Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

269 lines
8.4 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/probe.h"
#include "../../feature/bedlevel/bedlevel.h"
#if HAS_SPI_LCD
#include "../../lcd/ultralcd.h"
#endif
#if HAS_LEVELING
#include "../../module/planner.h"
#endif
/**
* M48: Z probe repeatability measurement function.
*
* Usage:
* M48 <P#> <X#> <Y#> <V#> <E> <L#> <S>
* P = Number of sampled points (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage Z probe for each reading
* L = Number of legs of movement before probe
* S = Schizoid (Or Star if you prefer)
*
* This function requires the machine to be homed before invocation.
*/
void GcodeSuite::M48() {
if (axis_unhomed_error()) return;
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 4)) {
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
return;
}
if (verbose_level > 0)
SERIAL_ECHOLNPGM("M48 Z-Probe Repeatability Test");
const int8_t n_samples = parser.byteval('P', 10);
if (!WITHIN(n_samples, 4, 50)) {
SERIAL_ECHOLNPGM("?Sample size not plausible (4-50).");
return;
}
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
xy_float_t next_pos = current_position;
const xy_pos_t probe_pos = {
parser.linearval('X', next_pos.x + probe_offset.x),
parser.linearval('Y', next_pos.y + probe_offset.y)
};
if (!position_is_reachable_by_probe(probe_pos)) {
SERIAL_ECHOLNPGM("? (X,Y) out of bounds.");
return;
}
bool seen_L = parser.seen('L');
uint8_t n_legs = seen_L ? parser.value_byte() : 0;
if (n_legs > 15) {
SERIAL_ECHOLNPGM("?Number of legs in movement not plausible (0-15).");
return;
}
if (n_legs == 1) n_legs = 2;
const bool schizoid_flag = parser.boolval('S');
if (schizoid_flag && !seen_L) n_legs = 7;
/**
* Now get everything to the specified probe point So we can safely do a
* probe to get us close to the bed. If the Z-Axis is far from the bed,
* we don't want to use that as a starting point for each probe.
*/
if (verbose_level > 2)
SERIAL_ECHOLNPGM("Positioning the probe...");
// Disable bed level correction in M48 because we want the raw data when we probe
#if HAS_LEVELING
const bool was_enabled = planner.leveling_active;
set_bed_leveling_enabled(false);
#endif
remember_feedrate_scaling_off();
float mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
// Move to the first point, deploy, and probe
const float t = probe_at_point(probe_pos, raise_after, verbose_level);
bool probing_good = !isnan(t);
if (probing_good) {
randomSeed(millis());
for (uint8_t n = 0; n < n_samples; n++) {
#if HAS_SPI_LCD
// Display M48 progress in the status bar
ui.status_printf_P(0, PSTR(MSG_M48_POINT ": %d/%d"), int(n + 1), int(n_samples));
#endif
if (n_legs) {
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
float angle = random(0, 360);
const float radius = random(
#if ENABLED(DELTA)
int(0.1250000000 * (DELTA_PRINTABLE_RADIUS)),
int(0.3333333333 * (DELTA_PRINTABLE_RADIUS))
#else
int(5), int(0.125 * _MIN(X_BED_SIZE, Y_BED_SIZE))
#endif
);
if (verbose_level > 3) {
SERIAL_ECHOPAIR("Start radius:", radius, " angle:", angle, " dir:");
if (dir > 0) SERIAL_CHAR('C');
SERIAL_ECHOLNPGM("CW");
}
for (uint8_t l = 0; l < n_legs - 1; l++) {
float delta_angle;
if (schizoid_flag) {
// The points of a 5 point star are 72 degrees apart. We need to
// skip a point and go to the next one on the star.
delta_angle = dir * 2.0 * 72.0;
}
else {
// If we do this line, we are just trying to move further
// around the circle.
delta_angle = dir * (float) random(25, 45);
}
angle += delta_angle;
while (angle > 360.0) angle -= 360.0; // We probably do not need to keep the angle between 0 and 2*PI, but the
// Arduino documentation says the trig functions should not be given values
while (angle < 0.0) angle += 360.0; // outside of this range. It looks like they behave correctly with
// numbers outside of the range, but just to be safe we clamp them.
next_pos.set(probe_pos.x - probe_offset.x + cos(RADIANS(angle)) * radius,
probe_pos.y - probe_offset.y + sin(RADIANS(angle)) * radius);
#if DISABLED(DELTA)
LIMIT(next_pos.x, X_MIN_POS, X_MAX_POS);
LIMIT(next_pos.y, Y_MIN_POS, Y_MAX_POS);
#else
// If we have gone out too far, we can do a simple fix and scale the numbers
// back in closer to the origin.
while (!position_is_reachable_by_probe(next_pos)) {
next_pos *= 0.8;
if (verbose_level > 3)
SERIAL_ECHOLNPAIR("Moving inward: X", next_pos.x, " Y", next_pos.y);
}
#endif
if (verbose_level > 3)
SERIAL_ECHOLNPAIR("Going to: X", next_pos.x, " Y", next_pos.y);
do_blocking_move_to_xy(next_pos);
} // n_legs loop
} // n_legs
// Probe a single point
sample_set[n] = probe_at_point(probe_pos, raise_after, 0);
// Break the loop if the probe fails
probing_good = !isnan(sample_set[n]);
if (!probing_good) break;
/**
* Get the current mean for the data points we have so far
*/
float sum = 0.0;
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1);
NOMORE(min, sample_set[n]);
NOLESS(max, sample_set[n]);
/**
* Now, use that mean to calculate the standard deviation for the
* data points we have so far
*/
sum = 0.0;
for (uint8_t j = 0; j <= n; j++)
sum += sq(sample_set[j] - mean);
sigma = SQRT(sum / (n + 1));
if (verbose_level > 0) {
if (verbose_level > 1) {
SERIAL_ECHO(n + 1);
SERIAL_ECHOPAIR(" of ", int(n_samples));
SERIAL_ECHOPAIR_F(": z: ", sample_set[n], 3);
if (verbose_level > 2) {
SERIAL_ECHOPAIR_F(" mean: ", mean, 4);
SERIAL_ECHOPAIR_F(" sigma: ", sigma, 6);
SERIAL_ECHOPAIR_F(" min: ", min, 3);
SERIAL_ECHOPAIR_F(" max: ", max, 3);
SERIAL_ECHOPAIR_F(" range: ", max-min, 3);
}
SERIAL_EOL();
}
}
} // n_samples loop
}
STOW_PROBE();
if (probing_good) {
SERIAL_ECHOLNPGM("Finished!");
if (verbose_level > 0) {
SERIAL_ECHOPAIR_F("Mean: ", mean, 6);
SERIAL_ECHOPAIR_F(" Min: ", min, 3);
SERIAL_ECHOPAIR_F(" Max: ", max, 3);
SERIAL_ECHOLNPAIR_F(" Range: ", max-min, 3);
}
SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6);
SERIAL_EOL();
#if HAS_SPI_LCD
// Display M48 results in the status bar
char sigma_str[8];
ui.status_printf_P(0, PSTR(MSG_M48_DEVIATION ": %s"), dtostrf(sigma, 2, 6, sigma_str));
#endif
}
restore_feedrate_and_scaling();
// Re-enable bed level correction if it had been on
#if HAS_LEVELING
set_bed_leveling_enabled(was_enabled);
#endif
report_current_position();
}
#endif // Z_MIN_PROBE_REPEATABILITY_TEST