|
|
#endif
|
|
|
|
// G4 Dwell
|
|
case 4:
|
|
gcode_G4();
|
|
break;
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
// G5
|
|
case 5: // G5 - Cubic B_spline
|
|
gcode_G5();
|
|
break;
|
|
#endif // BEZIER_CURVE_SUPPORT
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
case 10: // G10: retract
|
|
case 11: // G11: retract_recover
|
|
gcode_G10_G11(codenum == 10);
|
|
break;
|
|
#endif // FWRETRACT
|
|
|
|
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
|
case 12:
|
|
gcode_G12(); // G12: Nozzle Clean
|
|
break;
|
|
#endif // NOZZLE_CLEAN_FEATURE
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
case 20: //G20: Inch Mode
|
|
gcode_G20();
|
|
break;
|
|
|
|
case 21: //G21: MM Mode
|
|
gcode_G21();
|
|
break;
|
|
#endif // INCH_MODE_SUPPORT
|
|
|
|
#if ENABLED(NOZZLE_PARK_FEATURE)
|
|
case 27: // G27: Nozzle Park
|
|
gcode_G27();
|
|
break;
|
|
#endif // NOZZLE_PARK_FEATURE
|
|
|
|
case 28: // G28: Home all axes, one at a time
|
|
gcode_G28();
|
|
break;
|
|
|
|
#if PLANNER_LEVELING
|
|
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
|
|
gcode_G29();
|
|
break;
|
|
#endif // PLANNER_LEVELING
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
case 30: // G30 Single Z probe
|
|
gcode_G30();
|
|
break;
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
case 31: // G31: dock the sled
|
|
gcode_G31();
|
|
break;
|
|
|
|
case 32: // G32: undock the sled
|
|
gcode_G32();
|
|
break;
|
|
|
|
#endif // Z_PROBE_SLED
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
case 38: // G38.2 & G38.3
|
|
if (subcode == 2 || subcode == 3)
|
|
gcode_G38(subcode == 2);
|
|
break;
|
|
#endif
|
|
|
|
case 90: // G90
|
|
relative_mode = false;
|
|
break;
|
|
case 91: // G91
|
|
relative_mode = true;
|
|
break;
|
|
|
|
case 92: // G92
|
|
gcode_G92();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 'M': switch (codenum) {
|
|
#if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
|
|
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
gcode_M0_M1();
|
|
break;
|
|
#endif // ULTIPANEL
|
|
|
|
case 17:
|
|
gcode_M17();
|
|
break;
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
case 20: // M20 - list SD card
|
|
gcode_M20(); break;
|
|
case 21: // M21 - init SD card
|
|
gcode_M21(); break;
|
|
case 22: //M22 - release SD card
|
|
gcode_M22(); break;
|
|
case 23: //M23 - Select file
|
|
gcode_M23(); break;
|
|
case 24: //M24 - Start SD print
|
|
gcode_M24(); break;
|
|
case 25: //M25 - Pause SD print
|
|
gcode_M25(); break;
|
|
case 26: //M26 - Set SD index
|
|
gcode_M26(); break;
|
|
case 27: //M27 - Get SD status
|
|
gcode_M27(); break;
|
|
case 28: //M28 - Start SD write
|
|
gcode_M28(); break;
|
|
case 29: //M29 - Stop SD write
|
|
gcode_M29(); break;
|
|
case 30: //M30 <filename> Delete File
|
|
gcode_M30(); break;
|
|
case 32: //M32 - Select file and start SD print
|
|
gcode_M32(); break;
|
|
|
|
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
|
case 33: //M33 - Get the long full path to a file or folder
|
|
gcode_M33(); break;
|
|
#endif // LONG_FILENAME_HOST_SUPPORT
|
|
|
|
case 928: //M928 - Start SD write
|
|
gcode_M928(); break;
|
|
#endif //SDSUPPORT
|
|
|
|
case 31: //M31 take time since the start of the SD print or an M109 command
|
|
gcode_M31();
|
|
break;
|
|
|
|
case 42: //M42 -Change pin status via gcode
|
|
gcode_M42();
|
|
break;
|
|
|
|
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
case 48: // M48 Z probe repeatability
|
|
gcode_M48();
|
|
break;
|
|
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
|
|
|
case 75: // Start print timer
|
|
gcode_M75();
|
|
break;
|
|
|
|
case 76: // Pause print timer
|
|
gcode_M76();
|
|
break;
|
|
|
|
case 77: // Stop print timer
|
|
gcode_M77();
|
|
break;
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
case 78: // Show print statistics
|
|
gcode_M78();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
case 100:
|
|
gcode_M100();
|
|
break;
|
|
#endif
|
|
|
|
case 104: // M104
|
|
gcode_M104();
|
|
break;
|
|
|
|
case 110: // M110: Set Current Line Number
|
|
gcode_M110();
|
|
break;
|
|
|
|
case 111: // M111: Set debug level
|
|
gcode_M111();
|
|
break;
|
|
|
|
#if DISABLED(EMERGENCY_PARSER)
|
|
|
|
case 108: // M108: Cancel Waiting
|
|
gcode_M108();
|
|
break;
|
|
|
|
case 112: // M112: Emergency Stop
|
|
gcode_M112();
|
|
break;
|
|
|
|
case 410: // M410 quickstop - Abort all the planned moves.
|
|
gcode_M410();
|
|
break;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
case 113: // M113: Set Host Keepalive interval
|
|
gcode_M113();
|
|
break;
|
|
#endif
|
|
|
|
case 140: // M140: Set bed temp
|
|
gcode_M140();
|
|
break;
|
|
|
|
case 105: // M105: Read current temperature
|
|
gcode_M105();
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
return; // "ok" already printed
|
|
|
|
case 109: // M109: Wait for temperature
|
|
gcode_M109();
|
|
break;
|
|
|
|
#if HAS_TEMP_BED
|
|
case 190: // M190: Wait for bed heater to reach target
|
|
gcode_M190();
|
|
break;
|
|
#endif // HAS_TEMP_BED
|
|
|
|
#if FAN_COUNT > 0
|
|
case 106: // M106: Fan On
|
|
gcode_M106();
|
|
break;
|
|
case 107: // M107: Fan Off
|
|
gcode_M107();
|
|
break;
|
|
#endif // FAN_COUNT > 0
|
|
|
|
#if ENABLED(BARICUDA)
|
|
// PWM for HEATER_1_PIN
|
|
#if HAS_HEATER_1
|
|
case 126: // M126: valve open
|
|
gcode_M126();
|
|
break;
|
|
case 127: // M127: valve closed
|
|
gcode_M127();
|
|
break;
|
|
#endif // HAS_HEATER_1
|
|
|
|
// PWM for HEATER_2_PIN
|
|
#if HAS_HEATER_2
|
|
case 128: // M128: valve open
|
|
gcode_M128();
|
|
break;
|
|
case 129: // M129: valve closed
|
|
gcode_M129();
|
|
break;
|
|
#endif // HAS_HEATER_2
|
|
#endif // BARICUDA
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
case 80: // M80: Turn on Power Supply
|
|
gcode_M80();
|
|
break;
|
|
|
|
#endif // HAS_POWER_SWITCH
|
|
|
|
case 81: // M81: Turn off Power, including Power Supply, if possible
|
|
gcode_M81();
|
|
break;
|
|
|
|
case 82:
|
|
gcode_M82();
|
|
break;
|
|
case 83:
|
|
gcode_M83();
|
|
break;
|
|
case 18: // (for compatibility)
|
|
case 84: // M84
|
|
gcode_M18_M84();
|
|
break;
|
|
case 85: // M85
|
|
gcode_M85();
|
|
break;
|
|
case 92: // M92: Set the steps-per-unit for one or more axes
|
|
gcode_M92();
|
|
break;
|
|
case 115: // M115: Report capabilities
|
|
gcode_M115();
|
|
break;
|
|
case 117: // M117: Set LCD message text, if possible
|
|
gcode_M117();
|
|
break;
|
|
case 114: // M114: Report current position
|
|
gcode_M114();
|
|
break;
|
|
case 120: // M120: Enable endstops
|
|
gcode_M120();
|
|
break;
|
|
case 121: // M121: Disable endstops
|
|
gcode_M121();
|
|
break;
|
|
case 119: // M119: Report endstop states
|
|
gcode_M119();
|
|
break;
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
case 145: // M145: Set material heatup parameters
|
|
gcode_M145();
|
|
break;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
case 149:
|
|
gcode_M149();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(BLINKM)
|
|
|
|
case 150: // M150
|
|
gcode_M150();
|
|
break;
|
|
|
|
#endif //BLINKM
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
|
case 155:
|
|
gcode_M155();
|
|
break;
|
|
|
|
case 156:
|
|
gcode_M156();
|
|
break;
|
|
|
|
#endif //EXPERIMENTAL_I2CBUS
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
case 163: // M163 S<int> P<float> set weight for a mixing extruder
|
|
gcode_M163();
|
|
break;
|
|
#if MIXING_VIRTUAL_TOOLS > 1
|
|
case 164: // M164 S<int> save current mix as a virtual extruder
|
|
gcode_M164();
|
|
break;
|
|
#endif
|
|
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
case 165: // M165 [ABCDHI]<float> set multiple mix weights
|
|
gcode_M165();
|
|
break;
|
|
#endif
|
|
#endif
|
|
|
|
case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
|
|
gcode_M200();
|
|
break;
|
|
case 201: // M201
|
|
gcode_M201();
|
|
break;
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
case 202: // M202
|
|
gcode_M202();
|
|
break;
|
|
#endif
|
|
case 203: // M203 max feedrate units/sec
|
|
gcode_M203();
|
|
break;
|
|
case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
gcode_M204();
|
|
break;
|
|
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
gcode_M205();
|
|
break;
|
|
case 206: // M206 additional homing offset
|
|
gcode_M206();
|
|
break;
|
|
|
|
#if ENABLED(DELTA)
|
|
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
|
|
gcode_M665();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
case 666: // M666 set delta / dual endstop adjustment
|
|
gcode_M666();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
|
|
gcode_M207();
|
|
break;
|
|
case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
|
|
gcode_M208();
|
|
break;
|
|
case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
|
|
gcode_M209();
|
|
break;
|
|
#endif // FWRETRACT
|
|
|
|
case 211: // M211 - Enable, Disable, and/or Report software endstops
|
|
gcode_M211();
|
|
break;
|
|
|
|
#if HOTENDS > 1
|
|
case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
|
|
gcode_M218();
|
|
break;
|
|
#endif
|
|
|
|
case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
|
|
gcode_M220();
|
|
break;
|
|
|
|
case 221: // M221 - Set Flow Percentage: S<percent>
|
|
gcode_M221();
|
|
break;
|
|
|
|
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
gcode_M226();
|
|
break;
|
|
|
|
#if HAS_SERVOS
|
|
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
gcode_M280();
|
|
break;
|
|
#endif // HAS_SERVOS
|
|
|
|
#if HAS_BUZZER
|
|
case 300: // M300 - Play beep tone
|
|
gcode_M300();
|
|
break;
|
|
#endif // HAS_BUZZER
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
case 301: // M301
|
|
gcode_M301();
|
|
break;
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
case 304: // M304
|
|
gcode_M304();
|
|
break;
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
gcode_M240();
|
|
break;
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
|
gcode_M250();
|
|
break;
|
|
#endif // HAS_LCD_CONTRAST
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
|
gcode_M302();
|
|
break;
|
|
#endif // PREVENT_COLD_EXTRUSION
|
|
|
|
case 303: // M303 PID autotune
|
|
gcode_M303();
|
|
break;
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
case 360: // M360 SCARA Theta pos1
|
|
if (gcode_M360()) return;
|
|
break;
|
|
case 361: // M361 SCARA Theta pos2
|
|
if (gcode_M361()) return;
|
|
break;
|
|
case 362: // M362 SCARA Psi pos1
|
|
if (gcode_M362()) return;
|
|
break;
|
|
case 363: // M363 SCARA Psi pos2
|
|
if (gcode_M363()) return;
|
|
break;
|
|
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
|
|
if (gcode_M364()) return;
|
|
break;
|
|
#endif // SCARA
|
|
|
|
case 400: // M400 finish all moves
|
|
gcode_M400();
|
|
break;
|
|
|
|
#if HAS_BED_PROBE
|
|
case 401:
|
|
gcode_M401();
|
|
break;
|
|
case 402:
|
|
gcode_M402();
|
|
break;
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
|
gcode_M404();
|
|
break;
|
|
case 405: //M405 Turn on filament sensor for control
|
|
gcode_M405();
|
|
break;
|
|
case 406: //M406 Turn off filament sensor for control
|
|
gcode_M406();
|
|
break;
|
|
case 407: //M407 Display measured filament diameter
|
|
gcode_M407();
|
|
break;
|
|
#endif // ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
case 420: // M420 Enable/Disable Mesh Bed Leveling
|
|
gcode_M420();
|
|
break;
|
|
case 421: // M421 Set a Mesh Bed Leveling Z coordinate
|
|
gcode_M421();
|
|
break;
|
|
#endif
|
|
|
|
case 428: // M428 Apply current_position to home_offset
|
|
gcode_M428();
|
|
break;
|
|
|
|
case 500: // M500 Store settings in EEPROM
|
|
gcode_M500();
|
|
break;
|
|
case 501: // M501 Read settings from EEPROM
|
|
gcode_M501();
|
|
break;
|
|
case 502: // M502 Revert to default settings
|
|
gcode_M502();
|
|
break;
|
|
case 503: // M503 print settings currently in memory
|
|
gcode_M503();
|
|
break;
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
case 540:
|
|
gcode_M540();
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
case 851: // Set Z Probe Z Offset
|
|
gcode_M851();
|
|
break;
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(FILAMENT_CHANGE_FEATURE)
|
|
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
gcode_M600();
|
|
break;
|
|
#endif // FILAMENT_CHANGE_FEATURE
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
case 605:
|
|
gcode_M605();
|
|
break;
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
case 905: // M905 Set advance factor.
|
|
gcode_M905();
|
|
break;
|
|
#endif
|
|
|
|
case 907: // M907 Set digital trimpot motor current using axis codes.
|
|
gcode_M907();
|
|
break;
|
|
|
|
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
|
|
|
case 908: // M908 Control digital trimpot directly.
|
|
gcode_M908();
|
|
break;
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
|
|
|
case 909: // M909 Print digipot/DAC current value
|
|
gcode_M909();
|
|
break;
|
|
|
|
case 910: // M910 Commit digipot/DAC value to external EEPROM
|
|
gcode_M910();
|
|
break;
|
|
|
|
#endif
|
|
|
|
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
gcode_M350();
|
|
break;
|
|
|
|
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
gcode_M351();
|
|
break;
|
|
|
|
#endif // HAS_MICROSTEPS
|
|
|
|
case 999: // M999: Restart after being Stopped
|
|
gcode_M999();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 'T':
|
|
gcode_T(codenum);
|
|
break;
|
|
|
|
default: code_is_good = false;
|
|
}
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
|
ExitUnknownCommand:
|
|
|
|
// Still unknown command? Throw an error
|
|
if (!code_is_good) unknown_command_error();
|
|
|
|
ok_to_send();
|
|
}
|
|
|
|
/**
|
|
* Send a "Resend: nnn" message to the host to
|
|
* indicate that a command needs to be re-sent.
|
|
*/
|
|
void FlushSerialRequestResend() {
|
|
//char command_queue[cmd_queue_index_r][100]="Resend:";
|
|
MYSERIAL.flush();
|
|
SERIAL_PROTOCOLPGM(MSG_RESEND);
|
|
SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
ok_to_send();
|
|
}
|
|
|
|
/**
|
|
* Send an "ok" message to the host, indicating
|
|
* that a command was successfully processed.
|
|
*
|
|
* If ADVANCED_OK is enabled also include:
|
|
* N<int> Line number of the command, if any
|
|
* P<int> Planner space remaining
|
|
* B<int> Block queue space remaining
|
|
*/
|
|
void ok_to_send() {
|
|
refresh_cmd_timeout();
|
|
if (!send_ok[cmd_queue_index_r]) return;
|
|
SERIAL_PROTOCOLPGM(MSG_OK);
|
|
#if ENABLED(ADVANCED_OK)
|
|
char* p = command_queue[cmd_queue_index_r];
|
|
if (*p == 'N') {
|
|
SERIAL_PROTOCOL(' ');
|
|
SERIAL_ECHO(*p++);
|
|
while (NUMERIC_SIGNED(*p))
|
|
SERIAL_ECHO(*p++);
|
|
}
|
|
SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
|
|
SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
|
|
|
|
/**
|
|
* Constrain the given coordinates to the software endstops.
|
|
*/
|
|
void clamp_to_software_endstops(float target[XYZ]) {
|
|
#if ENABLED(min_software_endstops)
|
|
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
|
|
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
|
|
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
|
|
#endif
|
|
#if ENABLED(max_software_endstops)
|
|
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
|
|
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
|
|
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
// Get the Z adjustment for non-linear bed leveling
|
|
float bilinear_z_offset(float cartesian[XYZ]) {
|
|
|
|
// XY relative to the probed area
|
|
const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
|
|
y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
|
|
|
|
// Convert to grid box units
|
|
float ratio_x = x / bilinear_grid_spacing[X_AXIS],
|
|
ratio_y = y / bilinear_grid_spacing[Y_AXIS];
|
|
|
|
// Whole unit is the grid box index
|
|
const int gridx = constrain(floor(ratio_x), 0, ABL_GRID_POINTS_X - 2),
|
|
gridy = constrain(floor(ratio_y), 0, ABL_GRID_POINTS_Y - 2),
|
|
nextx = gridx + (x < PROBE_BED_WIDTH ? 1 : 0),
|
|
nexty = gridy + (y < PROBE_BED_HEIGHT ? 1 : 0);
|
|
|
|
// Subtract whole to get the ratio within the grid box
|
|
ratio_x = constrain(ratio_x - gridx, 0.0, 1.0);
|
|
ratio_y = constrain(ratio_y - gridy, 0.0, 1.0);
|
|
|
|
// Z at the box corners
|
|
const float z1 = bed_level_grid[gridx][gridy], // left-front
|
|
z2 = bed_level_grid[gridx][nexty], // left-back
|
|
z3 = bed_level_grid[nextx][gridy], // right-front
|
|
z4 = bed_level_grid[nextx][nexty], // right-back
|
|
|
|
// Bilinear interpolate
|
|
L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
|
|
R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
|
|
offset = L + ratio_x * (R - L);
|
|
|
|
/*
|
|
static float last_offset = 0;
|
|
if (fabs(last_offset - offset) > 0.2) {
|
|
SERIAL_ECHOPGM("Sudden Shift at ");
|
|
SERIAL_ECHOPAIR("x=", x);
|
|
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
|
|
SERIAL_ECHOPAIR(" y=", y);
|
|
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
|
|
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
|
|
SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
|
|
SERIAL_ECHOPAIR(" z1=", z1);
|
|
SERIAL_ECHOPAIR(" z2=", z2);
|
|
SERIAL_ECHOPAIR(" z3=", z3);
|
|
SERIAL_ECHOLNPAIR(" z4=", z4);
|
|
SERIAL_ECHOPAIR(" L=", L);
|
|
SERIAL_ECHOPAIR(" R=", R);
|
|
SERIAL_ECHOLNPAIR(" offset=", offset);
|
|
}
|
|
last_offset = offset;
|
|
//*/
|
|
|
|
return offset;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
/**
|
|
* Recalculate factors used for delta kinematics whenever
|
|
* settings have been changed (e.g., by M665).
|
|
*/
|
|
void recalc_delta_settings(float radius, float diagonal_rod) {
|
|
delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
|
|
delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
|
|
delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
|
|
delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
|
|
delta_tower3_x = 0.0; // back middle tower
|
|
delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
|
|
delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
|
|
delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
|
|
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
|
|
}
|
|
|
|
#if ENABLED(DELTA_FAST_SQRT)
|
|
/**
|
|
* Fast inverse sqrt from Quake III Arena
|
|
* See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
|
|
*/
|
|
float Q_rsqrt(float number) {
|
|
long i;
|
|
float x2, y;
|
|
const float threehalfs = 1.5f;
|
|
x2 = number * 0.5f;
|
|
y = number;
|
|
i = * ( long * ) &y; // evil floating point bit level hacking
|
|
i = 0x5f3759df - ( i >> 1 ); // what the f***?
|
|
y = * ( float * ) &i;
|
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
|
return y;
|
|
}
|
|
|
|
#define _SQRT(n) (1.0f / Q_rsqrt(n))
|
|
|
|
#else
|
|
|
|
#define _SQRT(n) sqrt(n)
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Delta Inverse Kinematics
|
|
*
|
|
* Calculate the tower positions for a given logical
|
|
* position, storing the result in the delta[] array.
|
|
*
|
|
* This is an expensive calculation, requiring 3 square
|
|
* roots per segmented linear move, and strains the limits
|
|
* of a Mega2560 with a Graphical Display.
|
|
*
|
|
* Suggested optimizations include:
|
|
*
|
|
* - Disable the home_offset (M206) and/or position_shift (G92)
|
|
* features to remove up to 12 float additions.
|
|
*
|
|
* - Use a fast-inverse-sqrt function and add the reciprocal.
|
|
* (see above)
|
|
*/
|
|
|
|
// Macro to obtain the Z position of an individual tower
|
|
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
|
|
delta_diagonal_rod_2_tower_##T - HYPOT2( \
|
|
delta_tower##T##_x - raw[X_AXIS], \
|
|
delta_tower##T##_y - raw[Y_AXIS] \
|
|
) \
|
|
)
|
|
|
|
#define DELTA_RAW_IK() do { \
|
|
delta[A_AXIS] = DELTA_Z(1); \
|
|
delta[B_AXIS] = DELTA_Z(2); \
|
|
delta[C_AXIS] = DELTA_Z(3); \
|
|
} while(0)
|
|
|
|
#define DELTA_LOGICAL_IK() do { \
|
|
const float raw[XYZ] = { \
|
|
RAW_X_POSITION(logical[X_AXIS]), \
|
|
RAW_Y_POSITION(logical[Y_AXIS]), \
|
|
RAW_Z_POSITION(logical[Z_AXIS]) \
|
|
}; \
|
|
DELTA_RAW_IK(); \
|
|
} while(0)
|
|
|
|
#define DELTA_DEBUG() do { \
|
|
SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
|
|
SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
|
|
SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
|
|
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
|
|
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
|
|
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
|
|
} while(0)
|
|
|
|
void inverse_kinematics(const float logical[XYZ]) {
|
|
DELTA_LOGICAL_IK();
|
|
// DELTA_DEBUG();
|
|
}
|
|
|
|
/**
|
|
* Calculate the highest Z position where the
|
|
* effector has the full range of XY motion.
|
|
*/
|
|
float delta_safe_distance_from_top() {
|
|
float cartesian[XYZ] = {
|
|
LOGICAL_X_POSITION(0),
|
|
LOGICAL_Y_POSITION(0),
|
|
LOGICAL_Z_POSITION(0)
|
|
};
|
|
inverse_kinematics(cartesian);
|
|
float distance = delta[A_AXIS];
|
|
cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
|
|
inverse_kinematics(cartesian);
|
|
return abs(distance - delta[A_AXIS]);
|
|
}
|
|
|
|
/**
|
|
* Delta Forward Kinematics
|
|
*
|
|
* See the Wikipedia article "Trilateration"
|
|
* https://en.wikipedia.org/wiki/Trilateration
|
|
*
|
|
* Establish a new coordinate system in the plane of the
|
|
* three carriage points. This system has its origin at
|
|
* tower1, with tower2 on the X axis. Tower3 is in the X-Y
|
|
* plane with a Z component of zero.
|
|
* We will define unit vectors in this coordinate system
|
|
* in our original coordinate system. Then when we calculate
|
|
* the Xnew, Ynew and Znew values, we can translate back into
|
|
* the original system by moving along those unit vectors
|
|
* by the corresponding values.
|
|
*
|
|
* Variable names matched to Marlin, c-version, and avoid the
|
|
* use of any vector library.
|
|
*
|
|
* by Andreas Hardtung 2016-06-07
|
|
* based on a Java function from "Delta Robot Kinematics V3"
|
|
* by Steve Graves
|
|
*
|
|
* The result is stored in the cartes[] array.
|
|
*/
|
|
void forward_kinematics_DELTA(float z1, float z2, float z3) {
|
|
// Create a vector in old coordinates along x axis of new coordinate
|
|
float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
|
|
|
|
// Get the Magnitude of vector.
|
|
float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
|
|
|
|
// Create unit vector by dividing by magnitude.
|
|
float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
|
|
|
|
// Get the vector from the origin of the new system to the third point.
|
|
float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
|
|
|
|
// Use the dot product to find the component of this vector on the X axis.
|
|
float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
|
|
|
|
// Create a vector along the x axis that represents the x component of p13.
|
|
float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
|
|
|
|
// Subtract the X component from the original vector leaving only Y. We use the
|
|
// variable that will be the unit vector after we scale it.
|
|
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
|
|
|
|
// The magnitude of Y component
|
|
float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
|
|
|
|
// Convert to a unit vector
|
|
ey[0] /= j; ey[1] /= j; ey[2] /= j;
|
|
|
|
// The cross product of the unit x and y is the unit z
|
|
// float[] ez = vectorCrossProd(ex, ey);
|
|
float ez[3] = {
|
|
ex[1] * ey[2] - ex[2] * ey[1],
|
|
ex[2] * ey[0] - ex[0] * ey[2],
|
|
ex[0] * ey[1] - ex[1] * ey[0]
|
|
};
|
|
|
|
// We now have the d, i and j values defined in Wikipedia.
|
|
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
|
|
float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
|
|
Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
|
|
Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
|
|
|
|
// Start from the origin of the old coordinates and add vectors in the
|
|
// old coords that represent the Xnew, Ynew and Znew to find the point
|
|
// in the old system.
|
|
cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
|
|
cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
|
|
cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
|
|
};
|
|
|
|
void forward_kinematics_DELTA(float point[ABC]) {
|
|
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
|
|
}
|
|
|
|
#endif // DELTA
|
|
|
|
/**
|
|
* Get the stepper positions in the cartes[] array.
|
|
* Forward kinematics are applied for DELTA and SCARA.
|
|
*
|
|
* The result is in the current coordinate space with
|
|
* leveling applied. The coordinates need to be run through
|
|
* unapply_leveling to obtain the "ideal" coordinates
|
|
* suitable for current_position, etc.
|
|
*/
|
|
void get_cartesian_from_steppers() {
|
|
#if ENABLED(DELTA)
|
|
forward_kinematics_DELTA(
|
|
stepper.get_axis_position_mm(A_AXIS),
|
|
stepper.get_axis_position_mm(B_AXIS),
|
|
stepper.get_axis_position_mm(C_AXIS)
|
|
);
|
|
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
|
|
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
|
|
cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
|
|
#elif IS_SCARA
|
|
forward_kinematics_SCARA(
|
|
stepper.get_axis_position_degrees(A_AXIS),
|
|
stepper.get_axis_position_degrees(B_AXIS)
|
|
);
|
|
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
|
|
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
|
|
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
|
#else
|
|
cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
|
|
cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
|
|
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Set the current_position for an axis based on
|
|
* the stepper positions, removing any leveling that
|
|
* may have been applied.
|
|
*/
|
|
void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
get_cartesian_from_steppers();
|
|
#if PLANNER_LEVELING
|
|
planner.unapply_leveling(cartes);
|
|
#endif
|
|
if (axis == ALL_AXES)
|
|
memcpy(current_position, cartes, sizeof(cartes));
|
|
else
|
|
current_position[axis] = cartes[axis];
|
|
}
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
/**
|
|
* Prepare a mesh-leveled linear move in a Cartesian setup,
|
|
* splitting the move where it crosses mesh borders.
|
|
*/
|
|
void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
|
|
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
|
|
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
|
|
cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
|
|
cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
|
|
NOMORE(cx1, MESH_NUM_X_POINTS - 2);
|
|
NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
|
|
NOMORE(cx2, MESH_NUM_X_POINTS - 2);
|
|
NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
|
|
|
|
if (cx1 == cx2 && cy1 == cy2) {
|
|
// Start and end on same mesh square
|
|
line_to_destination(fr_mm_s);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
|
|
#define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
|
|
|
|
float normalized_dist, end[NUM_AXIS];
|
|
|
|
// Split at the left/front border of the right/top square
|
|
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
|
|
if (cx2 != cx1 && TEST(x_splits, gcx)) {
|
|
memcpy(end, destination, sizeof(end));
|
|
destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
|
|
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
|
|
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
|
|
CBI(x_splits, gcx);
|
|
}
|
|
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
|
|
memcpy(end, destination, sizeof(end));
|
|
destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
|
|
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
|
|
destination[X_AXIS] = MBL_SEGMENT_END(X);
|
|
CBI(y_splits, gcy);
|
|
}
|
|
else {
|
|
// Already split on a border
|
|
line_to_destination(fr_mm_s);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
|
|
destination[Z_AXIS] = MBL_SEGMENT_END(Z);
|
|
destination[E_AXIS] = MBL_SEGMENT_END(E);
|
|
|
|
// Do the split and look for more borders
|
|
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
|
|
// Restore destination from stack
|
|
memcpy(destination, end, sizeof(end));
|
|
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
}
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
/**
|
|
* Prepare a linear move in a DELTA or SCARA setup.
|
|
*
|
|
* This calls planner.buffer_line several times, adding
|
|
* small incremental moves for DELTA or SCARA.
|
|
*/
|
|
inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
|
|
|
|
// Get the top feedrate of the move in the XY plane
|
|
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
|
// If the move is only in Z/E don't split up the move
|
|
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
|
|
inverse_kinematics(ltarget);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
return true;
|
|
}
|
|
|
|
// Get the cartesian distances moved in XYZE
|
|
float difference[NUM_AXIS];
|
|
LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
|
|
|
|
// Get the linear distance in XYZ
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
|
|
|
// If the move is very short, check the E move distance
|
|
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
|
|
|
|
// No E move either? Game over.
|
|
if (UNEAR_ZERO(cartesian_mm)) return false;
|
|
|
|
// Minimum number of seconds to move the given distance
|
|
float seconds = cartesian_mm / _feedrate_mm_s;
|
|
|
|
// The number of segments-per-second times the duration
|
|
// gives the number of segments
|
|
uint16_t segments = delta_segments_per_second * seconds;
|
|
|
|
// For SCARA minimum segment size is 0.5mm
|
|
#if IS_SCARA
|
|
NOMORE(segments, cartesian_mm * 2);
|
|
#endif
|
|
|
|
// At least one segment is required
|
|
NOLESS(segments, 1);
|
|
|
|
// The approximate length of each segment
|
|
float segment_distance[XYZE] = {
|
|
difference[X_AXIS] / segments,
|
|
difference[Y_AXIS] / segments,
|
|
difference[Z_AXIS] / segments,
|
|
difference[E_AXIS] / segments
|
|
};
|
|
|
|
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
|
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
|
|
|
// Drop one segment so the last move is to the exact target.
|
|
// If there's only 1 segment, loops will be skipped entirely.
|
|
--segments;
|
|
|
|
// Using "raw" coordinates saves 6 float subtractions
|
|
// per segment, saving valuable CPU cycles
|
|
|
|
#if ENABLED(USE_RAW_KINEMATICS)
|
|
|
|
// Get the raw current position as starting point
|
|
float raw[XYZE] = {
|
|
RAW_CURRENT_POSITION(X_AXIS),
|
|
RAW_CURRENT_POSITION(Y_AXIS),
|
|
RAW_CURRENT_POSITION(Z_AXIS),
|
|
current_position[E_AXIS]
|
|
};
|
|
|
|
#define DELTA_VAR raw
|
|
|
|
// Delta can inline its kinematics
|
|
#if ENABLED(DELTA)
|
|
#define DELTA_IK() DELTA_RAW_IK()
|
|
#else
|
|
#define DELTA_IK() inverse_kinematics(raw)
|
|
#endif
|
|
|
|
#else
|
|
|
|
// Get the logical current position as starting point
|
|
float logical[XYZE];
|
|
memcpy(logical, current_position, sizeof(logical));
|
|
|
|
#define DELTA_VAR logical
|
|
|
|
// Delta can inline its kinematics
|
|
#if ENABLED(DELTA)
|
|
#define DELTA_IK() DELTA_LOGICAL_IK()
|
|
#else
|
|
#define DELTA_IK() inverse_kinematics(logical)
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if ENABLED(USE_DELTA_IK_INTERPOLATION)
|
|
|
|
// Only interpolate XYZ. Advance E normally.
|
|
#define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
|
|
|
|
// Get the starting delta if interpolation is possible
|
|
if (segments >= 2) DELTA_IK();
|
|
|
|
// Loop using decrement
|
|
for (uint16_t s = segments + 1; --s;) {
|
|
// Are there at least 2 moves left?
|
|
if (s >= 2) {
|
|
// Save the previous delta for interpolation
|
|
float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
|
|
|
|
// Get the delta 2 segments ahead (rather than the next)
|
|
DELTA_NEXT(segment_distance[i] + segment_distance[i]);
|
|
|
|
// Advance E normally
|
|
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
|
|
|
// Get the exact delta for the move after this
|
|
DELTA_IK();
|
|
|
|
// Move to the interpolated delta position first
|
|
planner.buffer_line(
|
|
(prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
|
|
(prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
|
|
(prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
|
|
DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
|
|
);
|
|
|
|
// Advance E once more for the next move
|
|
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
|
|
|
// Do an extra decrement of the loop
|
|
--s;
|
|
}
|
|
else {
|
|
// Get the last segment delta. (Used when segments is odd)
|
|
DELTA_NEXT(segment_distance[i]);
|
|
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
|
DELTA_IK();
|
|
}
|
|
|
|
// Move to the non-interpolated position
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
}
|
|
|
|
#else
|
|
|
|
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
|
|
|
|
// For non-interpolated delta calculate every segment
|
|
for (uint16_t s = segments + 1; --s;) {
|
|
DELTA_NEXT(segment_distance[i]);
|
|
DELTA_IK();
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
}
|
|
|
|
#endif
|
|
|
|
// Since segment_distance is only approximate,
|
|
// the final move must be to the exact destination.
|
|
inverse_kinematics(ltarget);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
return true;
|
|
}
|
|
|
|
#else
|
|
|
|
/**
|
|
* Prepare a linear move in a Cartesian setup.
|
|
* If Mesh Bed Leveling is enabled, perform a mesh move.
|
|
*/
|
|
inline bool prepare_move_to_destination_cartesian() {
|
|
// Do not use feedrate_percentage for E or Z only moves
|
|
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
|
|
line_to_destination();
|
|
}
|
|
else {
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
if (mbl.active()) {
|
|
mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
|
|
return false;
|
|
}
|
|
else
|
|
#endif
|
|
line_to_destination(MMS_SCALED(feedrate_mm_s));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#endif // !IS_KINEMATIC
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
/**
|
|
* Prepare a linear move in a dual X axis setup
|
|
*/
|
|
inline bool prepare_move_to_destination_dualx() {
|
|
if (active_extruder_parked) {
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
|
|
// move duplicate extruder into correct duplication position.
|
|
planner.set_position_mm(
|
|
LOGICAL_X_POSITION(inactive_extruder_x_pos),
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS],
|
|
current_position[E_AXIS]
|
|
);
|
|
planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
|
|
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
stepper.synchronize();
|
|
extruder_duplication_enabled = true;
|
|
active_extruder_parked = false;
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
|
|
if (current_position[E_AXIS] == destination[E_AXIS]) {
|
|
// This is a travel move (with no extrusion)
|
|
// Skip it, but keep track of the current position
|
|
// (so it can be used as the start of the next non-travel move)
|
|
if (delayed_move_time != 0xFFFFFFFFUL) {
|
|
set_current_to_destination();
|
|
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
|
|
delayed_move_time = millis();
|
|
return false;
|
|
}
|
|
}
|
|
delayed_move_time = 0;
|
|
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
|
|
planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
|
active_extruder_parked = false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
/**
|
|
* Prepare a single move and get ready for the next one
|
|
*
|
|
* This may result in several calls to planner.buffer_line to
|
|
* do smaller moves for DELTA, SCARA, mesh moves, etc.
|
|
*/
|
|
void prepare_move_to_destination() {
|
|
clamp_to_software_endstops(destination);
|
|
refresh_cmd_timeout();
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
|
if (!DEBUGGING(DRYRUN)) {
|
|
if (destination[E_AXIS] != current_position[E_AXIS]) {
|
|
if (thermalManager.tooColdToExtrude(active_extruder)) {
|
|
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
}
|
|
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
|
|
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if IS_KINEMATIC
|
|
if (!prepare_kinematic_move_to(destination)) return;
|
|
#else
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (!prepare_move_to_destination_dualx()) return;
|
|
#endif
|
|
if (!prepare_move_to_destination_cartesian()) return;
|
|
#endif
|
|
|
|
set_current_to_destination();
|
|
}
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
/**
|
|
* Plan an arc in 2 dimensions
|
|
*
|
|
* The arc is approximated by generating many small linear segments.
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
|
* larger segments will tend to be more efficient. Your slicer should have
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
*/
|
|
void plan_arc(
|
|
float logical[NUM_AXIS], // Destination position
|
|
float* offset, // Center of rotation relative to current_position
|
|
uint8_t clockwise // Clockwise?
|
|
) {
|
|
|
|
float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
|
|
center_X = current_position[X_AXIS] + offset[X_AXIS],
|
|
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
|
|
extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
|
|
r_X = -offset[X_AXIS], // Radius vector from center to current location
|
|
r_Y = -offset[Y_AXIS],
|
|
rt_X = logical[X_AXIS] - center_X,
|
|
rt_Y = logical[Y_AXIS] - center_Y;
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
|
|
if (angular_travel < 0) angular_travel += RADIANS(360);
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
|
|
angular_travel += RADIANS(360);
|
|
|
|
float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
|
|
if (mm_of_travel < 0.001) return;
|
|
uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
|
|
if (segments == 0) segments = 1;
|
|
|
|
float theta_per_segment = angular_travel / segments;
|
|
float linear_per_segment = linear_travel / segments;
|
|
float extruder_per_segment = extruder_travel / segments;
|
|
|
|
/**
|
|
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
* r_T = [cos(phi) -sin(phi);
|
|
* sin(phi) cos(phi] * r ;
|
|
*
|
|
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
* defined from the circle center to the initial position. Each line segment is formed by successive
|
|
* vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
* all double numbers are single precision on the Arduino. (True double precision will not have
|
|
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
* tool precision in some cases. Therefore, arc path correction is implemented.
|
|
*
|
|
* Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
|
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
* issue for CNC machines with the single precision Arduino calculations.
|
|
*
|
|
* This approximation also allows plan_arc to immediately insert a line segment into the planner
|
|
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
|
* This is important when there are successive arc motions.
|
|
*/
|
|
// Vector rotation matrix values
|
|
float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
|
|
float sin_T = theta_per_segment;
|
|
|
|
float arc_target[NUM_AXIS];
|
|
float sin_Ti, cos_Ti, r_new_Y;
|
|
uint16_t i;
|
|
int8_t count = 0;
|
|
|
|
// Initialize the linear axis
|
|
arc_target[Z_AXIS] = current_position[Z_AXIS];
|
|
|
|
// Initialize the extruder axis
|
|
arc_target[E_AXIS] = current_position[E_AXIS];
|
|
|
|
float fr_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
|
millis_t next_idle_ms = millis() + 200UL;
|
|
|
|
for (i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
|
thermalManager.manage_heater();
|
|
millis_t now = millis();
|
|
if (ELAPSED(now, next_idle_ms)) {
|
|
next_idle_ms = now + 200UL;
|
|
idle();
|
|
}
|
|
|
|
if (++count < N_ARC_CORRECTION) {
|
|
// Apply vector rotation matrix to previous r_X / 1
|
|
r_new_Y = r_X * sin_T + r_Y * cos_T;
|
|
r_X = r_X * cos_T - r_Y * sin_T;
|
|
r_Y = r_new_Y;
|
|
}
|
|
else {
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
// To reduce stuttering, the sin and cos could be computed at different times.
|
|
// For now, compute both at the same time.
|
|
cos_Ti = cos(i * theta_per_segment);
|
|
sin_Ti = sin(i * theta_per_segment);
|
|
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
|
|
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
|
|
count = 0;
|
|
}
|
|
|
|
// Update arc_target location
|
|
arc_target[X_AXIS] = center_X + r_X;
|
|
arc_target[Y_AXIS] = center_Y + r_Y;
|
|
arc_target[Z_AXIS] += linear_per_segment;
|
|
arc_target[E_AXIS] += extruder_per_segment;
|
|
|
|
clamp_to_software_endstops(arc_target);
|
|
|
|
#if IS_KINEMATIC
|
|
inverse_kinematics(arc_target);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
|
|
#else
|
|
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
|
|
#endif
|
|
}
|
|
|
|
// Ensure last segment arrives at target location.
|
|
#if IS_KINEMATIC
|
|
inverse_kinematics(logical);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
|
|
#else
|
|
planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
|
|
#endif
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
set_current_to_destination();
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
|
void plan_cubic_move(const float offset[4]) {
|
|
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
|
|
|
|
// As far as the parser is concerned, the position is now == destination. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
set_current_to_destination();
|
|
}
|
|
|
|
#endif // BEZIER_CURVE_SUPPORT
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
|
|
void controllerFan() {
|
|
static millis_t lastMotorOn = 0; // Last time a motor was turned on
|
|
static millis_t nextMotorCheck = 0; // Last time the state was checked
|
|
millis_t ms = millis();
|
|
if (ELAPSED(ms, nextMotorCheck)) {
|
|
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
|
|
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
|
|
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
|
|
#if E_STEPPERS > 1
|
|
|| E1_ENABLE_READ == E_ENABLE_ON
|
|
#if HAS_X2_ENABLE
|
|
|| X2_ENABLE_READ == X_ENABLE_ON
|
|
#endif
|
|
#if E_STEPPERS > 2
|
|
|| E2_ENABLE_READ == E_ENABLE_ON
|
|
#if E_STEPPERS > 3
|
|
|| E3_ENABLE_READ == E_ENABLE_ON
|
|
#endif
|
|
#endif
|
|
#endif
|
|
) {
|
|
lastMotorOn = ms; //... set time to NOW so the fan will turn on
|
|
}
|
|
|
|
// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
|
|
uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
|
|
|
|
// allows digital or PWM fan output to be used (see M42 handling)
|
|
digitalWrite(CONTROLLERFAN_PIN, speed);
|
|
analogWrite(CONTROLLERFAN_PIN, speed);
|
|
}
|
|
}
|
|
|
|
#endif // HAS_CONTROLLERFAN
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
|
|
/**
|
|
* Morgan SCARA Forward Kinematics. Results in cartes[].
|
|
* Maths and first version by QHARLEY.
|
|
* Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
*/
|
|
void forward_kinematics_SCARA(const float &a, const float &b) {
|
|
|
|
float a_sin = sin(RADIANS(a)) * L1,
|
|
a_cos = cos(RADIANS(a)) * L1,
|
|
b_sin = sin(RADIANS(b)) * L2,
|
|
b_cos = cos(RADIANS(b)) * L2;
|
|
|
|
cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
|
|
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
|
|
|
|
/*
|
|
SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
|
|
SERIAL_ECHOPAIR(" b=", b);
|
|
SERIAL_ECHOPAIR(" a_sin=", a_sin);
|
|
SERIAL_ECHOPAIR(" a_cos=", a_cos);
|
|
SERIAL_ECHOPAIR(" b_sin=", b_sin);
|
|
SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
|
|
SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
|
|
//*/
|
|
}
|
|
|
|
/**
|
|
* Morgan SCARA Inverse Kinematics. Results in delta[].
|
|
*
|
|
* See http://forums.reprap.org/read.php?185,283327
|
|
*
|
|
* Maths and first version by QHARLEY.
|
|
* Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
*/
|
|
void inverse_kinematics(const float logical[XYZ]) {
|
|
|
|
static float C2, S2, SK1, SK2, THETA, PSI;
|
|
|
|
float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
|
|
sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
|
|
|
|
if (L1 == L2)
|
|
C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
|
|
else
|
|
C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
|
|
|
|
S2 = sqrt(sq(C2) - 1);
|
|
|
|
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
|
|
SK1 = L1 + L2 * C2;
|
|
|
|
// Rotated Arm2 gives the distance from Arm1 to Arm2
|
|
SK2 = L2 * S2;
|
|
|
|
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
|
|
THETA = atan2(SK1, SK2) - atan2(sx, sy);
|
|
|
|
// Angle of Arm2
|
|
PSI = atan2(S2, C2);
|
|
|
|
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
|
|
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
|
|
delta[C_AXIS] = logical[Z_AXIS];
|
|
|
|
/*
|
|
DEBUG_POS("SCARA IK", logical);
|
|
DEBUG_POS("SCARA IK", delta);
|
|
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
|
|
SERIAL_ECHOPAIR(",", sy);
|
|
SERIAL_ECHOPAIR(" C2=", C2);
|
|
SERIAL_ECHOPAIR(" S2=", S2);
|
|
SERIAL_ECHOPAIR(" Theta=", THETA);
|
|
SERIAL_ECHOLNPAIR(" Phi=", PHI);
|
|
//*/
|
|
}
|
|
|
|
#endif // MORGAN_SCARA
|
|
|
|
#if ENABLED(TEMP_STAT_LEDS)
|
|
|
|
static bool red_led = false;
|
|
static millis_t next_status_led_update_ms = 0;
|
|
|
|
void handle_status_leds(void) {
|
|
if (ELAPSED(millis(), next_status_led_update_ms)) {
|
|
next_status_led_update_ms += 500; // Update every 0.5s
|
|
float max_temp = 0.0;
|
|
#if HAS_TEMP_BED
|
|
max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
|
|
#endif
|
|
HOTEND_LOOP() {
|
|
max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
|
|
}
|
|
bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
|
|
if (new_led != red_led) {
|
|
red_led = new_led;
|
|
WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
|
|
WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
void handle_filament_runout() {
|
|
if (!filament_ran_out) {
|
|
filament_ran_out = true;
|
|
enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
|
|
stepper.synchronize();
|
|
}
|
|
}
|
|
|
|
#endif // FILAMENT_RUNOUT_SENSOR
|
|
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
|
|
void setPwmFrequency(uint8_t pin, int val) {
|
|
val &= 0x07;
|
|
switch (digitalPinToTimer(pin)) {
|
|
#if defined(TCCR0A)
|
|
case TIMER0A:
|
|
case TIMER0B:
|
|
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
|
// TCCR0B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR1A)
|
|
case TIMER1A:
|
|
case TIMER1B:
|
|
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
// TCCR1B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR2)
|
|
case TIMER2:
|
|
case TIMER2:
|
|
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
TCCR2 |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR2A)
|
|
case TIMER2A:
|
|
case TIMER2B:
|
|
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
|
TCCR2B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR3A)
|
|
case TIMER3A:
|
|
case TIMER3B:
|
|
case TIMER3C:
|
|
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
|
TCCR3B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR4A)
|
|
case TIMER4A:
|
|
case TIMER4B:
|
|
case TIMER4C:
|
|
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
|
TCCR4B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR5A)
|
|
case TIMER5A:
|
|
case TIMER5B:
|
|
case TIMER5C:
|
|
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
|
TCCR5B |= val;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // FAST_PWM_FAN
|
|
|
|
float calculate_volumetric_multiplier(float diameter) {
|
|
if (!volumetric_enabled || diameter == 0) return 1.0;
|
|
float d2 = diameter * 0.5;
|
|
return 1.0 / (M_PI * d2 * d2);
|
|
}
|
|
|
|
void calculate_volumetric_multipliers() {
|
|
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
|
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
|
}
|
|
|
|
void enable_all_steppers() {
|
|
enable_x();
|
|
enable_y();
|
|
enable_z();
|
|
enable_e0();
|
|
enable_e1();
|
|
enable_e2();
|
|
enable_e3();
|
|
}
|
|
|
|
void disable_all_steppers() {
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
}
|
|
|
|
/**
|
|
* Manage several activities:
|
|
* - Check for Filament Runout
|
|
* - Keep the command buffer full
|
|
* - Check for maximum inactive time between commands
|
|
* - Check for maximum inactive time between stepper commands
|
|
* - Check if pin CHDK needs to go LOW
|
|
* - Check for KILL button held down
|
|
* - Check for HOME button held down
|
|
* - Check if cooling fan needs to be switched on
|
|
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
|
|
*/
|
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
|
|
handle_filament_runout();
|
|
#endif
|
|
|
|
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
|
millis_t ms = millis();
|
|
|
|
if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
|
|
|
|
if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
|
|
&& !ignore_stepper_queue && !planner.blocks_queued()) {
|
|
#if ENABLED(DISABLE_INACTIVE_X)
|
|
disable_x();
|
|
#endif
|
|
#if ENABLED(DISABLE_INACTIVE_Y)
|
|
disable_y();
|
|
#endif
|
|
#if ENABLED(DISABLE_INACTIVE_Z)
|
|
disable_z();
|
|
#endif
|
|
#if ENABLED(DISABLE_INACTIVE_E)
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
|
|
if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
|
|
chdkActive = false;
|
|
WRITE(CHDK, LOW);
|
|
}
|
|
#endif
|
|
|
|
#if HAS_KILL
|
|
|
|
// Check if the kill button was pressed and wait just in case it was an accidental
|
|
// key kill key press
|
|
// -------------------------------------------------------------------------------
|
|
static int killCount = 0; // make the inactivity button a bit less responsive
|
|
const int KILL_DELAY = 750;
|
|
if (!READ(KILL_PIN))
|
|
killCount++;
|
|
else if (killCount > 0)
|
|
killCount--;
|
|
|
|
// Exceeded threshold and we can confirm that it was not accidental
|
|
// KILL the machine
|
|
// ----------------------------------------------------------------
|
|
if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
|
|
#endif
|
|
|
|
#if HAS_HOME
|
|
// Check to see if we have to home, use poor man's debouncer
|
|
// ---------------------------------------------------------
|
|
static int homeDebounceCount = 0; // poor man's debouncing count
|
|
const int HOME_DEBOUNCE_DELAY = 2500;
|
|
if (!READ(HOME_PIN)) {
|
|
if (!homeDebounceCount) {
|
|
enqueue_and_echo_commands_P(PSTR("G28"));
|
|
LCD_MESSAGEPGM(MSG_AUTO_HOME);
|
|
}
|
|
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
|
|
homeDebounceCount++;
|
|
else
|
|
homeDebounceCount = 0;
|
|
}
|
|
#endif
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
|
|
#endif
|
|
|
|
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
|
|
if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
|
|
&& thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
|
|
bool oldstatus;
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
oldstatus = E0_ENABLE_READ;
|
|
enable_e0();
|
|
#else // !SWITCHING_EXTRUDER
|
|
switch (active_extruder) {
|
|
case 0:
|
|
oldstatus = E0_ENABLE_READ;
|
|
enable_e0();
|
|
break;
|
|
#if E_STEPPERS > 1
|
|
case 1:
|
|
oldstatus = E1_ENABLE_READ;
|
|
enable_e1();
|
|
break;
|
|
#if E_STEPPERS > 2
|
|
case 2:
|
|
oldstatus = E2_ENABLE_READ;
|
|
enable_e2();
|
|
break;
|
|
#if E_STEPPERS > 3
|
|
case 3:
|
|
oldstatus = E3_ENABLE_READ;
|
|
enable_e3();
|
|
break;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
}
|
|
#endif // !SWITCHING_EXTRUDER
|
|
|
|
previous_cmd_ms = ms; // refresh_cmd_timeout()
|
|
planner.buffer_line(
|
|
current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
|
|
current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
|
|
MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
|
|
);
|
|
stepper.synchronize();
|
|
planner.set_e_position_mm(current_position[E_AXIS]);
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
E0_ENABLE_WRITE(oldstatus);
|
|
#else
|
|
switch (active_extruder) {
|
|
case 0:
|
|
E0_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#if E_STEPPERS > 1
|
|
case 1:
|
|
E1_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#if E_STEPPERS > 2
|
|
case 2:
|
|
E2_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#if E_STEPPERS > 3
|
|
case 3:
|
|
E3_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
}
|
|
#endif // !SWITCHING_EXTRUDER
|
|
}
|
|
#endif // EXTRUDER_RUNOUT_PREVENT
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
// handle delayed move timeout
|
|
if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
|
|
// travel moves have been received so enact them
|
|
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
|
|
set_destination_to_current();
|
|
prepare_move_to_destination();
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(TEMP_STAT_LEDS)
|
|
handle_status_leds();
|
|
#endif
|
|
|
|
planner.check_axes_activity();
|
|
}
|
|
|
|
/**
|
|
* Standard idle routine keeps the machine alive
|
|
*/
|
|
void idle(
|
|
#if ENABLED(FILAMENT_CHANGE_FEATURE)
|
|
bool no_stepper_sleep/*=false*/
|
|
#endif
|
|
) {
|
|
lcd_update();
|
|
host_keepalive();
|
|
manage_inactivity(
|
|
#if ENABLED(FILAMENT_CHANGE_FEATURE)
|
|
no_stepper_sleep
|
|
#endif
|
|
);
|
|
|
|
thermalManager.manage_heater();
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
print_job_timer.tick();
|
|
#endif
|
|
|
|
#if HAS_BUZZER && PIN_EXISTS(BEEPER)
|
|
buzzer.tick();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Kill all activity and lock the machine.
|
|
* After this the machine will need to be reset.
|
|
*/
|
|
void kill(const char* lcd_msg) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
kill_screen(lcd_msg);
|
|
#else
|
|
UNUSED(lcd_msg);
|
|
#endif
|
|
|
|
delay(500); // Wait a short time
|
|
|
|
cli(); // Stop interrupts
|
|
thermalManager.disable_all_heaters();
|
|
disable_all_steppers();
|
|
|
|
#if HAS_POWER_SWITCH
|
|
pinMode(PS_ON_PIN, INPUT);
|
|
#endif
|
|
|
|
suicide();
|
|
while (1) {
|
|
#if ENABLED(USE_WATCHDOG)
|
|
watchdog_reset();
|
|
#endif
|
|
} // Wait for reset
|
|
}
|
|
|
|
/**
|
|
* Turn off heaters and stop the print in progress
|
|
* After a stop the machine may be resumed with M999
|
|
*/
|
|
void stop() {
|
|
thermalManager.disable_all_heaters();
|
|
if (IsRunning()) {
|
|
Running = false;
|
|
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Marlin entry-point: Set up before the program loop
|
|
* - Set up the kill pin, filament runout, power hold
|
|
* - Start the serial port
|
|
* - Print startup messages and diagnostics
|
|
* - Get EEPROM or default settings
|
|
* - Initialize managers for:
|
|
* • temperature
|
|
* • planner
|
|
* • watchdog
|
|
* • stepper
|
|
* • photo pin
|
|
* • servos
|
|
* • LCD controller
|
|
* • Digipot I2C
|
|
* • Z probe sled
|
|
* • status LEDs
|
|
*/
|
|
void setup() {
|
|
|
|
#ifdef DISABLE_JTAG
|
|
// Disable JTAG on AT90USB chips to free up pins for IO
|
|
MCUCR = 0x80;
|
|
MCUCR = 0x80;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
setup_filrunoutpin();
|
|
#endif
|
|
|
|
setup_killpin();
|
|
|
|
setup_powerhold();
|
|
|
|
#if HAS_STEPPER_RESET
|
|
disableStepperDrivers();
|
|
#endif
|
|
|
|
MYSERIAL.begin(BAUDRATE);
|
|
SERIAL_PROTOCOLLNPGM("start");
|
|
SERIAL_ECHO_START;
|
|
|
|
// Check startup - does nothing if bootloader sets MCUSR to 0
|
|
byte mcu = MCUSR;
|
|
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
|
|
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
|
|
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
|
|
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
|
|
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
|
|
MCUSR = 0;
|
|
|
|
SERIAL_ECHOPGM(MSG_MARLIN);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
|
|
SERIAL_EOL;
|
|
|
|
#if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
|
|
SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
|
|
SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
|
|
SERIAL_ECHOLNPGM("Compiled: " __DATE__);
|
|
#endif
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
|
|
SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
|
|
// Send "ok" after commands by default
|
|
for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
|
|
|
|
// Load data from EEPROM if available (or use defaults)
|
|
// This also updates variables in the planner, elsewhere
|
|
Config_RetrieveSettings();
|
|
|
|
// Initialize current position based on home_offset
|
|
memcpy(current_position, home_offset, sizeof(home_offset));
|
|
|
|
// Vital to init stepper/planner equivalent for current_position
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
thermalManager.init(); // Initialize temperature loop
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
watchdog_init();
|
|
#endif
|
|
|
|
stepper.init(); // Initialize stepper, this enables interrupts!
|
|
setup_photpin();
|
|
servo_init();
|
|
|
|
#if HAS_BED_PROBE
|
|
endstops.enable_z_probe(false);
|
|
#endif
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
|
#endif
|
|
|
|
#if HAS_STEPPER_RESET
|
|
enableStepperDrivers();
|
|
#endif
|
|
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
digipot_i2c_init();
|
|
#endif
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
dac_init();
|
|
#endif
|
|
|
|
#if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
|
|
OUT_WRITE(SLED_PIN, LOW); // turn it off
|
|
#endif // Z_PROBE_SLED
|
|
|
|
setup_homepin();
|
|
|
|
#if PIN_EXISTS(STAT_LED_RED)
|
|
OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
|
|
#endif
|
|
|
|
#if PIN_EXISTS(STAT_LED_BLUE)
|
|
OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
|
|
#endif
|
|
|
|
lcd_init();
|
|
#if ENABLED(SHOW_BOOTSCREEN)
|
|
#if ENABLED(DOGLCD)
|
|
safe_delay(BOOTSCREEN_TIMEOUT);
|
|
#elif ENABLED(ULTRA_LCD)
|
|
bootscreen();
|
|
lcd_init();
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
|
|
// Initialize mixing to 100% color 1
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
mixing_factor[i] = (i == 0) ? 1 : 0;
|
|
for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
mixing_virtual_tool_mix[t][i] = mixing_factor[i];
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
|
|
i2c.onReceive(i2c_on_receive);
|
|
i2c.onRequest(i2c_on_request);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* The main Marlin program loop
|
|
*
|
|
* - Save or log commands to SD
|
|
* - Process available commands (if not saving)
|
|
* - Call heater manager
|
|
* - Call inactivity manager
|
|
* - Call endstop manager
|
|
* - Call LCD update
|
|
*/
|
|
void loop() {
|
|
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
card.checkautostart(false);
|
|
#endif
|
|
|
|
if (commands_in_queue) {
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
if (card.saving) {
|
|
char* command = command_queue[cmd_queue_index_r];
|
|
if (strstr_P(command, PSTR("M29"))) {
|
|
// M29 closes the file
|
|
card.closefile();
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
|
|
ok_to_send();
|
|
}
|
|
else {
|
|
// Write the string from the read buffer to SD
|
|
card.write_command(command);
|
|
if (card.logging)
|
|
process_next_command(); // The card is saving because it's logging
|
|
else
|
|
ok_to_send();
|
|
}
|
|
}
|
|
else
|
|
process_next_command();
|
|
|
|
#else
|
|
|
|
process_next_command();
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
// The queue may be reset by a command handler or by code invoked by idle() within a handler
|
|
if (commands_in_queue) {
|
|
--commands_in_queue;
|
|
cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
|
|
}
|
|
}
|
|
endstops.report_state();
|
|
idle();
|
|
}
|
|
|