Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

752 lines
27 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../MarlinCore.h"
#if ENABLED(CALIBRATION_GCODE)
#include "../gcode.h"
#if ENABLED(BACKLASH_GCODE)
#include "../../feature/backlash.h"
#endif
#include "../../lcd/marlinui.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/tool_change.h"
#include "../../module/endstops.h"
#include "../../feature/bedlevel/bedlevel.h"
#if !AXIS_CAN_CALIBRATE(X)
#undef CALIBRATION_MEASURE_LEFT
#undef CALIBRATION_MEASURE_RIGHT
#endif
#if !AXIS_CAN_CALIBRATE(Y)
#undef CALIBRATION_MEASURE_FRONT
#undef CALIBRATION_MEASURE_BACK
#endif
#if !AXIS_CAN_CALIBRATE(Z)
#undef CALIBRATION_MEASURE_AT_TOP_EDGES
#endif
/**
* G425 backs away from the calibration object by various distances
* depending on the confidence level:
*
* UNKNOWN - No real notion on where the calibration object is on the bed
* UNCERTAIN - Measurement may be uncertain due to backlash
* CERTAIN - Measurement obtained with backlash compensation
*/
#ifndef CALIBRATION_MEASUREMENT_UNKNOWN
#define CALIBRATION_MEASUREMENT_UNKNOWN 5.0 // mm
#endif
#ifndef CALIBRATION_MEASUREMENT_UNCERTAIN
#define CALIBRATION_MEASUREMENT_UNCERTAIN 1.0 // mm
#endif
#ifndef CALIBRATION_MEASUREMENT_CERTAIN
#define CALIBRATION_MEASUREMENT_CERTAIN 0.5 // mm
#endif
#if BOTH(CALIBRATION_MEASURE_LEFT, CALIBRATION_MEASURE_RIGHT)
#define HAS_X_CENTER 1
#endif
#if ALL(HAS_Y_AXIS, CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
#define HAS_Y_CENTER 1
#endif
#if ALL(HAS_I_AXIS, CALIBRATION_MEASURE_IMIN, CALIBRATION_MEASURE_IMAX)
#define HAS_I_CENTER 1
#endif
#if ALL(HAS_J_AXIS, CALIBRATION_MEASURE_JMIN, CALIBRATION_MEASURE_JMAX)
#define HAS_J_CENTER 1
#endif
#if ALL(HAS_K_AXIS, CALIBRATION_MEASURE_KMIN, CALIBRATION_MEASURE_KMAX)
#define HAS_K_CENTER 1
#endif
enum side_t : uint8_t {
TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES,
LIST_N(DOUBLE(SUB3(LINEAR_AXES)), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM)
};
static constexpr xyz_pos_t true_center CALIBRATION_OBJECT_CENTER;
static constexpr xyz_float_t dimensions CALIBRATION_OBJECT_DIMENSIONS;
static constexpr xy_float_t nod = { CALIBRATION_NOZZLE_OUTER_DIAMETER, CALIBRATION_NOZZLE_OUTER_DIAMETER };
struct measurements_t {
xyz_pos_t obj_center = true_center; // Non-static must be assigned from xyz_pos_t
float obj_side[NUM_SIDES], backlash[NUM_SIDES];
xyz_float_t pos_error;
xy_float_t nozzle_outer_dimension = nod;
};
#if ENABLED(BACKLASH_GCODE)
#define TEMPORARY_BACKLASH_CORRECTION(value) REMEMBER(tbst, backlash.correction, value)
#else
#define TEMPORARY_BACKLASH_CORRECTION(value)
#endif
#if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
#define TEMPORARY_BACKLASH_SMOOTHING(value) REMEMBER(tbsm, backlash.smoothing_mm, value)
#else
#define TEMPORARY_BACKLASH_SMOOTHING(value)
#endif
inline void calibration_move() {
do_blocking_move_to((xyz_pos_t)current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
}
/**
* Move to the exact center above the calibration object
*
* m in - Measurement record
* uncertainty in - How far away from the object top to park
*/
inline void park_above_object(measurements_t &m, const float uncertainty) {
// Move to safe distance above calibration object
current_position.z = m.obj_center.z + dimensions.z / 2 + uncertainty;
calibration_move();
// Move to center of calibration object in XY
current_position = xy_pos_t(m.obj_center);
calibration_move();
}
#if HAS_MULTI_HOTEND
inline void set_nozzle(measurements_t &m, const uint8_t extruder) {
if (extruder != active_extruder) {
park_above_object(m, CALIBRATION_MEASUREMENT_UNKNOWN);
tool_change(extruder);
}
}
#endif
#if HAS_HOTEND_OFFSET
inline void normalize_hotend_offsets() {
LOOP_S_L_N(e, 1, HOTENDS)
hotend_offset[e] -= hotend_offset[0];
hotend_offset[0].reset();
}
#endif
#if !PIN_EXISTS(CALIBRATION)
#include "../../module/probe.h"
#endif
inline bool read_calibration_pin() {
return (
#if PIN_EXISTS(CALIBRATION)
READ(CALIBRATION_PIN) != CALIBRATION_PIN_INVERTING
#else
PROBE_TRIGGERED()
#endif
);
}
/**
* Move along axis in the specified dir until the probe value becomes stop_state,
* then return the axis value.
*
* axis in - Axis along which the measurement will take place
* dir in - Direction along that axis (-1 or 1)
* stop_state in - Move until probe pin becomes this value
* fast in - Fast vs. precise measurement
*/
float measuring_movement(const AxisEnum axis, const int dir, const bool stop_state, const bool fast) {
const float step = fast ? 0.25 : CALIBRATION_MEASUREMENT_RESOLUTION;
const feedRate_t mms = fast ? MMM_TO_MMS(CALIBRATION_FEEDRATE_FAST) : MMM_TO_MMS(CALIBRATION_FEEDRATE_SLOW);
const float limit = fast ? 50 : 5;
destination = current_position;
for (float travel = 0; travel < limit; travel += step) {
destination[axis] += dir * step;
do_blocking_move_to((xyz_pos_t)destination, mms);
planner.synchronize();
if (read_calibration_pin() == stop_state) break;
}
return destination[axis];
}
/**
* Move along axis until the probe is triggered. Move toolhead to its starting
* point and return the measured value.
*
* axis in - Axis along which the measurement will take place
* dir in - Direction along that axis (-1 or 1)
* stop_state in - Move until probe pin becomes this value
* backlash_ptr in/out - When not nullptr, measure and record axis backlash
* uncertainty in - If uncertainty is CALIBRATION_MEASUREMENT_UNKNOWN, do a fast probe.
*/
inline float measure(const AxisEnum axis, const int dir, const bool stop_state, float * const backlash_ptr, const float uncertainty) {
const bool fast = uncertainty == CALIBRATION_MEASUREMENT_UNKNOWN;
// Save the current position of the specified axis
const float start_pos = current_position[axis];
// Take a measurement. Only the specified axis will be affected.
const float measured_pos = measuring_movement(axis, dir, stop_state, fast);
// Measure backlash
if (backlash_ptr && !fast) {
const float release_pos = measuring_movement(axis, -dir, !stop_state, fast);
*backlash_ptr = ABS(release_pos - measured_pos);
}
// Move back to the starting position
destination = current_position;
destination[axis] = start_pos;
do_blocking_move_to((xyz_pos_t)destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
return measured_pos;
}
/**
* Probe one side of the calibration object
*
* m in/out - Measurement record, m.obj_center and m.obj_side will be updated.
* uncertainty in - How far away from the calibration object to begin probing
* side in - Side of probe where probe will occur
* probe_top_at_edge in - When probing sides, probe top of calibration object nearest edge
* to find out height of edge
*/
inline void probe_side(measurements_t &m, const float uncertainty, const side_t side, const bool probe_top_at_edge=false) {
const xyz_float_t dimensions = CALIBRATION_OBJECT_DIMENSIONS;
AxisEnum axis;
float dir = 1;
park_above_object(m, uncertainty);
switch (side) {
#if AXIS_CAN_CALIBRATE(X)
case RIGHT: dir = -1;
case LEFT: axis = X_AXIS; break;
#endif
#if HAS_Y_AXIS && AXIS_CAN_CALIBRATE(Y)
case BACK: dir = -1;
case FRONT: axis = Y_AXIS; break;
#endif
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
case TOP: {
const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
m.obj_center.z = measurement - dimensions.z / 2;
m.obj_side[TOP] = measurement;
return;
}
#endif
#if HAS_I_AXIS && AXIS_CAN_CALIBRATE(I)
case IMINIMUM: dir = -1;
case IMAXIMUM: axis = I_AXIS; break;
#endif
#if HAS_J_AXIS && AXIS_CAN_CALIBRATE(J)
case JMINIMUM: dir = -1;
case JMAXIMUM: axis = J_AXIS; break;
#endif
#if HAS_K_AXIS && AXIS_CAN_CALIBRATE(K)
case KMINIMUM: dir = -1;
case KMAXIMUM: axis = K_AXIS; break;
#endif
default: return;
}
if (probe_top_at_edge) {
#if AXIS_CAN_CALIBRATE(Z)
// Probe top nearest the side we are probing
current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 - m.nozzle_outer_dimension[axis]);
calibration_move();
m.obj_side[TOP] = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
m.obj_center.z = m.obj_side[TOP] - dimensions.z / 2;
#endif
}
if ((AXIS_CAN_CALIBRATE(X) && axis == X_AXIS) || (AXIS_CAN_CALIBRATE(Y) && axis == Y_AXIS)) {
// Move to safe distance to the side of the calibration object
current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2 + uncertainty);
calibration_move();
// Plunge below the side of the calibration object and measure
current_position.z = m.obj_side[TOP] - (CALIBRATION_NOZZLE_TIP_HEIGHT) * 0.7f;
calibration_move();
const float measurement = measure(axis, dir, true, &m.backlash[side], uncertainty);
m.obj_center[axis] = measurement + dir * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2);
m.obj_side[side] = measurement;
}
}
/**
* Probe all sides of the calibration calibration object
*
* m in/out - Measurement record: center, backlash and error values be updated.
* uncertainty in - How far away from the calibration object to begin probing
*/
inline void probe_sides(measurements_t &m, const float uncertainty) {
#if ENABLED(CALIBRATION_MEASURE_AT_TOP_EDGES)
constexpr bool probe_top_at_edge = true;
#else
// Probing at the exact center only works if the center is flat. Probing on a washer
// or bolt will require probing the top near the side edges, away from the center.
constexpr bool probe_top_at_edge = false;
probe_side(m, uncertainty, TOP);
#endif
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_IMIN, probe_side(m, uncertainty, IMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_IMAX, probe_side(m, uncertainty, IMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_JMIN, probe_side(m, uncertainty, JMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_JMAX, probe_side(m, uncertainty, JMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMIN, probe_side(m, uncertainty, KMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMAX, probe_side(m, uncertainty, KMAXIMUM, probe_top_at_edge));
// Compute the measured center of the calibration object.
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
TERN_(HAS_I_CENTER, m.obj_center.i = (m.obj_side[IMINIMUM] + m.obj_side[IMAXIMUM]) / 2);
TERN_(HAS_J_CENTER, m.obj_center.j = (m.obj_side[JMINIMUM] + m.obj_side[JMAXIMUM]) / 2);
TERN_(HAS_K_CENTER, m.obj_center.k = (m.obj_side[KMINIMUM] + m.obj_side[KMAXIMUM]) / 2);
// Compute the outside diameter of the nozzle at the height
// at which it makes contact with the calibration object
TERN_(HAS_X_CENTER, m.nozzle_outer_dimension.x = m.obj_side[RIGHT] - m.obj_side[LEFT] - dimensions.x);
TERN_(HAS_Y_CENTER, m.nozzle_outer_dimension.y = m.obj_side[BACK] - m.obj_side[FRONT] - dimensions.y);
park_above_object(m, uncertainty);
// The difference between the known and the measured location
// of the calibration object is the positional error
LINEAR_AXIS_CODE(
m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x),
m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y),
m.pos_error.z = true_center.z - m.obj_center.z,
m.pos_error.i = TERN0(HAS_I_CENTER, true_center.i - m.obj_center.i),
m.pos_error.j = TERN0(HAS_J_CENTER, true_center.j - m.obj_center.j),
m.pos_error.k = TERN0(HAS_K_CENTER, true_center.k - m.obj_center.k)
);
}
#if ENABLED(CALIBRATION_REPORTING)
inline void report_measured_faces(const measurements_t &m) {
SERIAL_ECHOLNPGM("Sides:");
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPGM(" Top: ", m.obj_side[TOP]);
#endif
#if ENABLED(CALIBRATION_MEASURE_LEFT)
SERIAL_ECHOLNPGM(" Left: ", m.obj_side[LEFT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_RIGHT)
SERIAL_ECHOLNPGM(" Right: ", m.obj_side[RIGHT]);
#endif
#if HAS_Y_AXIS
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPGM(" Front: ", m.obj_side[FRONT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_BACK)
SERIAL_ECHOLNPGM(" Back: ", m.obj_side[BACK]);
#endif
#endif
#if HAS_I_AXIS
#if ENABLED(CALIBRATION_MEASURE_IMIN)
SERIAL_ECHOLNPGM(" " STR_I_MIN ": ", m.obj_side[IMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_IMAX)
SERIAL_ECHOLNPGM(" " STR_I_MAX ": ", m.obj_side[IMAXIMUM]);
#endif
#endif
#if HAS_J_AXIS
#if ENABLED(CALIBRATION_MEASURE_JMIN)
SERIAL_ECHOLNPGM(" " STR_J_MIN ": ", m.obj_side[JMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_JMAX)
SERIAL_ECHOLNPGM(" " STR_J_MAX ": ", m.obj_side[JMAXIMUM]);
#endif
#endif
#if HAS_K_AXIS
#if ENABLED(CALIBRATION_MEASURE_KMIN)
SERIAL_ECHOLNPGM(" " STR_K_MIN ": ", m.obj_side[KMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_KMAX)
SERIAL_ECHOLNPGM(" " STR_K_MAX ": ", m.obj_side[KMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
inline void report_measured_center(const measurements_t &m) {
SERIAL_ECHOLNPGM("Center:");
#if HAS_X_CENTER
SERIAL_ECHOLNPGM_P(SP_X_STR, m.obj_center.x);
#endif
#if HAS_Y_CENTER
SERIAL_ECHOLNPGM_P(SP_Y_STR, m.obj_center.y);
#endif
SERIAL_ECHOLNPGM_P(SP_Z_STR, m.obj_center.z);
#if HAS_I_CENTER
SERIAL_ECHOLNPGM_P(SP_I_STR, m.obj_center.i);
#endif
#if HAS_J_CENTER
SERIAL_ECHOLNPGM_P(SP_J_STR, m.obj_center.j);
#endif
#if HAS_K_CENTER
SERIAL_ECHOLNPGM_P(SP_K_STR, m.obj_center.k);
#endif
SERIAL_EOL();
}
inline void report_measured_backlash(const measurements_t &m) {
SERIAL_ECHOLNPGM("Backlash:");
#if AXIS_CAN_CALIBRATE(X)
#if ENABLED(CALIBRATION_MEASURE_LEFT)
SERIAL_ECHOLNPGM(" Left: ", m.backlash[LEFT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_RIGHT)
SERIAL_ECHOLNPGM(" Right: ", m.backlash[RIGHT]);
#endif
#endif
#if HAS_Y_AXIS && AXIS_CAN_CALIBRATE(Y)
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPGM(" Front: ", m.backlash[FRONT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_BACK)
SERIAL_ECHOLNPGM(" Back: ", m.backlash[BACK]);
#endif
#endif
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPGM(" Top: ", m.backlash[TOP]);
#endif
#if HAS_I_AXIS && AXIS_CAN_CALIBRATE(I)
#if ENABLED(CALIBRATION_MEASURE_IMIN)
SERIAL_ECHOLNPGM(" " STR_I_MIN ": ", m.backlash[IMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_IMAX)
SERIAL_ECHOLNPGM(" " STR_I_MAX ": ", m.backlash[IMAXIMUM]);
#endif
#endif
#if HAS_J_AXIS && AXIS_CAN_CALIBRATE(J)
#if ENABLED(CALIBRATION_MEASURE_JMIN)
SERIAL_ECHOLNPGM(" " STR_J_MIN ": ", m.backlash[JMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_JMAX)
SERIAL_ECHOLNPGM(" " STR_J_MAX ": ", m.backlash[JMAXIMUM]);
#endif
#endif
#if HAS_K_AXIS && AXIS_CAN_CALIBRATE(K)
#if ENABLED(CALIBRATION_MEASURE_KMIN)
SERIAL_ECHOLNPGM(" " STR_K_MIN ": ", m.backlash[KMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_KMAX)
SERIAL_ECHOLNPGM(" " STR_K_MAX ": ", m.backlash[KMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
inline void report_measured_positional_error(const measurements_t &m) {
SERIAL_CHAR('T');
SERIAL_ECHO(active_extruder);
SERIAL_ECHOLNPGM(" Positional Error:");
#if HAS_X_CENTER && AXIS_CAN_CALIBRATE(X)
SERIAL_ECHOLNPGM_P(SP_X_STR, m.pos_error.x);
#endif
#if HAS_Y_CENTER && AXIS_CAN_CALIBRATE(Y)
SERIAL_ECHOLNPGM_P(SP_Y_STR, m.pos_error.y);
#endif
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPGM_P(SP_Z_STR, m.pos_error.z);
#endif
#if HAS_I_CENTER && AXIS_CAN_CALIBRATE(I)
SERIAL_ECHOLNPGM_P(SP_I_STR, m.pos_error.i);
#endif
#if HAS_J_CENTER && AXIS_CAN_CALIBRATE(J)
SERIAL_ECHOLNPGM_P(SP_J_STR, m.pos_error.j);
#endif
#if HAS_K_CENTER && AXIS_CAN_CALIBRATE(K)
SERIAL_ECHOLNPGM_P(SP_Z_STR, m.pos_error.z);
#endif
SERIAL_EOL();
}
inline void report_measured_nozzle_dimensions(const measurements_t &m) {
SERIAL_ECHOLNPGM("Nozzle Tip Outer Dimensions:");
#if HAS_X_CENTER
SERIAL_ECHOLNPGM_P(SP_X_STR, m.nozzle_outer_dimension.x);
#endif
#if HAS_Y_CENTER
SERIAL_ECHOLNPGM_P(SP_Y_STR, m.nozzle_outer_dimension.y);
#endif
SERIAL_EOL();
UNUSED(m);
}
#if HAS_HOTEND_OFFSET
//
// This function requires normalize_hotend_offsets() to be called
//
inline void report_hotend_offsets() {
LOOP_S_L_N(e, 1, HOTENDS)
SERIAL_ECHOLNPGM_P(PSTR("T"), e, PSTR(" Hotend Offset X"), hotend_offset[e].x, SP_Y_STR, hotend_offset[e].y, SP_Z_STR, hotend_offset[e].z);
}
#endif
#endif // CALIBRATION_REPORTING
/**
* Probe around the calibration object to measure backlash
*
* m in/out - Measurement record, updated with new readings
* uncertainty in - How far away from the object to begin probing
*/
inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
// Backlash compensation should be off while measuring backlash
{
// New scope for TEMPORARY_BACKLASH_CORRECTION
TEMPORARY_BACKLASH_CORRECTION(all_off);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
probe_sides(m, uncertainty);
#if ENABLED(BACKLASH_GCODE)
#if HAS_X_CENTER
backlash.distance_mm.x = (m.backlash[LEFT] + m.backlash[RIGHT]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_LEFT)
backlash.distance_mm.x = m.backlash[LEFT];
#elif ENABLED(CALIBRATION_MEASURE_RIGHT)
backlash.distance_mm.x = m.backlash[RIGHT];
#endif
#if HAS_Y_CENTER
backlash.distance_mm.y = (m.backlash[FRONT] + m.backlash[BACK]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_FRONT)
backlash.distance_mm.y = m.backlash[FRONT];
#elif ENABLED(CALIBRATION_MEASURE_BACK)
backlash.distance_mm.y = m.backlash[BACK];
#endif
TERN_(HAS_Z_AXIS, if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP]);
#if HAS_I_CENTER
backlash.distance_mm.i = (m.backlash[IMINIMUM] + m.backlash[IMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_IMIN)
backlash.distance_mm.i = m.backlash[IMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_IMAX)
backlash.distance_mm.i = m.backlash[IMAXIMUM];
#endif
#if HAS_J_CENTER
backlash.distance_mm.j = (m.backlash[JMINIMUM] + m.backlash[JMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_JMIN)
backlash.distance_mm.j = m.backlash[JMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_JMAX)
backlash.distance_mm.j = m.backlash[JMAXIMUM];
#endif
#if HAS_K_CENTER
backlash.distance_mm.k = (m.backlash[KMINIMUM] + m.backlash[KMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_KMIN)
backlash.distance_mm.k = m.backlash[KMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_KMAX)
backlash.distance_mm.k = m.backlash[KMAXIMUM];
#endif
#endif // BACKLASH_GCODE
}
#if ENABLED(BACKLASH_GCODE)
// Turn on backlash compensation and move in all
// allowed directions to take up any backlash
{
// New scope for TEMPORARY_BACKLASH_CORRECTION
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
const xyz_float_t move = LINEAR_AXIS_ARRAY(
AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3,
AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3
);
current_position += move; calibration_move();
current_position -= move; calibration_move();
}
#endif
}
inline void update_measurements(measurements_t &m, const AxisEnum axis) {
current_position[axis] += m.pos_error[axis];
m.obj_center[axis] = true_center[axis];
m.pos_error[axis] = 0;
}
/**
* Probe around the calibration object. Adjust the position and toolhead offset
* using the deviation from the known position of the calibration object.
*
* m in/out - Measurement record, updated with new readings
* uncertainty in - How far away from the object to begin probing
* extruder in - What extruder to probe
*
* Prerequisites:
* - Call calibrate_backlash() beforehand for best accuracy
*/
inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const uint8_t extruder) {
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
TERN(HAS_MULTI_HOTEND, set_nozzle(m, extruder), UNUSED(extruder));
probe_sides(m, uncertainty);
// Adjust the hotend offset
#if HAS_HOTEND_OFFSET
if (ENABLED(HAS_X_CENTER) && AXIS_CAN_CALIBRATE(X)) hotend_offset[extruder].x += m.pos_error.x;
if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) hotend_offset[extruder].y += m.pos_error.y;
if (AXIS_CAN_CALIBRATE(Z)) hotend_offset[extruder].z += m.pos_error.z;
normalize_hotend_offsets();
#endif
// Correct for positional error, so the object
// is at the known actual spot
planner.synchronize();
if (ENABLED(HAS_X_CENTER) && AXIS_CAN_CALIBRATE(X)) update_measurements(m, X_AXIS);
if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) update_measurements(m, Y_AXIS);
if (AXIS_CAN_CALIBRATE(Z)) update_measurements(m, Z_AXIS);
TERN_(HAS_I_CENTER, update_measurements(m, I_AXIS));
TERN_(HAS_J_CENTER, update_measurements(m, J_AXIS));
TERN_(HAS_K_CENTER, update_measurements(m, K_AXIS));
sync_plan_position();
}
/**
* Probe around the calibration object for all toolheads, adjusting the coordinate
* system for the first nozzle and the nozzle offset for subsequent nozzles.
*
* m in/out - Measurement record, updated with new readings
* uncertainty in - How far away from the object to begin probing
*/
inline void calibrate_all_toolheads(measurements_t &m, const float uncertainty) {
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
HOTEND_LOOP() calibrate_toolhead(m, uncertainty, e);
TERN_(HAS_HOTEND_OFFSET, normalize_hotend_offsets());
TERN_(HAS_MULTI_HOTEND, set_nozzle(m, 0));
}
/**
* Perform a full auto-calibration routine:
*
* 1) For each nozzle, touch top and sides of object to determine object position and
* nozzle offsets. Do a fast but rough search over a wider area.
* 2) With the first nozzle, touch top and sides of object to determine backlash values
* for all axes (if BACKLASH_GCODE is enabled)
* 3) For each nozzle, touch top and sides of object slowly to determine precise
* position of object. Adjust coordinate system and nozzle offsets so probed object
* location corresponds to known object location with a high degree of precision.
*/
inline void calibrate_all() {
measurements_t m;
TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
// Do a fast and rough calibration of the toolheads
calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNKNOWN);
TERN_(BACKLASH_GCODE, calibrate_backlash(m, CALIBRATION_MEASUREMENT_UNCERTAIN));
// Cycle the toolheads so the servos settle into their "natural" positions
#if HAS_MULTI_HOTEND
HOTEND_LOOP() set_nozzle(m, e);
#endif
// Do a slow and precise calibration of the toolheads
calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNCERTAIN);
current_position.x = X_CENTER;
calibration_move(); // Park nozzle away from calibration object
}
/**
* G425: Perform calibration with calibration object.
*
* B - Perform calibration of backlash only.
* T<extruder> - Perform calibration of toolhead only.
* V - Probe object and print position, error, backlash and hotend offset.
* U - Uncertainty, how far to start probe away from the object (mm)
*
* no args - Perform entire calibration sequence (backlash + position on all toolheads)
*/
void GcodeSuite::G425() {
#ifdef CALIBRATION_SCRIPT_PRE
process_subcommands_now(F(CALIBRATION_SCRIPT_PRE));
#endif
if (homing_needed_error()) return;
TEMPORARY_BED_LEVELING_STATE(false);
SET_SOFT_ENDSTOP_LOOSE(true);
measurements_t m;
const float uncertainty = parser.floatval('U', CALIBRATION_MEASUREMENT_UNCERTAIN);
if (parser.seen_test('B'))
calibrate_backlash(m, uncertainty);
else if (parser.seen_test('T'))
calibrate_toolhead(m, uncertainty, parser.intval('T', active_extruder));
#if ENABLED(CALIBRATION_REPORTING)
else if (parser.seen('V')) {
probe_sides(m, uncertainty);
SERIAL_EOL();
report_measured_faces(m);
report_measured_center(m);
report_measured_backlash(m);
report_measured_nozzle_dimensions(m);
report_measured_positional_error(m);
#if HAS_HOTEND_OFFSET
normalize_hotend_offsets();
report_hotend_offsets();
#endif
}
#endif
else
calibrate_all();
SET_SOFT_ENDSTOP_LOOSE(false);
#ifdef CALIBRATION_SCRIPT_POST
process_subcommands_now(F(CALIBRATION_SCRIPT_POST));
#endif
}
#endif // CALIBRATION_GCODE