Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

300 lines
9.7 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../bedlevel.h"
unified_bed_leveling ubl;
#include "../../../MarlinCore.h"
#include "../../../gcode/gcode.h"
#include "../../../module/settings.h"
#include "../../../module/planner.h"
#include "../../../module/motion.h"
#include "../../../module/probe.h"
#include "../../../module/temperature.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
#endif
#include "math.h"
void unified_bed_leveling::echo_name() { SERIAL_ECHOPGM("Unified Bed Leveling"); }
void unified_bed_leveling::report_current_mesh() {
if (!leveling_is_valid()) return;
SERIAL_ECHO_MSG(" G29 I999");
GRID_LOOP(x, y)
if (!isnan(z_values[x][y])) {
SERIAL_ECHO_START();
SERIAL_ECHOPGM(" M421 I", x, " J", y);
SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, z_values[x][y], 4);
serial_delay(75); // Prevent Printrun from exploding
}
}
void unified_bed_leveling::report_state() {
echo_name();
SERIAL_ECHO_TERNARY(planner.leveling_active, " System v" UBL_VERSION " ", "", "in", "active\n");
serial_delay(50);
}
int8_t unified_bed_leveling::storage_slot;
float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
#define _GRIDPOS(A,N) (MESH_MIN_##A + N * (MESH_##A##_DIST))
const float
unified_bed_leveling::_mesh_index_to_xpos[GRID_MAX_POINTS_X] PROGMEM = ARRAY_N(GRID_MAX_POINTS_X,
_GRIDPOS(X, 0), _GRIDPOS(X, 1), _GRIDPOS(X, 2), _GRIDPOS(X, 3),
_GRIDPOS(X, 4), _GRIDPOS(X, 5), _GRIDPOS(X, 6), _GRIDPOS(X, 7),
_GRIDPOS(X, 8), _GRIDPOS(X, 9), _GRIDPOS(X, 10), _GRIDPOS(X, 11),
_GRIDPOS(X, 12), _GRIDPOS(X, 13), _GRIDPOS(X, 14), _GRIDPOS(X, 15)
),
unified_bed_leveling::_mesh_index_to_ypos[GRID_MAX_POINTS_Y] PROGMEM = ARRAY_N(GRID_MAX_POINTS_Y,
_GRIDPOS(Y, 0), _GRIDPOS(Y, 1), _GRIDPOS(Y, 2), _GRIDPOS(Y, 3),
_GRIDPOS(Y, 4), _GRIDPOS(Y, 5), _GRIDPOS(Y, 6), _GRIDPOS(Y, 7),
_GRIDPOS(Y, 8), _GRIDPOS(Y, 9), _GRIDPOS(Y, 10), _GRIDPOS(Y, 11),
_GRIDPOS(Y, 12), _GRIDPOS(Y, 13), _GRIDPOS(Y, 14), _GRIDPOS(Y, 15)
);
volatile int16_t unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() { reset(); }
void unified_bed_leveling::reset() {
const bool was_enabled = planner.leveling_active;
set_bed_leveling_enabled(false);
storage_slot = -1;
ZERO(z_values);
#if ENABLED(EXTENSIBLE_UI)
GRID_LOOP(x, y) ExtUI::onMeshUpdate(x, y, 0);
#endif
if (was_enabled) report_current_position();
}
void unified_bed_leveling::invalidate() {
set_bed_leveling_enabled(false);
set_all_mesh_points_to_value(NAN);
}
void unified_bed_leveling::set_all_mesh_points_to_value(const_float_t value) {
GRID_LOOP(x, y) {
z_values[x][y] = value;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value));
}
}
#if ENABLED(OPTIMIZED_MESH_STORAGE)
constexpr float mesh_store_scaling = 1000;
constexpr int16_t Z_STEPS_NAN = INT16_MAX;
void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) {
auto z_to_store = [](const_float_t z) {
if (isnan(z)) return Z_STEPS_NAN;
const int32_t z_scaled = TRUNC(z * mesh_store_scaling);
if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX))
return Z_STEPS_NAN; // If Z is out of range, return our custom 'NaN'
return int16_t(z_scaled);
};
GRID_LOOP(x, y) stored_values[x][y] = z_to_store(in_values[x][y]);
}
void unified_bed_leveling::set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values) {
auto store_to_z = [](const int16_t z_scaled) {
return z_scaled == Z_STEPS_NAN ? NAN : z_scaled / mesh_store_scaling;
};
GRID_LOOP(x, y) out_values[x][y] = store_to_z(stored_values[x][y]);
}
#endif // OPTIMIZED_MESH_STORAGE
static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) {
SERIAL_ECHO_SP(sp);
SERIAL_CHAR('(');
if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); }
SERIAL_ECHO(x);
SERIAL_CHAR(',');
if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); }
SERIAL_ECHO(y);
SERIAL_CHAR(')');
serial_delay(5);
}
static void serial_echo_column_labels(const uint8_t sp) {
SERIAL_ECHO_SP(7);
LOOP_L_N(i, GRID_MAX_POINTS_X) {
if (i < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(i);
SERIAL_ECHO_SP(sp);
}
serial_delay(10);
}
/**
* Produce one of these mesh maps:
* 0: Human-readable
* 1: CSV format for spreadsheet import
* 2: TODO: Display on Graphical LCD
* 4: Compact Human-Readable
*/
void unified_bed_leveling::display_map(const uint8_t map_type) {
const bool was = gcode.set_autoreport_paused(true);
constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567]
twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each
const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4;
SERIAL_ECHOPGM("\nBed Topography Report");
if (human) {
SERIAL_ECHOLNPGM(":\n");
serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y);
serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y);
SERIAL_EOL();
serial_echo_column_labels(eachsp - 2);
}
else
SERIAL_ECHOPGM(" for ", csv ? F("CSV:\n") : F("LCD:\n"));
// Add XY probe offset from extruder because probe.probe_at_point() subtracts them when
// moving to the XY position to be measured. This ensures better agreement between
// the current Z position after G28 and the mesh values.
const xy_int8_t curr = closest_indexes(xy_pos_t(current_position) + probe.offset_xy);
if (!lcd) SERIAL_EOL();
for (int8_t j = (GRID_MAX_POINTS_Y) - 1; j >= 0; j--) {
// Row Label (J index)
if (human) {
if (j < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(j);
SERIAL_ECHOPGM(" |");
}
// Row Values (I indexes)
LOOP_L_N(i, GRID_MAX_POINTS_X) {
// Opening Brace or Space
const bool is_current = i == curr.x && j == curr.y;
if (human) SERIAL_CHAR(is_current ? '[' : ' ');
// Z Value at current I, J
const float f = z_values[i][j];
if (lcd) {
// TODO: Display on Graphical LCD
}
else if (isnan(f))
SERIAL_ECHOF(human ? F(" . ") : F("NAN"));
else if (human || csv) {
if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' '); // Display sign also for positive numbers (' ' for 0)
SERIAL_ECHO_F(f, 3); // Positive: 5 digits, Negative: 6 digits
}
if (csv && i < (GRID_MAX_POINTS_X) - 1) SERIAL_CHAR('\t');
// Closing Brace or Space
if (human) SERIAL_CHAR(is_current ? ']' : ' ');
SERIAL_FLUSHTX();
idle_no_sleep();
}
if (!lcd) SERIAL_EOL();
// A blank line between rows (unless compact)
if (j && human && !comp) SERIAL_ECHOLNPGM(" |");
}
if (human) {
serial_echo_column_labels(eachsp - 2);
SERIAL_EOL();
serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y);
serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y);
SERIAL_EOL();
SERIAL_EOL();
}
gcode.set_autoreport_paused(was);
}
bool unified_bed_leveling::sanity_check() {
uint8_t error_flag = 0;
if (settings.calc_num_meshes() < 1) {
SERIAL_ECHOLNPGM("?Mesh too big for EEPROM.");
error_flag++;
}
return !!error_flag;
}
#if ENABLED(UBL_MESH_WIZARD)
/**
* M1004: UBL Mesh Wizard - One-click mesh creation with or without a probe
*/
void GcodeSuite::M1004() {
#define ALIGN_GCODE TERN(Z_STEPPER_AUTO_ALIGN, "G34", "")
#define PROBE_GCODE TERN(HAS_BED_PROBE, "G29P1\nG29P3", "G29P4R")
#if HAS_HOTEND
if (parser.seenval('H')) { // Handle H# parameter to set Hotend temp
const celsius_t hotend_temp = parser.value_int(); // Marlin never sends itself F or K, always C
thermalManager.setTargetHotend(hotend_temp, 0);
thermalManager.wait_for_hotend(false);
}
#endif
#if HAS_HEATED_BED
if (parser.seenval('B')) { // Handle B# parameter to set Bed temp
const celsius_t bed_temp = parser.value_int(); // Marlin never sends itself F or K, always C
thermalManager.setTargetBed(bed_temp);
thermalManager.wait_for_bed(false);
}
#endif
process_subcommands_now(FPSTR(G28_STR)); // Home
process_subcommands_now(F(ALIGN_GCODE "\n" // Align multi z axis if available
PROBE_GCODE "\n" // Build mesh with available hardware
"G29P3\nG29P3")); // Ensure mesh is complete by running smart fill twice
if (parser.seenval('S')) {
char umw_gcode[32];
sprintf_P(umw_gcode, PSTR("G29S%i"), parser.value_int());
queue.inject(umw_gcode);
}
process_subcommands_now(F("G29A\nG29F10\n" // Set UBL Active & Fade 10
"M140S0\nM104S0\n" // Turn off heaters
"M500")); // Store settings
}
#endif // UBL_MESH_WIZARD
#endif // AUTO_BED_LEVELING_UBL