Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

275 lines
9.0 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../inc/MarlinConfig.h"
#if EITHER(NOZZLE_CLEAN_FEATURE, NOZZLE_PARK_FEATURE)
#include "nozzle.h"
Nozzle nozzle;
#include "../MarlinCore.h"
#include "../module/motion.h"
#if NOZZLE_CLEAN_MIN_TEMP > 20
#include "../module/temperature.h"
#endif
#if ENABLED(NOZZLE_CLEAN_FEATURE)
/**
* @brief Stroke clean pattern
* @details Wipes the nozzle back and forth in a linear movement
*
* @param start xyz_pos_t defining the starting point
* @param end xyz_pos_t defining the ending point
* @param strokes number of strokes to execute
*/
void Nozzle::stroke(const xyz_pos_t &start, const xyz_pos_t &end, const uint8_t &strokes) {
#if ENABLED(NOZZLE_CLEAN_GOBACK)
const xyz_pos_t oldpos = current_position;
#endif
// Move to the starting point
#if ENABLED(NOZZLE_CLEAN_NO_Z)
#if ENABLED(NOZZLE_CLEAN_NO_Y)
do_blocking_move_to_x(start.x);
#else
do_blocking_move_to_xy(start);
#endif
#else
do_blocking_move_to(start);
#endif
// Start the stroke pattern
LOOP_L_N(i, strokes >> 1) {
#if ENABLED(NOZZLE_CLEAN_NO_Y)
do_blocking_move_to_x(end.x);
do_blocking_move_to_x(start.x);
#else
do_blocking_move_to_xy(end);
do_blocking_move_to_xy(start);
#endif
}
TERN_(NOZZLE_CLEAN_GOBACK, do_blocking_move_to(oldpos));
}
/**
* @brief Zig-zag clean pattern
* @details Apply a zig-zag cleaning pattern
*
* @param start xyz_pos_t defining the starting point
* @param end xyz_pos_t defining the ending point
* @param strokes number of strokes to execute
* @param objects number of triangles to do
*/
void Nozzle::zigzag(const xyz_pos_t &start, const xyz_pos_t &end, const uint8_t &strokes, const uint8_t &objects) {
const xy_pos_t diff = end - start;
if (!diff.x || !diff.y) return;
#if ENABLED(NOZZLE_CLEAN_GOBACK)
const xyz_pos_t back = current_position;
#endif
#if ENABLED(NOZZLE_CLEAN_NO_Z)
do_blocking_move_to_xy(start);
#else
do_blocking_move_to(start);
#endif
const uint8_t zigs = objects << 1;
const bool horiz = ABS(diff.x) >= ABS(diff.y); // Do a horizontal wipe?
const float P = (horiz ? diff.x : diff.y) / zigs; // Period of each zig / zag
const xyz_pos_t *side;
LOOP_L_N(j, strokes) {
for (int8_t i = 0; i < zigs; i++) {
side = (i & 1) ? &end : &start;
if (horiz)
do_blocking_move_to_xy(start.x + i * P, side->y);
else
do_blocking_move_to_xy(side->x, start.y + i * P);
}
for (int8_t i = zigs; i >= 0; i--) {
side = (i & 1) ? &end : &start;
if (horiz)
do_blocking_move_to_xy(start.x + i * P, side->y);
else
do_blocking_move_to_xy(side->x, start.y + i * P);
}
}
TERN_(NOZZLE_CLEAN_GOBACK, do_blocking_move_to(back));
}
/**
* @brief Circular clean pattern
* @details Apply a circular cleaning pattern
*
* @param start xyz_pos_t defining the middle of circle
* @param strokes number of strokes to execute
* @param radius radius of circle
*/
void Nozzle::circle(const xyz_pos_t &start, const xyz_pos_t &middle, const uint8_t &strokes, const_float_t radius) {
if (strokes == 0) return;
#if ENABLED(NOZZLE_CLEAN_GOBACK)
const xyz_pos_t back = current_position;
#endif
TERN(NOZZLE_CLEAN_NO_Z, do_blocking_move_to_xy, do_blocking_move_to)(start);
LOOP_L_N(s, strokes)
LOOP_L_N(i, NOZZLE_CLEAN_CIRCLE_FN)
do_blocking_move_to_xy(
middle.x + sin((RADIANS(360) / NOZZLE_CLEAN_CIRCLE_FN) * i) * radius,
middle.y + cos((RADIANS(360) / NOZZLE_CLEAN_CIRCLE_FN) * i) * radius
);
// Let's be safe
do_blocking_move_to_xy(start);
TERN_(NOZZLE_CLEAN_GOBACK, do_blocking_move_to(back));
}
/**
* @brief Clean the nozzle
* @details Starts the selected clean procedure pattern
*
* @param pattern one of the available patterns
* @param argument depends on the cleaning pattern
*/
void Nozzle::clean(const uint8_t &pattern, const uint8_t &strokes, const_float_t radius, const uint8_t &objects, const uint8_t cleans) {
xyz_pos_t start[HOTENDS] = NOZZLE_CLEAN_START_POINT, end[HOTENDS] = NOZZLE_CLEAN_END_POINT, middle[HOTENDS] = NOZZLE_CLEAN_CIRCLE_MIDDLE;
const uint8_t arrPos = ANY(SINGLENOZZLE, MIXING_EXTRUDER) ? 0 : active_extruder;
#if NOZZLE_CLEAN_MIN_TEMP > 20
if (thermalManager.degTargetHotend(arrPos) < NOZZLE_CLEAN_MIN_TEMP) {
#if ENABLED(NOZZLE_CLEAN_HEATUP)
SERIAL_ECHOLNPGM("Nozzle too Cold - Heating");
thermalManager.setTargetHotend(NOZZLE_CLEAN_MIN_TEMP, arrPos);
thermalManager.wait_for_hotend(arrPos);
#else
SERIAL_ECHOLNPGM("Nozzle too cold - Skipping wipe");
return;
#endif
}
#endif
#if HAS_SOFTWARE_ENDSTOPS
#define LIMIT_AXIS(A) do{ \
LIMIT( start[arrPos].A, soft_endstop.min.A, soft_endstop.max.A); \
LIMIT(middle[arrPos].A, soft_endstop.min.A, soft_endstop.max.A); \
LIMIT( end[arrPos].A, soft_endstop.min.A, soft_endstop.max.A); \
}while(0)
if (soft_endstop.enabled()) {
LIMIT_AXIS(x);
LIMIT_AXIS(y);
LIMIT_AXIS(z);
const bool radiusOutOfRange = (middle[arrPos].x + radius > soft_endstop.max.x)
|| (middle[arrPos].x - radius < soft_endstop.min.x)
|| (middle[arrPos].y + radius > soft_endstop.max.y)
|| (middle[arrPos].y - radius < soft_endstop.min.y);
if (radiusOutOfRange && pattern == 2) {
SERIAL_ECHOLNPGM("Warning: Radius Out of Range");
return;
}
}
#endif
if (pattern == 2) {
if (!(cleans & (_BV(X_AXIS) | _BV(Y_AXIS)))) {
SERIAL_ECHOLNPGM("Warning: Clean Circle requires XY");
return;
}
}
else {
if (!TEST(cleans, X_AXIS)) start[arrPos].x = end[arrPos].x = current_position.x;
if (!TEST(cleans, Y_AXIS)) start[arrPos].y = end[arrPos].y = current_position.y;
}
if (!TEST(cleans, Z_AXIS)) start[arrPos].z = end[arrPos].z = current_position.z;
switch (pattern) {
case 1: zigzag(start[arrPos], end[arrPos], strokes, objects); break;
case 2: circle(start[arrPos], middle[arrPos], strokes, radius); break;
default: stroke(start[arrPos], end[arrPos], strokes);
}
}
#endif // NOZZLE_CLEAN_FEATURE
#if ENABLED(NOZZLE_PARK_FEATURE)
float Nozzle::park_mode_0_height(const_float_t park_z) {
// Apply a minimum raise, if specified. Use park.z as a minimum height instead.
return _MAX(park_z, // Minimum height over 0 based on input
_MIN(Z_MAX_POS, // Maximum height is fixed
#ifdef NOZZLE_PARK_Z_RAISE_MIN
NOZZLE_PARK_Z_RAISE_MIN + // Minimum raise...
#endif
current_position.z // ...over current position
)
);
}
void Nozzle::park(const uint8_t z_action, const xyz_pos_t &park/*=NOZZLE_PARK_POINT*/) {
constexpr feedRate_t fr_xy = NOZZLE_PARK_XY_FEEDRATE, fr_z = NOZZLE_PARK_Z_FEEDRATE;
switch (z_action) {
case 1: // Go to Z-park height
do_blocking_move_to_z(park.z, fr_z);
break;
case 2: // Raise by Z-park height
do_blocking_move_to_z(_MIN(current_position.z + park.z, Z_MAX_POS), fr_z);
break;
default: // Raise by NOZZLE_PARK_Z_RAISE_MIN, use park.z as a minimum height
do_blocking_move_to_z(park_mode_0_height(park.z), fr_z);
break;
}
#ifndef NOZZLE_PARK_MOVE
#define NOZZLE_PARK_MOVE 0
#endif
switch (NOZZLE_PARK_MOVE) {
case 0: do_blocking_move_to_xy(park, fr_xy); break;
case 1: do_blocking_move_to_x(park.x, fr_xy); break;
case 2: do_blocking_move_to_y(park.y, fr_xy); break;
case 3: do_blocking_move_to_x(park.x, fr_xy);
do_blocking_move_to_y(park.y, fr_xy); break;
case 4: do_blocking_move_to_y(park.y, fr_xy);
do_blocking_move_to_x(park.x, fr_xy); break;
}
report_current_position();
}
#endif // NOZZLE_PARK_FEATURE
#endif // NOZZLE_CLEAN_FEATURE || NOZZLE_PARK_FEATURE