Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

873 lines
22 KiB

/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
#include "ultralcd.h"
#include "temperature.h"
#include "watchdog.h"
//===========================================================================
//=============================public variables============================
//===========================================================================
int target_raw[EXTRUDERS] = { 0 };
int target_raw_bed = 0;
#ifdef BED_LIMIT_SWITCHING
int target_bed_low_temp =0;
int target_bed_high_temp =0;
#endif
int current_raw[EXTRUDERS] = { 0 };
int current_raw_bed = 0;
#ifdef PIDTEMP
// used external
float pid_setpoint[EXTRUDERS] = { 0.0 };
float Kp=DEFAULT_Kp;
float Ki=DEFAULT_Ki;
float Kd=DEFAULT_Kd;
#ifdef PID_ADD_EXTRUSION_RATE
float Kc=DEFAULT_Kc;
#endif
#endif //PIDTEMP
//===========================================================================
//=============================private variables============================
//===========================================================================
static bool temp_meas_ready = false;
static unsigned long previous_millis_bed_heater;
//static unsigned long previous_millis_heater;
#ifdef PIDTEMP
//static cannot be external:
static float temp_iState[EXTRUDERS] = { 0 };
static float temp_dState[EXTRUDERS] = { 0 };
static float pTerm[EXTRUDERS];
static float iTerm[EXTRUDERS];
static float dTerm[EXTRUDERS];
//int output;
static float pid_error[EXTRUDERS];
static float temp_iState_min[EXTRUDERS];
static float temp_iState_max[EXTRUDERS];
// static float pid_input[EXTRUDERS];
// static float pid_output[EXTRUDERS];
static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP
static unsigned char soft_pwm[EXTRUDERS];
#ifdef WATCHPERIOD
int watch_raw[EXTRUDERS] = { -1000 }; // the first value used for all
int watch_oldtemp[3] = {0,0,0};
unsigned long watchmillis = 0;
#endif //WATCHPERIOD
// Init min and max temp with extreme values to prevent false errors during startup
static int minttemp[EXTRUDERS] = { 0 };
static int maxttemp[EXTRUDERS] = { 16383 }; // the first value used for all
static int bed_minttemp = 0;
static int bed_maxttemp = 16383;
static int heater_pin_map[EXTRUDERS] = { HEATER_0_PIN
#if EXTRUDERS > 1
, HEATER_1_PIN
#endif
#if EXTRUDERS > 2
, HEATER_2_PIN
#endif
#if EXTRUDERS > 3
#error Unsupported number of extruders
#endif
};
static void *heater_ttbl_map[EXTRUDERS] = { (void *)heater_0_temptable
#if EXTRUDERS > 1
, (void *)heater_1_temptable
#endif
#if EXTRUDERS > 2
, (void *)heater_2_temptable
#endif
#if EXTRUDERS > 3
#error Unsupported number of extruders
#endif
};
static int heater_ttbllen_map[EXTRUDERS] = { heater_0_temptable_len
#if EXTRUDERS > 1
, heater_1_temptable_len
#endif
#if EXTRUDERS > 2
, heater_2_temptable_len
#endif
#if EXTRUDERS > 3
#error Unsupported number of extruders
#endif
};
//===========================================================================
//============================= functions ============================
//===========================================================================
void updatePID()
{
#ifdef PIDTEMP
for(int e = 0; e < EXTRUDERS; e++) {
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
}
#endif
}
int getHeaterPower(int heater) {
return soft_pwm[heater];
}
void manage_heater()
{
#ifdef USE_WATCHDOG
wd_reset();
#endif
float pid_input;
float pid_output;
if(temp_meas_ready != true) //better readability
return;
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
for(int e = 0; e < EXTRUDERS; e++)
{
#ifdef PIDTEMP
pid_input = analog2temp(current_raw[e], e);
#ifndef PID_OPENLOOP
pid_error[e] = pid_setpoint[e] - pid_input;
if(pid_error[e] > 10) {
pid_output = PID_MAX;
pid_reset[e] = true;
}
else if(pid_error[e] < -10) {
pid_output = 0;
pid_reset[e] = true;
}
else {
if(pid_reset[e] == true) {
temp_iState[e] = 0.0;
pid_reset[e] = false;
}
pTerm[e] = Kp * pid_error[e];
temp_iState[e] += pid_error[e];
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = Ki * temp_iState[e];
//K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
temp_dState[e] = pid_input;
pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
}
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]);
#endif //PID_DEBUG
#else /* PID off */
pid_output = 0;
if(current_raw[e] < target_raw[e]) {
pid_output = PID_MAX;
}
#endif
// Check if temperature is within the correct range
if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e]))
{
//analogWrite(heater_pin_map[e], pid_output);
soft_pwm[e] = (int)pid_output >> 1;
}
else {
//analogWrite(heater_pin_map[e], 0);
soft_pwm[e] = 0;
}
} // End extruder for loop
#ifdef WATCHPERIOD
if(watchmillis && millis() - watchmillis > WATCHPERIOD){
if(watch_oldtemp[0] >= degHotend(active_extruder)){
setTargetHotend(0,active_extruder);
LCD_MESSAGEPGM("Heating failed");
SERIAL_ECHO_START;
SERIAL_ECHOLN("Heating failed");
}else{
watchmillis = 0;
}
}
#endif
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = millis();
#if TEMP_BED_PIN > -1
#ifndef BED_LIMIT_SWITCHING
// Check if temperature is within the correct range
if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) {
if(current_raw_bed >= target_raw_bed)
{
WRITE(HEATER_BED_PIN,LOW);
}
else
{
WRITE(HEATER_BED_PIN,HIGH);
}
}
else {
WRITE(HEATER_BED_PIN,LOW);
}
#else //#ifdef BED_LIMIT_SWITCHING
// Check if temperature is within the correct band
if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) {
if(current_raw_bed > target_bed_high_temp)
{
WRITE(HEATER_BED_PIN,LOW);
}
else
if(current_raw_bed <= target_bed_low_temp)
{
WRITE(HEATER_BED_PIN,HIGH);
}
}
else {
WRITE(HEATER_BED_PIN,LOW);
}
#endif
#endif
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Takes hot end temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
int temp2analog(int celsius, uint8_t e) {
if(e >= EXTRUDERS)
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(" - Invalid extruder number!");
kill();
}
#ifdef HEATER_0_USES_MAX6675
if (e == 0)
{
return celsius * 4;
}
#endif
if(heater_ttbl_map[e] != 0)
{
int raw = 0;
byte i;
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
for (i=1; i<heater_ttbllen_map[e]; i++)
{
if (PGM_RD_W((*tt)[i][1]) < celsius)
{
raw = PGM_RD_W((*tt)[i-1][0]) +
(celsius - PGM_RD_W((*tt)[i-1][1])) *
(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0])) /
(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) raw = PGM_RD_W((*tt)[i-1][0]);
return (1023 * OVERSAMPLENR) - raw;
}
return ((celsius-TEMP_SENSOR_AD595_OFFSET)/TEMP_SENSOR_AD595_GAIN) * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
}
// Takes bed temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
int temp2analogBed(int celsius) {
#ifdef BED_USES_THERMISTOR
int raw = 0;
byte i;
for (i=1; i<bedtemptable_len; i++)
{
if (PGM_RD_W(bedtemptable[i][1]) < celsius)
{
raw = PGM_RD_W(bedtemptable[i-1][0]) +
(celsius - PGM_RD_W(bedtemptable[i-1][1])) *
(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0])) /
(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1]));
break;
}
}
// Overflow: Set to last value in the table
if (i == bedtemptable_len) raw = PGM_RD_W(bedtemptable[i-1][0]);
return (1023 * OVERSAMPLENR) - raw;
#elif defined BED_USES_AD595
return lround(((celsius-TEMP_SENSOR_AD595_OFFSET)/TEMP_SENSOR_AD595_GAIN) * (1024.0 * OVERSAMPLENR/ (5.0 * 100.0) ) );
#else
#warning No heater-type defined for the bed.
return 0;
#endif
}
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float analog2temp(int raw, uint8_t e) {
if(e >= EXTRUDERS)
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
kill();
}
#ifdef HEATER_0_USES_MAX6675
if (e == 0)
{
return 0.25 * raw;
}
#endif
if(heater_ttbl_map[e] != 0)
{
float celsius = 0;
byte i;
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<heater_ttbllen_map[e]; i++)
{
if (PGM_RD_W((*tt)[i][0]) > raw)
{
celsius = PGM_RD_W((*tt)[i-1][1]) +
(raw - PGM_RD_W((*tt)[i-1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
return celsius;
}
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
int celsius = 0;
byte i;
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<bedtemptable_len; i++)
{
if (PGM_RD_W(bedtemptable[i][0]) > raw)
{
celsius = PGM_RD_W(bedtemptable[i-1][1]) +
(raw - PGM_RD_W(bedtemptable[i-1][0])) *
(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1])) /
(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == bedtemptable_len) celsius = PGM_RD_W(bedtemptable[i-1][1]);
return celsius;
#elif defined BED_USES_AD595
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
#else
#warning No heater-type defined for the bed.
#endif
return 0;
}
void tp_init()
{
// Finish init of mult extruder arrays
for(int e = 0; e < EXTRUDERS; e++) {
// populate with the first value
#ifdef WATCHPERIOD
watch_raw[e] = watch_raw[0];
#endif
maxttemp[e] = maxttemp[0];
#ifdef PIDTEMP
temp_iState_min[e] = 0.0;
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif //PIDTEMP
}
#if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#if (HEATER_BED_PIN > -1)
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if (FAN_PIN > -1)
SET_OUTPUT(FAN_PIN);
#endif
#ifdef HEATER_0_USES_MAX6675
#ifndef SDSUPPORT
SET_OUTPUT(MAX_SCK_PIN);
WRITE(MAX_SCK_PIN,0);
SET_OUTPUT(MAX_MOSI_PIN);
WRITE(MAX_MOSI_PIN,1);
SET_INPUT(MAX_MISO_PIN);
WRITE(MAX_MISO_PIN,1);
#endif
SET_OUTPUT(MAX6675_SS);
WRITE(MAX6675_SS,1);
#endif
// Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
DIDR0 = 0;
#ifdef DIDR2
DIDR2 = 0;
#endif
#if (TEMP_0_PIN > -1)
#if TEMP_0_PIN < 8
DIDR0 |= 1 << TEMP_0_PIN;
#else
DIDR2 |= 1<<(TEMP_0_PIN - 8);
#endif
#endif
#if (TEMP_1_PIN > -1)
#if TEMP_1_PIN < 8
DIDR0 |= 1<<TEMP_1_PIN;
#else
DIDR2 |= 1<<(TEMP_1_PIN - 8);
#endif
#endif
#if (TEMP_2_PIN > -1)
#if TEMP_2_PIN < 8
DIDR0 |= 1 << TEMP_2_PIN;
#else
DIDR2 = 1<<(TEMP_2_PIN - 8);
#endif
#endif
#if (TEMP_BED_PIN > -1)
#if TEMP_BED_PIN < 8
DIDR0 |= 1<<TEMP_BED_PIN;
#else
DIDR2 |= 1<<(TEMP_BED_PIN - 8);
#endif
#endif
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
TIMSK0 |= (1<<OCIE0B);
// Wait for temperature measurement to settle
delay(250);
#ifdef HEATER_0_MINTEMP
minttemp[0] = temp2analog(HEATER_0_MINTEMP, 0);
#endif //MINTEMP
#ifdef HEATER_0_MAXTEMP
maxttemp[0] = temp2analog(HEATER_0_MAXTEMP, 0);
#endif //MAXTEMP
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
minttemp[1] = temp2analog(HEATER_1_MINTEMP, 1);
#endif // MINTEMP 1
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
maxttemp[1] = temp2analog(HEATER_1_MAXTEMP, 1);
#endif //MAXTEMP 1
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
minttemp[2] = temp2analog(HEATER_2_MINTEMP, 2);
#endif //MINTEMP 2
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
maxttemp[2] = temp2analog(HEATER_2_MAXTEMP, 2);
#endif //MAXTEMP 2
#ifdef BED_MINTEMP
bed_minttemp = temp2analogBed(BED_MINTEMP);
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
bed_maxttemp = temp2analogBed(BED_MAXTEMP);
#endif //BED_MAXTEMP
}
void setWatch()
{
#ifdef WATCHPERIOD
int t = 0;
for (int e = 0; e < EXTRUDERS; e++)
{
if(isHeatingHotend(e))
watch_oldtemp[0] = degHotend(0);
{
t = max(t,millis());
watch_raw[e] = current_raw[e];
}
}
watchmillis = t;
#endif
}
void disable_heater()
{
for(int i=0;i<EXTRUDERS;i++)
setTargetHotend(0,i);
setTargetBed(0);
#if TEMP_0_PIN > -1
target_raw[0]=0;
soft_pwm[0]=0;
#if HEATER_0_PIN > -1
digitalWrite(HEATER_0_PIN,LOW);
#endif
#endif
#if TEMP_1_PIN > -1
target_raw[1]=0;
soft_pwm[1]=0;
#if HEATER_1_PIN > -1
digitalWrite(HEATER_1_PIN,LOW);
#endif
#endif
#if TEMP_2_PIN > -1
target_raw[2]=0;
soft_pwm[2]=0;
#if HEATER_2_PIN > -1
digitalWrite(HEATER_2_PIN,LOW);
#endif
#endif
#if TEMP_BED_PIN > -1
target_raw_bed=0;
#if HEATER_BED_PIN > -1
digitalWrite(HEATER_BED_PIN,LOW);
#endif
#endif
}
void max_temp_error(uint8_t e) {
digitalWrite(heater_pin_map[e], 0);
SERIAL_ERROR_START;
SERIAL_ERRORLN(e);
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
}
void min_temp_error(uint8_t e) {
digitalWrite(heater_pin_map[e], 0);
SERIAL_ERROR_START;
SERIAL_ERRORLN(e);
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
}
void bed_max_temp_error(void) {
digitalWrite(HEATER_BED_PIN, 0);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
}
#define HEAT_INTERVAL 250
#ifdef HEATER_0_USES_MAX6675
long max6675_previous_millis = -HEAT_INTERVAL;
int max6675_temp = 2000;
int read_max6675()
{
if (millis() - max6675_previous_millis < HEAT_INTERVAL)
return max6675_temp;
max6675_previous_millis = millis();
max6675_temp = 0;
#ifdef PRR
PRR &= ~(1<<PRSPI);
#elif defined PRR0
PRR0 &= ~(1<<PRSPI);
#endif
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
// enable TT_MAX6675
WRITE(MAX6675_SS, 0);
// ensure 100ns delay - a bit extra is fine
delay(1);
// read MSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp = SPDR;
max6675_temp <<= 8;
// read LSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp |= SPDR;
// disable TT_MAX6675
WRITE(MAX6675_SS, 1);
if (max6675_temp & 4)
{
// thermocouple open
max6675_temp = 2000;
}
else
{
max6675_temp = max6675_temp >> 3;
}
return max6675_temp;
}
#endif
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect)
{
//these variables are only accesible from the ISR, but static, so they don't loose their value
static unsigned char temp_count = 0;
static unsigned long raw_temp_0_value = 0;
static unsigned long raw_temp_1_value = 0;
static unsigned long raw_temp_2_value = 0;
static unsigned long raw_temp_bed_value = 0;
static unsigned char temp_state = 0;
static unsigned char pwm_count = 1;
static unsigned char soft_pwm_0;
static unsigned char soft_pwm_1;
static unsigned char soft_pwm_2;
if(pwm_count == 0){
soft_pwm_0 = soft_pwm[0];
if(soft_pwm_0 > 0) WRITE(HEATER_0_PIN,1);
#if EXTRUDERS > 1
soft_pwm_1 = soft_pwm[1];
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1);
#endif
#if EXTRUDERS > 2
soft_pwm_2 = soft_pwm[2];
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1);
#endif
}
if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0);
#if EXTRUDERS > 1
if(soft_pwm_1 <= pwm_count) WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0);
#endif
pwm_count++;
pwm_count &= 0x7f;
switch(temp_state) {
case 0: // Prepare TEMP_0
#if (TEMP_0_PIN > -1)
#if TEMP_0_PIN > 7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 1;
break;
case 1: // Measure TEMP_0
#if (TEMP_0_PIN > -1)
raw_temp_0_value += ADC;
#endif
#ifdef HEATER_0_USES_MAX6675 // TODO remove the blocking
raw_temp_0_value = read_max6675();
#endif
temp_state = 2;
break;
case 2: // Prepare TEMP_BED
#if (TEMP_BED_PIN > -1)
#if TEMP_BED_PIN > 7
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 3;
break;
case 3: // Measure TEMP_BED
#if (TEMP_BED_PIN > -1)
raw_temp_bed_value += ADC;
#endif
temp_state = 4;
break;
case 4: // Prepare TEMP_1
#if (TEMP_1_PIN > -1)
#if TEMP_1_PIN > 7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 5;
break;
case 5: // Measure TEMP_1
#if (TEMP_1_PIN > -1)
raw_temp_1_value += ADC;
#endif
temp_state = 6;
break;
case 6: // Prepare TEMP_2
#if (TEMP_2_PIN > -1)
#if TEMP_2_PIN > 7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 7;
break;
case 7: // Measure TEMP_2
#if (TEMP_2_PIN > -1)
raw_temp_2_value += ADC;
#endif
temp_state = 0;
temp_count++;
break;
// default:
// SERIAL_ERROR_START;
// SERIAL_ERRORLNPGM("Temp measurement error!");
// break;
}
if(temp_count >= 16) // 8 ms * 16 = 128ms.
{
#ifdef HEATER_0_USES_AD595
current_raw[0] = raw_temp_0_value;
#else
current_raw[0] = 16383 - raw_temp_0_value;
#endif
#if EXTRUDERS > 1
#ifdef HEATER_1_USES_AD595 || defined HEATER_0_USES_MAX6675
current_raw[1] = raw_temp_1_value;
#else
current_raw[1] = 16383 - raw_temp_1_value;
#endif
#endif
#if EXTRUDERS > 2
#ifdef HEATER_2_USES_AD595
current_raw[2] = raw_temp_2_value;
#else
current_raw[2] = 16383 - raw_temp_2_value;
#endif
#endif
#ifdef BED_USES_AD595
current_raw_bed = raw_temp_bed_value;
#else
current_raw_bed = 16383 - raw_temp_bed_value;
#endif
temp_meas_ready = true;
temp_count = 0;
raw_temp_0_value = 0;
raw_temp_1_value = 0;
raw_temp_2_value = 0;
raw_temp_bed_value = 0;
for(unsigned char e = 0; e < EXTRUDERS; e++) {
if(current_raw[e] >= maxttemp[e]) {
target_raw[e] = 0;
max_temp_error(e);
kill();;
}
if(current_raw[e] <= minttemp[e]) {
target_raw[e] = 0;
min_temp_error(e);
kill();
}
}
#if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1)
if(current_raw_bed >= bed_maxttemp) {
target_raw_bed = 0;
bed_max_temp_error();
kill();
}
#endif
}
}