Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

687 lines
22 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfigPre.h"
#if BOTH(HAS_TFT_LVGL_UI, MKS_WIFI_MODULE)
#include "draw_ui.h"
#include "wifi_module.h"
#include "wifi_upload.h"
#include "../../../MarlinCore.h"
#include "../../../sd/cardreader.h"
#define WIFI_SET() WRITE(WIFI_RESET_PIN, HIGH);
#define WIFI_RESET() WRITE(WIFI_RESET_PIN, LOW);
#define WIFI_IO1_SET() WRITE(WIFI_IO1_PIN, HIGH);
#define WIFI_IO1_RESET() WRITE(WIFI_IO1_PIN, LOW);
extern SZ_USART_FIFO WifiRxFifo;
extern int readUsartFifo(SZ_USART_FIFO *fifo, int8_t *buf, int32_t len);
extern int writeUsartFifo(SZ_USART_FIFO * fifo, int8_t * buf, int32_t len);
void esp_port_begin(uint8_t interrupt);
extern int usartFifoAvailable(SZ_USART_FIFO *fifo);
void wifi_delay(int n);
#define ARRAY_SIZE(a) sizeof(a) / sizeof((a)[0])
//typedef signed char bool;
// ESP8266 command codes
const uint8_t ESP_FLASH_BEGIN = 0x02;
const uint8_t ESP_FLASH_DATA = 0x03;
const uint8_t ESP_FLASH_END = 0x04;
const uint8_t ESP_MEM_BEGIN = 0x05;
const uint8_t ESP_MEM_END = 0x06;
const uint8_t ESP_MEM_DATA = 0x07;
const uint8_t ESP_SYNC = 0x08;
const uint8_t ESP_WRITE_REG = 0x09;
const uint8_t ESP_READ_REG = 0x0A;
// MAC address storage locations
const uint32_t ESP_OTP_MAC0 = 0x3FF00050;
const uint32_t ESP_OTP_MAC1 = 0x3FF00054;
const uint32_t ESP_OTP_MAC2 = 0x3FF00058;
const uint32_t ESP_OTP_MAC3 = 0x3FF0005C;
const size_t EspFlashBlockSize = 0x0400; // 1K byte blocks
const uint8_t ESP_IMAGE_MAGIC = 0xE9;
const uint8_t ESP_CHECKSUM_MAGIC = 0xEF;
const uint32_t ESP_ERASE_CHIP_ADDR = 0x40004984; // &SPIEraseChip
const uint32_t ESP_SEND_PACKET_ADDR = 0x40003C80; // &send_packet
const uint32_t ESP_SPI_READ_ADDR = 0x40004B1C; // &SPIRead
const uint32_t ESP_UNKNOWN_ADDR = 0x40001121; // not used
const uint32_t ESP_USER_DATA_RAM_ADDR = 0x3FFE8000; // &user data ram
const uint32_t ESP_IRAM_ADDR = 0x40100000; // instruction RAM
const uint32_t ESP_FLASH_ADDR = 0x40200000; // address of start of Flash
UPLOAD_STRUCT esp_upload;
static const unsigned int retriesPerReset = 3;
static const uint32_t connectAttemptInterval = 50;
static const unsigned int percentToReportIncrement = 5; // how often we report % complete
static const uint32_t defaultTimeout = 500;
static const uint32_t eraseTimeout = 15000;
static const uint32_t blockWriteTimeout = 200;
static const uint32_t blockWriteInterval = 15; // 15ms is long enough, 10ms is mostly too short
static SdFile update_file, *update_curDir;
// Messages corresponding to result codes, should make sense when followed by " error"
const char *resultMessages[] = {
"no",
"timeout",
"comm write",
"connect",
"bad reply",
"file read",
"empty file",
"response header",
"slip frame",
"slip state",
"slip data"
};
// A note on baud rates.
// The ESP8266 supports 921600, 460800, 230400, 115200, 74880 and some lower baud rates.
// 921600b is not reliable because even though it sometimes succeeds in connecting, we get a bad response during uploading after a few blocks.
// Probably our UART ISR cannot receive bytes fast enough, perhaps because of the latency of the system tick ISR.
// 460800b doesn't always manage to connect, but if it does then uploading appears to be reliable.
// 230400b always manages to connect.
static const uint32_t uploadBaudRates[] = { 460800, 230400, 115200, 74880 };
signed char IsReady() {
return esp_upload.state == upload_idle;
}
void uploadPort_write(const uint8_t *buf, const size_t len) {
for (size_t i = 0; i < len; i++)
WIFISERIAL.write(*(buf + i));
}
char uploadPort_read() {
uint8_t retChar;
retChar = WIFISERIAL.read();
return _MAX(retChar, 0);
}
int uploadPort_available() {
return usartFifoAvailable(&WifiRxFifo);
}
void uploadPort_begin() {
esp_port_begin(1);
}
void uploadPort_close() {
//WIFI_COM.end();
//WIFI_COM.begin(115200, true);
esp_port_begin(0);
}
void flushInput() {
while (uploadPort_available() != 0) {
(void)uploadPort_read();
//IWDG_ReloadCounter();
}
}
// Extract 1-4 bytes of a value in little-endian order from a buffer beginning at a specified offset
uint32_t getData(unsigned byteCnt, const uint8_t *buf, int ofst) {
uint32_t val = 0;
if (buf && byteCnt) {
unsigned int shiftCnt = 0;
NOMORE(byteCnt, 4U);
do {
val |= (uint32_t)buf[ofst++] << shiftCnt;
shiftCnt += 8;
} while (--byteCnt);
}
return val;
}
// Put 1-4 bytes of a value in little-endian order into a buffer beginning at a specified offset.
void putData(uint32_t val, unsigned byteCnt, uint8_t *buf, int ofst) {
if (buf && byteCnt) {
NOMORE(byteCnt, 4U);
do {
buf[ofst++] = (uint8_t)(val & 0xFF);
val >>= 8;
} while (--byteCnt);
}
}
// Read a byte optionally performing SLIP decoding. The return values are:
//
// 2 - an escaped byte was read successfully
// 1 - a non-escaped byte was read successfully
// 0 - no data was available
// -1 - the value 0xC0 was encountered (shouldn't happen)
// -2 - a SLIP escape byte was found but the following byte wasn't available
// -3 - a SLIP escape byte was followed by an invalid byte
int ReadByte(uint8_t *data, signed char slipDecode) {
if (uploadPort_available() == 0) return 0;
// At least one byte is available
*data = uploadPort_read();
if (!slipDecode) return 1;
if (*data == 0xC0) return -1; // This shouldn't happen
if (*data != 0xDB) return 1; // If not the SLIP escape, we're done
// SLIP escape, check availability of subsequent byte
if (uploadPort_available() == 0) return -2;
// process the escaped byte
*data = uploadPort_read();
if (*data == 0xDC) { *data = 0xC0; return 2; }
if (*data == 0xDD) { *data = 0xDB; return 2; }
return -3; // invalid
}
// When we write a sync packet, there must be no gaps between most of the characters.
// So use this function, which does a block write to the UART buffer in the latest CoreNG.
void _writePacketRaw(const uint8_t *buf, size_t len) {
uploadPort_write(buf, len);
}
// Write a byte to the serial port optionally SLIP encoding. Return the number of bytes actually written.
void WriteByteRaw(uint8_t b) {
uploadPort_write((const uint8_t *)&b, 1);
}
// Write a byte to the serial port optionally SLIP encoding. Return the number of bytes actually written.
void WriteByteSlip(const uint8_t b) {
if (b == 0xC0) {
WriteByteRaw(0xDB);
WriteByteRaw(0xDC);
}
else if (b == 0xDB) {
WriteByteRaw(0xDB);
WriteByteRaw(0xDD);
}
else
uploadPort_write((const uint8_t *)&b, 1);
}
// Wait for a data packet to be returned. If the body of the packet is
// non-zero length, return an allocated buffer indirectly containing the
// data and return the data length. Note that if the pointer for returning
// the data buffer is nullptr, the response is expected to be two bytes of zero.
//
// If an error occurs, return a negative value. Otherwise, return the number
// of bytes in the response (or zero if the response was not the standard "two bytes of zero").
EspUploadResult readPacket(uint8_t op, uint32_t *valp, size_t *bodyLen, uint32_t msTimeout) {
typedef enum {
begin = 0,
header,
body,
end,
done
} PacketState;
uint8_t resp, opRet;
const size_t headerLength = 8;
uint32_t startTime = getWifiTick();
uint8_t hdr[headerLength];
uint16_t hdrIdx = 0;
uint16_t bodyIdx = 0;
uint8_t respBuf[2];
// wait for the response
uint16_t needBytes = 1;
PacketState state = begin;
*bodyLen = 0;
while (state != done) {
uint8_t c;
EspUploadResult stat;
//IWDG_ReloadCounter();
watchdog_refresh();
if (getWifiTickDiff(startTime, getWifiTick()) > msTimeout)
return timeout;
if (uploadPort_available() < needBytes) {
// insufficient data available
// preferably, return to Spin() here
continue;
}
// sufficient bytes have been received for the current state, process them
switch (state) {
case begin: // expecting frame start
c = uploadPort_read();
if (c == (uint8_t)0xC0) break;
state = header;
needBytes = 2;
break;
case end: // expecting frame end
c = uploadPort_read();
if (c != (uint8_t)0xC0) return slipFrame;
state = done;
break;
case header: // reading an 8-byte header
case body: { // reading the response body
int rslt;
// retrieve a byte with SLIP decoding
rslt = ReadByte(&c, 1);
if (rslt != 1 && rslt != 2) {
// some error occurred
stat = (rslt == 0 || rslt == -2) ? slipData : slipFrame;
return stat;
}
else if (state == header) {
//store the header byte
hdr[hdrIdx++] = c;
if (hdrIdx >= headerLength) {
// get the body length, prepare a buffer for it
*bodyLen = (uint16_t)getData(2, hdr, 2);
// extract the value, if requested
if (valp)
*valp = getData(4, hdr, 4);
if (*bodyLen != 0)
state = body;
else {
needBytes = 1;
state = end;
}
}
}
else {
// Store the response body byte, check for completion
if (bodyIdx < ARRAY_SIZE(respBuf))
respBuf[bodyIdx] = c;
if (++bodyIdx >= *bodyLen) {
needBytes = 1;
state = end;
}
}
} break;
default: return slipState; // this shouldn't happen
}
}
// Extract elements from the header
resp = (uint8_t)getData(1, hdr, 0);
opRet = (uint8_t)getData(1, hdr, 1);
// Sync packets often provoke a response with a zero opcode instead of ESP_SYNC
if (resp != 0x01 || opRet != op) return respHeader;
return success;
}
// Send a block of data performing SLIP encoding of the content.
void _writePacket(const uint8_t *data, size_t len) {
unsigned char outBuf[2048] = {0};
unsigned int outIndex = 0;
while (len != 0) {
if (*data == 0xC0) {
outBuf[outIndex++] = 0xDB;
outBuf[outIndex++] = 0xDC;
}
else if (*data == 0xDB) {
outBuf[outIndex++] = 0xDB;
outBuf[outIndex++] = 0xDD;
}
else {
outBuf[outIndex++] = *data;
}
data++;
--len;
}
uploadPort_write((const uint8_t *)outBuf, outIndex);
}
// Send a packet to the serial port while performing SLIP framing. The packet data comprises a header and an optional data block.
// A SLIP packet begins and ends with 0xC0. The data encapsulated has the bytes
// 0xC0 and 0xDB replaced by the two-byte sequences {0xDB, 0xDC} and {0xDB, 0xDD} respectively.
void writePacket(const uint8_t *hdr, size_t hdrLen, const uint8_t *data, size_t dataLen) {
WriteByteRaw(0xC0); // send the packet start character
_writePacket(hdr, hdrLen); // send the header
_writePacket(data, dataLen); // send the data block
WriteByteRaw(0xC0); // send the packet end character
}
// Send a packet to the serial port while performing SLIP framing. The packet data comprises a header and an optional data block.
// This is like writePacket except that it does a fast block write for both the header and the main data with no SLIP encoding. Used to send sync commands.
void writePacketRaw(const uint8_t *hdr, size_t hdrLen, const uint8_t *data, size_t dataLen) {
WriteByteRaw(0xC0); // send the packet start character
_writePacketRaw(hdr, hdrLen); // send the header
_writePacketRaw(data, dataLen); // send the data block in raw mode
WriteByteRaw(0xC0); // send the packet end character
}
// Send a command to the attached device together with the supplied data, if any.
// The data is supplied via a list of one or more segments.
void sendCommand(uint8_t op, uint32_t checkVal, const uint8_t *data, size_t dataLen) {
// populate the header
uint8_t hdr[8];
putData(0, 1, hdr, 0);
putData(op, 1, hdr, 1);
putData(dataLen, 2, hdr, 2);
putData(checkVal, 4, hdr, 4);
// send the packet
if (op == ESP_SYNC)
writePacketRaw(hdr, sizeof(hdr), data, dataLen);
else
writePacket(hdr, sizeof(hdr), data, dataLen);
}
// Send a command to the attached device together with the supplied data, if any, and get the response
EspUploadResult doCommand(uint8_t op, const uint8_t *data, size_t dataLen, uint32_t checkVal, uint32_t *valp, uint32_t msTimeout) {
size_t bodyLen;
EspUploadResult stat;
sendCommand(op, checkVal, data, dataLen);
stat = readPacket(op, valp, &bodyLen, msTimeout);
if (stat == success && bodyLen != 2)
stat = badReply;
return stat;
}
// Send a synchronising packet to the serial port in an attempt to induce
// the ESP8266 to auto-baud lock on the baud rate.
EspUploadResult Sync(uint16_t timeout) {
uint8_t buf[36];
EspUploadResult stat;
int i ;
// compose the data for the sync attempt
memset(buf, 0x55, sizeof(buf));
buf[0] = 0x07;
buf[1] = 0x07;
buf[2] = 0x12;
buf[3] = 0x20;
stat = doCommand(ESP_SYNC, buf, sizeof(buf), 0, 0, timeout);
// If we got a response other than sync, discard it and wait for a sync response. This happens at higher baud rates.
for (i = 0; i < 10 && stat == respHeader; ++i) {
size_t bodyLen;
stat = readPacket(ESP_SYNC, 0, &bodyLen, timeout);
}
if (stat == success) {
// Read and discard additional replies
for (;;) {
size_t bodyLen;
EspUploadResult rc = readPacket(ESP_SYNC, 0, &bodyLen, defaultTimeout);
watchdog_refresh();
if (rc != success || bodyLen != 2) break;
}
}
//DEBUG
//else debug//printf("stat=%d\n", (int)stat);
return stat;
}
// Send a command to the device to begin the Flash process.
EspUploadResult flashBegin(uint32_t addr, uint32_t size) {
// determine the number of blocks represented by the size
uint32_t blkCnt;
uint8_t buf[16];
uint32_t timeout;
blkCnt = (size + EspFlashBlockSize - 1) / EspFlashBlockSize;
// ensure that the address is on a block boundary
addr &= ~(EspFlashBlockSize - 1);
// begin the Flash process
putData(size, 4, buf, 0);
putData(blkCnt, 4, buf, 4);
putData(EspFlashBlockSize, 4, buf, 8);
putData(addr, 4, buf, 12);
timeout = (size != 0) ? eraseTimeout : defaultTimeout;
return doCommand(ESP_FLASH_BEGIN, buf, sizeof(buf), 0, 0, timeout);
}
// Send a command to the device to terminate the Flash process
EspUploadResult flashFinish(signed char reboot) {
uint8_t buf[4];
putData(reboot ? 0 : 1, 4, buf, 0);
return doCommand(ESP_FLASH_END, buf, sizeof(buf), 0, 0, defaultTimeout);
}
// Compute the checksum of a block of data
uint16_t checksum(const uint8_t *data, uint16_t dataLen, uint16_t cksum) {
if (data) while (dataLen--) cksum ^= (uint16_t)*data++;
return cksum;
}
EspUploadResult flashWriteBlock(uint16_t flashParmVal, uint16_t flashParmMask) {
const uint32_t blkSize = EspFlashBlockSize;
int i;
// Allocate a data buffer for the combined header and block data
const uint16_t hdrOfst = 0;
const uint16_t dataOfst = 16;
const uint16_t blkBufSize = dataOfst + blkSize;
uint32_t blkBuf32[blkBufSize/4];
uint8_t * const blkBuf = (uint8_t*)(blkBuf32);
uint32_t cnt;
uint16_t cksum;
EspUploadResult stat;
// Prepare the header for the block
putData(blkSize, 4, blkBuf, hdrOfst + 0);
putData(esp_upload.uploadBlockNumber, 4, blkBuf, hdrOfst + 4);
putData(0, 4, blkBuf, hdrOfst + 8);
putData(0, 4, blkBuf, hdrOfst + 12);
// Get the data for the block
cnt = update_file.read(blkBuf + dataOfst, blkSize); //->Read(reinterpret_cast<char *>(blkBuf + dataOfst), blkSize);
if (cnt != blkSize) {
if (update_file.curPosition() == esp_upload.fileSize) {
// partial last block, fill the remainder
memset(blkBuf + dataOfst + cnt, 0xFF, blkSize - cnt);
}
else
return fileRead;
}
// Patch the flash parameters into the first block if it is loaded at address 0
if (esp_upload.uploadBlockNumber == 0 && esp_upload.uploadAddress == 0 && blkBuf[dataOfst] == ESP_IMAGE_MAGIC && flashParmMask != 0) {
// update the Flash parameters
uint32_t flashParm = getData(2, blkBuf + dataOfst + 2, 0) & ~(uint32_t)flashParmMask;
putData(flashParm | flashParmVal, 2, blkBuf + dataOfst + 2, 0);
}
// Calculate the block checksum
cksum = checksum(blkBuf + dataOfst, blkSize, ESP_CHECKSUM_MAGIC);
for (i = 0; i < 3; i++)
if ((stat = doCommand(ESP_FLASH_DATA, blkBuf, blkBufSize, cksum, 0, blockWriteTimeout)) == success)
break;
return stat;
}
void upload_spin() {
switch (esp_upload.state) {
case resetting:
if (esp_upload.connectAttemptNumber == 9) {
esp_upload.uploadResult = connected;
esp_upload.state = done;
}
else {
uploadPort_begin();
wifi_delay(2000);
flushInput();
esp_upload.lastAttemptTime = esp_upload.lastResetTime = getWifiTick();
esp_upload.state = connecting;
}
break;
case connecting:
if ((getWifiTickDiff(esp_upload.lastAttemptTime, getWifiTick()) >= connectAttemptInterval) && (getWifiTickDiff(esp_upload.lastResetTime, getWifiTick()) >= 500)) {
EspUploadResult res = Sync(5000);
esp_upload.lastAttemptTime = getWifiTick();
if (res == success)
esp_upload.state = erasing;
else {
esp_upload.connectAttemptNumber++;
if (esp_upload.connectAttemptNumber % retriesPerReset == 0)
esp_upload.state = resetting;
}
}
break;
case erasing:
if (getWifiTickDiff(esp_upload.lastAttemptTime, getWifiTick()) >= blockWriteInterval) {
uint32_t eraseSize;
const uint32_t sectorsPerBlock = 16;
const uint32_t sectorSize = 4096;
const uint32_t numSectors = (esp_upload.fileSize + sectorSize - 1)/sectorSize;
const uint32_t startSector = esp_upload.uploadAddress/sectorSize;
uint32_t headSectors = sectorsPerBlock - (startSector % sectorsPerBlock);
NOMORE(headSectors, numSectors);
eraseSize = (numSectors < 2 * headSectors)
? (numSectors + 1) / 2 * sectorSize
: (numSectors - headSectors) * sectorSize;
esp_upload.uploadResult = flashBegin(esp_upload.uploadAddress, eraseSize);
if (esp_upload.uploadResult == success) {
esp_upload.uploadBlockNumber = 0;
esp_upload.uploadNextPercentToReport = percentToReportIncrement;
esp_upload.lastAttemptTime = getWifiTick();
esp_upload.state = uploading;
}
else
esp_upload.state = done;
}
break;
case uploading:
// The ESP needs several milliseconds to recover from one packet before it will accept another
if (getWifiTickDiff(esp_upload.lastAttemptTime, getWifiTick()) >= 15) {
unsigned int percentComplete;
const uint32_t blkCnt = (esp_upload.fileSize + EspFlashBlockSize - 1) / EspFlashBlockSize;
if (esp_upload.uploadBlockNumber < blkCnt) {
esp_upload.uploadResult = flashWriteBlock(0, 0);
esp_upload.lastAttemptTime = getWifiTick();
if (esp_upload.uploadResult != success)
esp_upload.state = done;
percentComplete = (100 * esp_upload.uploadBlockNumber)/blkCnt;
++esp_upload.uploadBlockNumber;
if (percentComplete >= esp_upload.uploadNextPercentToReport)
esp_upload.uploadNextPercentToReport += percentToReportIncrement;
}
else
esp_upload.state = done;
}
break;
case done:
update_file.close();
esp_upload.state = upload_idle;
break;
default: break;
}
}
// Try to upload the given file at the given address
void SendUpdateFile(const char *file, uint32_t address) {
const char * const fname = card.diveToFile(false, update_curDir, ESP_FIRMWARE_FILE);
if (!update_file.open(update_curDir, fname, O_READ)) return;
esp_upload.fileSize = update_file.fileSize();
if (esp_upload.fileSize == 0) {
update_file.close();
return;
}
esp_upload.uploadAddress = address;
esp_upload.connectAttemptNumber = 0;
esp_upload.state = resetting;
}
static const uint32_t FirmwareAddress = 0x00000000, WebFilesAddress = 0x00100000;
void ResetWiFiForUpload(int begin_or_end) {
//#if 0
uint32_t start, now;
start = getWifiTick();
now = start;
if (begin_or_end == 0) {
SET_OUTPUT(WIFI_IO0_PIN);
WRITE(WIFI_IO0_PIN, LOW);
}
else
SET_INPUT_PULLUP(WIFI_IO0_PIN);
WIFI_RESET();
while (getWifiTickDiff(start, now) < 500) now = getWifiTick();
WIFI_SET();
//#endif
}
int32_t wifi_upload(int type) {
esp_upload.retriesPerBaudRate = 9;
ResetWiFiForUpload(0);
switch (type) {
case 0: SendUpdateFile(ESP_FIRMWARE_FILE, FirmwareAddress); break;
case 1: SendUpdateFile(ESP_WEB_FIRMWARE_FILE, FirmwareAddress); break;
case 2: SendUpdateFile(ESP_WEB_FILE, WebFilesAddress); break;
default: return -1;
}
while (esp_upload.state != upload_idle) {
upload_spin();
watchdog_refresh();
}
ResetWiFiForUpload(1);
return esp_upload.uploadResult == success ? 0 : -1;
}
#endif // HAS_TFT_LVGL_UI && MKS_WIFI_MODULE