Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

523 lines
15 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfigPre.h"
#if HAS_TFT_LVGL_UI
#include "SPI_TFT.h"
#include "tft_lvgl_configuration.h"
#include "draw_ready_print.h"
#include "pic_manager.h"
#include "mks_hardware.h"
#include "draw_ui.h"
#include "SPIFlashStorage.h"
#include <lvgl.h>
#include "../../../MarlinCore.h"
#include "../../../inc/MarlinConfig.h"
#include HAL_PATH(../../../HAL, tft/xpt2046.h)
#include "../../marlinui.h"
XPT2046 touch;
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../../../feature/powerloss.h"
#endif
#if HAS_SERVOS
#include "../../../module/servo.h"
#endif
#if EITHER(PROBE_TARE, HAS_Z_SERVO_PROBE)
#include "../../../module/probe.h"
#endif
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
#include "../../tft_io/touch_calibration.h"
#include "draw_touch_calibration.h"
#endif
#if ENABLED(MKS_WIFI_MODULE)
#include "wifi_module.h"
#endif
#include <SPI.h>
#ifndef TFT_WIDTH
#define TFT_WIDTH 480
#endif
#ifndef TFT_HEIGHT
#define TFT_HEIGHT 320
#endif
#if HAS_SPI_FLASH_FONT
void init_gb2312_font();
#endif
static lv_disp_buf_t disp_buf;
lv_group_t* g;
#if ENABLED(SDSUPPORT)
void UpdateAssets();
#endif
uint16_t DeviceCode = 0x9488;
extern uint8_t sel_id;
uint8_t bmp_public_buf[14 * 1024];
uint8_t public_buf[513];
extern bool flash_preview_begin, default_preview_flg, gcode_preview_over;
void SysTick_Callback() {
lv_tick_inc(1);
print_time_count();
#if ENABLED(MKS_WIFI_MODULE)
if (tips_disp.timer == TIPS_TIMER_START)
tips_disp.timer_count++;
#endif
if (uiCfg.filament_loading_time_flg) {
uiCfg.filament_loading_time_cnt++;
uiCfg.filament_rate = uint32_t(100.0f * uiCfg.filament_loading_time_cnt / SEC_TO_MS(uiCfg.filament_loading_time) + 0.5f);
if (uiCfg.filament_loading_time_cnt >= SEC_TO_MS(uiCfg.filament_loading_time)) {
uiCfg.filament_loading_time_cnt = 0;
uiCfg.filament_loading_time_flg = false;
uiCfg.filament_loading_completed = true;
}
}
if (uiCfg.filament_unloading_time_flg) {
uiCfg.filament_unloading_time_cnt++;
uiCfg.filament_rate = uint32_t(100.0f * uiCfg.filament_unloading_time_cnt / SEC_TO_MS(uiCfg.filament_unloading_time) + 0.5f);
if (uiCfg.filament_unloading_time_cnt >= SEC_TO_MS(uiCfg.filament_unloading_time)) {
uiCfg.filament_unloading_time_cnt = 0;
uiCfg.filament_unloading_time_flg = false;
uiCfg.filament_unloading_completed = true;
uiCfg.filament_rate = 100;
}
}
}
void tft_lvgl_init() {
W25QXX.init(SPI_QUARTER_SPEED);
gCfgItems_init();
ui_cfg_init();
disp_language_init();
watchdog_refresh(); // LVGL init takes time
// Init TFT first!
SPI_TFT.spi_init(SPI_FULL_SPEED);
SPI_TFT.LCD_init();
watchdog_refresh(); // LVGL init takes time
#if ENABLED(SDSUPPORT)
UpdateAssets();
watchdog_refresh(); // LVGL init takes time
TERN_(MKS_TEST, mks_test_get());
#endif
touch.Init();
lv_init();
lv_disp_buf_init(&disp_buf, bmp_public_buf, nullptr, LV_HOR_RES_MAX * 14); // Initialize the display buffer
lv_disp_drv_t disp_drv; // Descriptor of a display driver
lv_disp_drv_init(&disp_drv); // Basic initialization
disp_drv.flush_cb = my_disp_flush; // Set your driver function
disp_drv.buffer = &disp_buf; // Assign the buffer to the display
lv_disp_drv_register(&disp_drv); // Finally register the driver
lv_indev_drv_t indev_drv;
lv_indev_drv_init(&indev_drv); // Descriptor of a input device driver
indev_drv.type = LV_INDEV_TYPE_POINTER; // Touch pad is a pointer-like device
indev_drv.read_cb = my_touchpad_read; // Set your driver function
lv_indev_drv_register(&indev_drv); // Finally register the driver
#if HAS_ROTARY_ENCODER
g = lv_group_create();
lv_indev_drv_t enc_drv;
lv_indev_drv_init(&enc_drv);
enc_drv.type = LV_INDEV_TYPE_ENCODER;
enc_drv.read_cb = my_mousewheel_read;
lv_indev_t * enc_indev = lv_indev_drv_register(&enc_drv);
lv_indev_set_group(enc_indev, g);
#endif
lv_fs_drv_t spi_flash_drv;
lv_fs_drv_init(&spi_flash_drv);
spi_flash_drv.letter = 'F';
spi_flash_drv.open_cb = spi_flash_open_cb;
spi_flash_drv.close_cb = spi_flash_close_cb;
spi_flash_drv.read_cb = spi_flash_read_cb;
spi_flash_drv.seek_cb = spi_flash_seek_cb;
spi_flash_drv.tell_cb = spi_flash_tell_cb;
lv_fs_drv_register(&spi_flash_drv);
lv_fs_drv_t sd_drv;
lv_fs_drv_init(&sd_drv);
sd_drv.letter = 'S';
sd_drv.open_cb = sd_open_cb;
sd_drv.close_cb = sd_close_cb;
sd_drv.read_cb = sd_read_cb;
sd_drv.seek_cb = sd_seek_cb;
sd_drv.tell_cb = sd_tell_cb;
lv_fs_drv_register(&sd_drv);
systick_attach_callback(SysTick_Callback);
TERN_(HAS_SPI_FLASH_FONT, init_gb2312_font());
tft_style_init();
filament_pin_setup();
lv_encoder_pin_init();
#if ENABLED(MKS_WIFI_MODULE)
mks_esp_wifi_init();
mks_wifi_firmware_update();
#endif
TERN_(HAS_SERVOS, servo_init());
TERN_(HAS_Z_SERVO_PROBE, probe.servo_probe_init());
bool ready = true;
#if ENABLED(POWER_LOSS_RECOVERY)
recovery.load();
if (recovery.valid()) {
ready = false;
if (gCfgItems.from_flash_pic)
flash_preview_begin = true;
else
default_preview_flg = true;
uiCfg.print_state = REPRINTING;
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
strncpy(public_buf_m, recovery.info.sd_filename, sizeof(public_buf_m));
card.printLongPath(public_buf_m);
strncpy(list_file.long_name[sel_id], card.longFilename, sizeof(list_file.long_name[0]));
#else
strncpy(list_file.long_name[sel_id], recovery.info.sd_filename, sizeof(list_file.long_name[0]));
#endif
lv_draw_printing();
}
#endif
if (ready) lv_draw_ready_print();
#if BOTH(MKS_TEST, SDSUPPORT)
if (mks_test_flag == 0x1E) mks_gpio_test();
#endif
}
void my_disp_flush(lv_disp_drv_t * disp, const lv_area_t * area, lv_color_t * color_p) {
uint16_t width = area->x2 - area->x1 + 1,
height = area->y2 - area->y1 + 1;
SPI_TFT.setWindow((uint16_t)area->x1, (uint16_t)area->y1, width, height);
SPI_TFT.tftio.WriteSequence((uint16_t*)color_p, width * height);
lv_disp_flush_ready(disp); // Indicate you are ready with the flushing
W25QXX.init(SPI_QUARTER_SPEED);
}
void lv_fill_rect(lv_coord_t x1, lv_coord_t y1, lv_coord_t x2, lv_coord_t y2, lv_color_t bk_color) {
uint16_t width, height;
width = x2 - x1 + 1;
height = y2 - y1 + 1;
SPI_TFT.setWindow((uint16_t)x1, (uint16_t)y1, width, height);
SPI_TFT.tftio.WriteMultiple(bk_color.full, width * height);
W25QXX.init(SPI_QUARTER_SPEED);
}
#define TICK_CYCLE 1
unsigned int getTickDiff(unsigned int curTick, unsigned int lastTick) {
return TICK_CYCLE * (lastTick <= curTick ? (curTick - lastTick) : (0xFFFFFFFF - lastTick + curTick));
}
static bool get_point(int16_t *x, int16_t *y) {
if (!touch.getRawPoint(x, y)) return false;
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
const calibrationState state = touch_calibration.get_calibration_state();
if (state >= CALIBRATION_TOP_LEFT && state <= CALIBRATION_BOTTOM_RIGHT) {
if (touch_calibration.handleTouch(*x, *y)) lv_update_touch_calibration_screen();
return false;
}
*x = int16_t((int32_t(*x) * touch_calibration.calibration.x) >> 16) + touch_calibration.calibration.offset_x;
*y = int16_t((int32_t(*y) * touch_calibration.calibration.y) >> 16) + touch_calibration.calibration.offset_y;
#else
*x = int16_t((int32_t(*x) * TOUCH_CALIBRATION_X) >> 16) + TOUCH_OFFSET_X;
*y = int16_t((int32_t(*y) * TOUCH_CALIBRATION_Y) >> 16) + TOUCH_OFFSET_Y;
#endif
return true;
}
bool my_touchpad_read(lv_indev_drv_t * indev_driver, lv_indev_data_t * data) {
static int16_t last_x = 0, last_y = 0;
if (get_point(&last_x, &last_y)) {
#if TFT_ROTATION == TFT_ROTATE_180
data->point.x = TFT_WIDTH - last_x;
data->point.y = TFT_HEIGHT - last_y;
#else
data->point.x = last_x;
data->point.y = last_y;
#endif
data->state = LV_INDEV_STATE_PR;
}
else {
#if TFT_ROTATION == TFT_ROTATE_180
data->point.x = TFT_WIDTH - last_x;
data->point.y = TFT_HEIGHT - last_y;
#else
data->point.x = last_x;
data->point.y = last_y;
#endif
data->state = LV_INDEV_STATE_REL;
}
return false; // Return `false` since no data is buffering or left to read
}
int16_t enc_diff = 0;
lv_indev_state_t state = LV_INDEV_STATE_REL;
bool my_mousewheel_read(lv_indev_drv_t * indev_drv, lv_indev_data_t * data) {
(void) indev_drv; // Unused
data->state = state;
data->enc_diff = enc_diff;
enc_diff = 0;
return false; // No more data to read so return false
}
extern uint8_t currentFlashPage;
// spi_flash
uint32_t pic_read_base_addr = 0, pic_read_addr_offset = 0;
lv_fs_res_t spi_flash_open_cb (lv_fs_drv_t * drv, void * file_p, const char * path, lv_fs_mode_t mode) {
static char last_path_name[30];
if (strcasecmp(last_path_name, path) != 0) {
pic_read_base_addr = lv_get_pic_addr((uint8_t *)path);
strcpy(last_path_name, path);
}
else {
W25QXX.init(SPI_QUARTER_SPEED);
currentFlashPage = 0;
}
pic_read_addr_offset = pic_read_base_addr;
return LV_FS_RES_OK;
}
lv_fs_res_t spi_flash_close_cb (lv_fs_drv_t * drv, void * file_p) {
lv_fs_res_t res = LV_FS_RES_OK;
/* Add your code here */
pic_read_addr_offset = pic_read_base_addr;
return res;
}
lv_fs_res_t spi_flash_read_cb (lv_fs_drv_t * drv, void * file_p, void * buf, uint32_t btr, uint32_t * br) {
lv_pic_test((uint8_t *)buf, pic_read_addr_offset, btr);
*br = btr;
return LV_FS_RES_OK;
}
lv_fs_res_t spi_flash_seek_cb(lv_fs_drv_t * drv, void * file_p, uint32_t pos) {
#if HAS_SPI_FLASH_COMPRESSION
if (pos == 4) {
uint8_t bmp_header[4];
SPIFlash.beginRead(pic_read_base_addr);
SPIFlash.readData(bmp_header, 4);
currentFlashPage = 1;
}
pic_read_addr_offset = pic_read_base_addr;
#else
pic_read_addr_offset = pic_read_base_addr + pos;
#endif
return LV_FS_RES_OK;
}
lv_fs_res_t spi_flash_tell_cb(lv_fs_drv_t * drv, void * file_p, uint32_t * pos_p) {
*pos_p = pic_read_addr_offset - pic_read_base_addr;
return LV_FS_RES_OK;
}
// sd
char *cur_namefff;
uint32_t sd_read_base_addr = 0, sd_read_addr_offset = 0, small_image_size = 409;
lv_fs_res_t sd_open_cb (lv_fs_drv_t * drv, void * file_p, const char * path, lv_fs_mode_t mode) {
char name_buf[100];
*name_buf = '/';
strcpy(name_buf + 1, path);
char *temp = strstr(name_buf, ".bin");
if (temp) strcpy(temp, ".GCO");
sd_read_base_addr = lv_open_gcode_file((char *)name_buf);
sd_read_addr_offset = sd_read_base_addr;
if (sd_read_addr_offset == UINT32_MAX) return LV_FS_RES_NOT_EX;
// find small image size
card.read(public_buf, 512);
public_buf[511] = '\0';
const char* eol = strpbrk((const char*)public_buf, "\n\r");
small_image_size = (uintptr_t)eol - (uintptr_t)((uint32_t *)(&public_buf[0])) + 1;
return LV_FS_RES_OK;
}
lv_fs_res_t sd_close_cb (lv_fs_drv_t * drv, void * file_p) {
/* Add your code here */
lv_close_gcode_file();
return LV_FS_RES_OK;
}
lv_fs_res_t sd_read_cb (lv_fs_drv_t * drv, void * file_p, void * buf, uint32_t btr, uint32_t * br) {
if (btr == 200) {
lv_gcode_file_read((uint8_t *)buf);
//pic_read_addr_offset += 208;
*br = 200;
}
else if (btr == 4) {
uint8_t header_pic[4] = { 0x04, 0x90, 0x81, 0x0C };
memcpy(buf, header_pic, 4);
*br = 4;
}
return LV_FS_RES_OK;
}
lv_fs_res_t sd_seek_cb(lv_fs_drv_t * drv, void * file_p, uint32_t pos) {
sd_read_addr_offset = sd_read_base_addr + (pos - 4) / 200 * small_image_size;
lv_gcode_file_seek(sd_read_addr_offset);
return LV_FS_RES_OK;
}
lv_fs_res_t sd_tell_cb(lv_fs_drv_t * drv, void * file_p, uint32_t * pos_p) {
if (sd_read_addr_offset) *pos_p = 0;
else *pos_p = (sd_read_addr_offset - sd_read_base_addr) / small_image_size * 200 + 4;
return LV_FS_RES_OK;
}
void lv_encoder_pin_init() {
#if BUTTON_EXISTS(EN1)
SET_INPUT_PULLUP(BTN_EN1);
#endif
#if BUTTON_EXISTS(EN2)
SET_INPUT_PULLUP(BTN_EN2);
#endif
#if BUTTON_EXISTS(ENC)
SET_INPUT_PULLUP(BTN_ENC);
#endif
#if BUTTON_EXISTS(BACK)
SET_INPUT_PULLUP(BTN_BACK);
#endif
#if BUTTON_EXISTS(UP)
SET_INPUT(BTN_UP);
#endif
#if BUTTON_EXISTS(DWN)
SET_INPUT(BTN_DWN);
#endif
#if BUTTON_EXISTS(LFT)
SET_INPUT(BTN_LFT);
#endif
#if BUTTON_EXISTS(RT)
SET_INPUT(BTN_RT);
#endif
}
#if 1 // HAS_ENCODER_ACTION
void lv_update_encoder() {
static uint32_t encoder_time1;
uint32_t tmpTime, diffTime = 0;
tmpTime = millis();
diffTime = getTickDiff(tmpTime, encoder_time1);
if (diffTime > 50) {
#if HAS_ENCODER_WHEEL
#if ANY_BUTTON(EN1, EN2, ENC, BACK)
uint8_t newbutton = 0;
if (BUTTON_PRESSED(EN1)) newbutton |= EN_A;
if (BUTTON_PRESSED(EN2)) newbutton |= EN_B;
if (BUTTON_PRESSED(ENC)) newbutton |= EN_C;
if (BUTTON_PRESSED(BACK)) newbutton |= EN_D;
#else
constexpr uint8_t newbutton = 0;
#endif
static uint8_t buttons = 0;
buttons = newbutton;
static uint8_t lastEncoderBits;
#define encrot0 0
#define encrot1 1
#define encrot2 2
uint8_t enc = 0;
if (buttons & EN_A) enc |= B01;
if (buttons & EN_B) enc |= B10;
if (enc != lastEncoderBits) {
switch (enc) {
case encrot1:
if (lastEncoderBits == encrot0) {
enc_diff--;
encoder_time1 = tmpTime;
}
break;
case encrot2:
if (lastEncoderBits == encrot0) {
enc_diff++;
encoder_time1 = tmpTime;
}
break;
}
lastEncoderBits = enc;
}
static uint8_t last_button_state = LV_INDEV_STATE_REL;
const uint8_t enc_c = (buttons & EN_C) ? LV_INDEV_STATE_PR : LV_INDEV_STATE_REL;
if (enc_c != last_button_state) {
state = enc_c ? LV_INDEV_STATE_PR : LV_INDEV_STATE_REL;
last_button_state = enc_c;
}
#endif // HAS_ENCODER_WHEEL
} // next_button_update_ms
}
#endif // HAS_ENCODER_ACTION
#if __PLAT_NATIVE_SIM__
#include <lv_misc/lv_log.h>
typedef void (*lv_log_print_g_cb_t)(lv_log_level_t level, const char *, uint32_t, const char *);
extern "C" void lv_log_register_print_cb(lv_log_print_g_cb_t print_cb) {}
#endif
#endif // HAS_TFT_LVGL_UI