Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

444 lines
14 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Software SPI functions originally from Arduino Sd2Card Library
* Copyright (c) 2009 by William Greiman
*/
/**
* For TARGET_LPC1768
*/
/**
* Hardware SPI and Software SPI implementations are included in this file.
* The hardware SPI runs faster and has higher throughput but is not compatible
* with some LCD interfaces/adapters.
*
* Control of the slave select pin(s) is handled by the calling routines.
*
* Some of the LCD interfaces/adapters result in the LCD SPI and the SD card
* SPI sharing pins. The SCK, MOSI & MISO pins can NOT be set/cleared with
* WRITE nor digitalWrite when the hardware SPI module within the LPC17xx is
* active. If any of these pins are shared then the software SPI must be used.
*
* A more sophisticated hardware SPI can be found at the following link. This
* implementation has not been fully debugged.
* https://github.com/MarlinFirmware/Marlin/tree/071c7a78f27078fd4aee9a3ef365fcf5e143531e
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
#include <SPI.h>
// Hardware SPI and SPIClass
#include <lpc17xx_pinsel.h>
#include <lpc17xx_clkpwr.h>
// ------------------------
// Public functions
// ------------------------
#if ENABLED(LPC_SOFTWARE_SPI)
#include <SoftwareSPI.h>
// Software SPI
static uint8_t SPI_speed = 0;
static uint8_t spiTransfer(uint8_t b) {
return swSpiTransfer(b, SPI_speed, SCK_PIN, MISO_PIN, MOSI_PIN);
}
void spiBegin() {
swSpiBegin(SCK_PIN, MISO_PIN, MOSI_PIN);
}
void spiInit(uint8_t spiRate) {
SPI_speed = swSpiInit(spiRate, SCK_PIN, MOSI_PIN);
}
uint8_t spiRec() { return spiTransfer(0xFF); }
void spiRead(uint8_t*buf, uint16_t nbyte) {
for (int i = 0; i < nbyte; i++)
buf[i] = spiTransfer(0xFF);
}
void spiSend(uint8_t b) { (void)spiTransfer(b); }
void spiSend(const uint8_t* buf, size_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++)
(void)spiTransfer(buf[i]);
}
void spiSendBlock(uint8_t token, const uint8_t* buf) {
(void)spiTransfer(token);
for (uint16_t i = 0; i < 512; i++)
(void)spiTransfer(buf[i]);
}
#else
// decide which HW SPI device to use
#ifndef LPC_HW_SPI_DEV
#if (SCK_PIN == P0_07 && MISO_PIN == P0_08 && MOSI_PIN == P0_09)
#define LPC_HW_SPI_DEV 1
#else
#if (SCK_PIN == P0_15 && MISO_PIN == P0_17 && MOSI_PIN == P0_18)
#define LPC_HW_SPI_DEV 0
#else
#error "Invalid pins selected for hardware SPI"
#endif
#endif
#endif
#if LPC_HW_SPI_DEV == 0
#define LPC_SSPn LPC_SSP0
#else
#define LPC_SSPn LPC_SSP1
#endif
void spiBegin() { // setup SCK, MOSI & MISO pins for SSP0
PINSEL_CFG_Type PinCfg; // data structure to hold init values
PinCfg.Funcnum = 2;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = LPC176x::pin_bit(SCK_PIN);
PinCfg.Portnum = LPC176x::pin_port(SCK_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(SCK_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(MISO_PIN);
PinCfg.Portnum = LPC176x::pin_port(MISO_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_INPUT(MISO_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(MOSI_PIN);
PinCfg.Portnum = LPC176x::pin_port(MOSI_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(MOSI_PIN);
// divide PCLK by 2 for SSP0
CLKPWR_SetPCLKDiv(LPC_HW_SPI_DEV == 0 ? CLKPWR_PCLKSEL_SSP0 : CLKPWR_PCLKSEL_SSP1, CLKPWR_PCLKSEL_CCLK_DIV_2);
spiInit(0);
SSP_Cmd(LPC_SSPn, ENABLE); // start SSP running
}
void spiInit(uint8_t spiRate) {
// table to convert Marlin spiRates (0-5 plus default) into bit rates
uint32_t Marlin_speed[7]; // CPSR is always 2
Marlin_speed[0] = 8333333; //(SCR: 2) desired: 8,000,000 actual: 8,333,333 +4.2% SPI_FULL_SPEED
Marlin_speed[1] = 4166667; //(SCR: 5) desired: 4,000,000 actual: 4,166,667 +4.2% SPI_HALF_SPEED
Marlin_speed[2] = 2083333; //(SCR: 11) desired: 2,000,000 actual: 2,083,333 +4.2% SPI_QUARTER_SPEED
Marlin_speed[3] = 1000000; //(SCR: 24) desired: 1,000,000 actual: 1,000,000 SPI_EIGHTH_SPEED
Marlin_speed[4] = 500000; //(SCR: 49) desired: 500,000 actual: 500,000 SPI_SPEED_5
Marlin_speed[5] = 250000; //(SCR: 99) desired: 250,000 actual: 250,000 SPI_SPEED_6
Marlin_speed[6] = 125000; //(SCR:199) desired: 125,000 actual: 125,000 Default from HAL.h
// setup for SPI mode
SSP_CFG_Type HW_SPI_init; // data structure to hold init values
SSP_ConfigStructInit(&HW_SPI_init); // set values for SPI mode
HW_SPI_init.ClockRate = Marlin_speed[_MIN(spiRate, 6)]; // put in the specified bit rate
HW_SPI_init.Mode |= SSP_CR1_SSP_EN;
SSP_Init(LPC_SSPn, &HW_SPI_init); // puts the values into the proper bits in the SSP0 registers
}
static uint8_t doio(uint8_t b) {
/* send and receive a single byte */
SSP_SendData(LPC_SSPn, b & 0x00FF);
while (SSP_GetStatus(LPC_SSPn, SSP_STAT_BUSY)); // wait for it to finish
return SSP_ReceiveData(LPC_SSPn) & 0x00FF;
}
void spiSend(uint8_t b) { doio(b); }
void spiSend(const uint8_t* buf, size_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++) doio(buf[i]);
}
void spiSend(uint32_t chan, byte b) {
}
void spiSend(uint32_t chan, const uint8_t* buf, size_t nbyte) {
}
// Read single byte from SPI
uint8_t spiRec() { return doio(0xFF); }
uint8_t spiRec(uint32_t chan) { return 0; }
// Read from SPI into buffer
void spiRead(uint8_t *buf, uint16_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++) buf[i] = doio(0xFF);
}
uint8_t spiTransfer(uint8_t b) {
return doio(b);
}
// Write from buffer to SPI
void spiSendBlock(uint8_t token, const uint8_t* buf) {
(void)spiTransfer(token);
for (uint16_t i = 0; i < 512; i++)
(void)spiTransfer(buf[i]);
}
/** Begin SPI transaction, set clock, bit order, data mode */
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
// TODO: to be implemented
}
#endif // LPC_SOFTWARE_SPI
/**
* @brief Wait until TXE (tx empty) flag is set and BSY (busy) flag unset.
*/
static inline void waitSpiTxEnd(LPC_SSP_TypeDef *spi_d) {
while (SSP_GetStatus(spi_d, SSP_STAT_TXFIFO_EMPTY) == RESET) { /* nada */ } // wait until TXE=1
while (SSP_GetStatus(spi_d, SSP_STAT_BUSY) == SET) { /* nada */ } // wait until BSY=0
}
SPIClass::SPIClass(uint8_t device) {
// Init things specific to each SPI device
// clock divider setup is a bit of hack, and needs to be improved at a later date.
PINSEL_CFG_Type PinCfg; // data structure to hold init values
#if BOARD_NR_SPI >= 1
_settings[0].spi_d = LPC_SSP0;
// _settings[0].clockDivider = determine_baud_rate(_settings[0].spi_d, _settings[0].clock);
PinCfg.Funcnum = 2;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI1_SCK_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI1_SCK_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(BOARD_SPI1_SCK_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI1_MISO_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI1_MISO_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_INPUT(BOARD_SPI1_MISO_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI1_MOSI_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI1_MOSI_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(BOARD_SPI1_MOSI_PIN);
#endif
#if BOARD_NR_SPI >= 2
_settings[1].spi_d = LPC_SSP1;
// _settings[1].clockDivider = determine_baud_rate(_settings[1].spi_d, _settings[1].clock);
PinCfg.Funcnum = 2;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI2_SCK_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI2_SCK_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(BOARD_SPI2_SCK_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI2_MISO_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI2_MISO_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_INPUT(BOARD_SPI2_MISO_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI2_MOSI_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI2_MOSI_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(BOARD_SPI2_MOSI_PIN);
#endif
setModule(device);
/* Initialize GPDMA controller */
//TODO: call once in the constructor? or each time?
GPDMA_Init();
}
void SPIClass::begin() {
updateSettings();
SSP_Cmd(_currentSetting->spi_d, ENABLE); // start SSP running
}
void SPIClass::beginTransaction(const SPISettings &cfg) {
setBitOrder(cfg.bitOrder);
setDataMode(cfg.dataMode);
setDataSize(cfg.dataSize);
//setClockDivider(determine_baud_rate(_currentSetting->spi_d, settings.clock));
begin();
}
uint8_t SPIClass::transfer(const uint16_t b) {
/* send and receive a single byte */
SSP_ReceiveData(_currentSetting->spi_d); // read any previous data
SSP_SendData(_currentSetting->spi_d, b);
waitSpiTxEnd(_currentSetting->spi_d); // wait for it to finish
return SSP_ReceiveData(_currentSetting->spi_d);
}
uint16_t SPIClass::transfer16(const uint16_t data) {
return (transfer((data >> 8) & 0xFF) << 8)
| (transfer(data & 0xFF) & 0xFF);
}
void SPIClass::end() {
// SSP_Cmd(_currentSetting->spi_d, DISABLE); // stop device or SSP_DeInit?
SSP_DeInit(_currentSetting->spi_d);
}
void SPIClass::send(uint8_t data) {
SSP_SendData(_currentSetting->spi_d, data);
}
void SPIClass::dmaSend(void *buf, uint16_t length, bool minc) {
//TODO: LPC dma can only write 0xFFF bytes at once.
GPDMA_Channel_CFG_Type GPDMACfg;
/* Configure GPDMA channel 0 -------------------------------------------------------------*/
/* DMA Channel 0 */
GPDMACfg.ChannelNum = 0;
// Source memory
GPDMACfg.SrcMemAddr = (uint32_t)buf;
// Destination memory - Not used
GPDMACfg.DstMemAddr = 0;
// Transfer size
GPDMACfg.TransferSize = (minc ? length : 1);
// Transfer width
GPDMACfg.TransferWidth = (_currentSetting->dataSize == DATA_SIZE_16BIT) ? GPDMA_WIDTH_HALFWORD : GPDMA_WIDTH_BYTE;
// Transfer type
GPDMACfg.TransferType = GPDMA_TRANSFERTYPE_M2P;
// Source connection - unused
GPDMACfg.SrcConn = 0;
// Destination connection
GPDMACfg.DstConn = (_currentSetting->spi_d == LPC_SSP0) ? GPDMA_CONN_SSP0_Tx : GPDMA_CONN_SSP1_Tx;
GPDMACfg.DMALLI = 0;
// Enable dma on SPI
SSP_DMACmd(_currentSetting->spi_d, SSP_DMA_TX, ENABLE);
// if minc=false, I'm repeating the same byte 'length' times, as I could not find yet how do GPDMA without memory increment
do {
// Setup channel with given parameter
GPDMA_Setup(&GPDMACfg);
// enabled dma
GPDMA_ChannelCmd(0, ENABLE);
// wait data transfer
while (!GPDMA_IntGetStatus(GPDMA_STAT_INTTC, 0) && !GPDMA_IntGetStatus(GPDMA_STAT_INTERR, 0)) { }
// clear err and int
GPDMA_ClearIntPending (GPDMA_STATCLR_INTTC, 0);
GPDMA_ClearIntPending (GPDMA_STATCLR_INTERR, 0);
// dma disable
GPDMA_ChannelCmd(0, DISABLE);
--length;
} while (!minc && length > 0);
waitSpiTxEnd(_currentSetting->spi_d);
SSP_DMACmd(_currentSetting->spi_d, SSP_DMA_TX, DISABLE);
}
uint16_t SPIClass::read() {
return SSP_ReceiveData(_currentSetting->spi_d);
}
void SPIClass::read(uint8_t *buf, uint32_t len) {
for (uint16_t i = 0; i < len; i++) buf[i] = transfer(0xFF);
}
void SPIClass::setClock(uint32_t clock) {
_currentSetting->clock = clock;
}
void SPIClass::setModule(uint8_t device) {
_currentSetting = &_settings[device - 1];// SPI channels are called 1 2 and 3 but the array is zero indexed
}
void SPIClass::setBitOrder(uint8_t bitOrder) {
_currentSetting->bitOrder = bitOrder;
}
void SPIClass::setDataMode(uint8_t dataMode) {
_currentSetting->dataSize = dataMode;
}
void SPIClass::setDataSize(uint32_t ds) {
_currentSetting->dataSize = ds;
}
/**
* Set up/tear down
*/
void SPIClass::updateSettings() {
//SSP_DeInit(_currentSetting->spi_d); //todo: need force de init?!
// divide PCLK by 2 for SSP0
CLKPWR_SetPCLKDiv(_currentSetting->spi_d == LPC_SSP0 ? CLKPWR_PCLKSEL_SSP0 : CLKPWR_PCLKSEL_SSP1, CLKPWR_PCLKSEL_CCLK_DIV_2);
SSP_CFG_Type HW_SPI_init; // data structure to hold init values
SSP_ConfigStructInit(&HW_SPI_init); // set values for SPI mode
HW_SPI_init.ClockRate = _currentSetting->clock;
HW_SPI_init.Databit = _currentSetting->dataSize;
/**
* SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge
* 0 0 0 Falling Rising
* 1 0 1 Rising Falling
* 2 1 0 Rising Falling
* 3 1 1 Falling Rising
*/
switch (_currentSetting->dataMode) {
case SPI_MODE0:
HW_SPI_init.CPHA = SSP_CPHA_FIRST;
HW_SPI_init.CPOL = SSP_CPOL_HI;
break;
case SPI_MODE1:
HW_SPI_init.CPHA = SSP_CPHA_SECOND;
HW_SPI_init.CPOL = SSP_CPOL_HI;
break;
case SPI_MODE2:
HW_SPI_init.CPHA = SSP_CPHA_FIRST;
HW_SPI_init.CPOL = SSP_CPOL_LO;
break;
case SPI_MODE3:
HW_SPI_init.CPHA = SSP_CPHA_SECOND;
HW_SPI_init.CPOL = SSP_CPOL_LO;
break;
default:
break;
}
// TODO: handle bitOrder
SSP_Init(_currentSetting->spi_d, &HW_SPI_init); // puts the values into the proper bits in the SSP0 registers
}
#if MISO_PIN == BOARD_SPI1_MISO_PIN
SPIClass SPI(1);
#elif MISO_PIN == BOARD_SPI2_MISO_PIN
SPIClass SPI(2);
#endif
#endif // TARGET_LPC1768