Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

898 lines
30 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* G29.cpp - Auto Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_ABL_NOT_UBL
#include "../../gcode.h"
#include "../../../feature/bedlevel/bedlevel.h"
#include "../../../module/motion.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/probe.h"
#include "../../queue.h"
#if ENABLED(PROBE_TEMP_COMPENSATION)
#include "../../../feature/probe_temp_comp.h"
#include "../../../module/temperature.h"
#endif
#if HAS_STATUS_MESSAGE
#include "../../../lcd/marlinui.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
#include "../../../libs/least_squares_fit.h"
#endif
#if ABL_PLANAR
#include "../../../libs/vector_3.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../../core/debug_out.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
#elif ENABLED(DWIN_CREALITY_LCD)
#include "../../../lcd/e3v2/creality/dwin.h"
#elif ENABLED(DWIN_CREALITY_LCD_ENHANCED)
#include "../../../lcd/e3v2/enhanced/dwin.h"
#endif
#if HAS_MULTI_HOTEND
#include "../../../module/tool_change.h"
#endif
#if ABL_USES_GRID
#if ENABLED(PROBE_Y_FIRST)
#define PR_OUTER_VAR abl.meshCount.x
#define PR_OUTER_SIZE abl.grid_points.x
#define PR_INNER_VAR abl.meshCount.y
#define PR_INNER_SIZE abl.grid_points.y
#else
#define PR_OUTER_VAR abl.meshCount.y
#define PR_OUTER_SIZE abl.grid_points.y
#define PR_INNER_VAR abl.meshCount.x
#define PR_INNER_SIZE abl.grid_points.x
#endif
#endif
#define G29_RETURN(b) return TERN_(G29_RETRY_AND_RECOVER, b)
// For manual probing values persist over multiple G29
class G29_State {
public:
int verbose_level;
xy_pos_t probePos;
float measured_z;
bool dryrun,
reenable;
#if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
int abl_probe_index;
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
int abl_points;
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
static constexpr int abl_points = 3;
#elif ABL_USES_GRID
static constexpr int abl_points = GRID_MAX_POINTS;
#endif
#if ABL_USES_GRID
xy_int8_t meshCount;
xy_pos_t probe_position_lf,
probe_position_rb;
xy_float_t gridSpacing; // = { 0.0f, 0.0f }
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
bool topography_map;
xy_uint8_t grid_points;
#else // Bilinear
static constexpr xy_uint8_t grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
float Z_offset;
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
mean;
#endif
#endif
};
#if ABL_USES_GRID && EITHER(AUTO_BED_LEVELING_3POINT, AUTO_BED_LEVELING_BILINEAR)
constexpr xy_uint8_t G29_State::grid_points;
constexpr int G29_State::abl_points;
#endif
/**
* G29: Detailed Z probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
*
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* O Auto-level only if needed
*
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
* or alter the bed level data. Useful to check the topology
* after a first run of G29.
*
* J Jettison current bed leveling data
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* Parameters With LINEAR leveling only:
*
* P Set the size of the grid that will be probed (P x P points).
* Example: "G29 P4"
*
* X Set the X size of the grid that will be probed (X x Y points).
* Example: "G29 X7 Y5"
*
* Y Set the Y size of the grid that will be probed (X x Y points).
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
* Not supported by non-linear delta printer bed leveling.
*
* Parameters With LINEAR and BILINEAR leveling only:
*
* S Set the XY travel speed between probe points (in units/min)
*
* H Set bounds to a centered square H x H units in size
*
* -or-
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Parameters with DEBUG_LEVELING_FEATURE only:
*
* C Make a totally fake grid with no actual probing.
* For use in testing when no probing is possible.
*
* Parameters with BILINEAR leveling only:
*
* Z Supply an additional Z probe offset
*
* Extra parameters with PROBE_MANUALLY:
*
* To do manual probing simply repeat G29 until the procedure is complete.
* The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
*
* Q Query leveling and G29 state
*
* A Abort current leveling procedure
*
* Extra parameters with BILINEAR only:
*
* W Write a mesh point. (If G29 is idle.)
* I X index for mesh point
* J Y index for mesh point
* X X for mesh point, overrides I
* Y Y for mesh point, overrides J
* Z Z for mesh point. Otherwise, raw current Z.
*
* Without PROBE_MANUALLY:
*
* E By default G29 will engage the Z probe, test the bed, then disengage.
* Include "E" to engage/disengage the Z probe for each sample.
* There's no extra effect if you have a fixed Z probe.
*/
G29_TYPE GcodeSuite::G29() {
DEBUG_SECTION(log_G29, "G29", DEBUGGING(LEVELING));
TERN_(PROBE_MANUALLY, static) G29_State abl;
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_PROBE));
reset_stepper_timeout();
const bool seenQ = EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY) && parser.seen_test('Q');
// G29 Q is also available if debugging
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (seenQ || DEBUGGING(LEVELING)) log_machine_info();
if (DISABLED(PROBE_MANUALLY) && seenQ) G29_RETURN(false);
#endif
const bool seenA = TERN0(PROBE_MANUALLY, parser.seen_test('A')),
no_action = seenA || seenQ,
faux = ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY) ? parser.boolval('C') : no_action;
if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Auto-level not needed, skip");
G29_RETURN(false);
}
// Send 'N' to force homing before G29 (internal only)
if (parser.seen_test('N'))
process_subcommands_now(TERN(CAN_SET_LEVELING_AFTER_G28, F("G28L0"), FPSTR(G28_STR)));
// Don't allow auto-leveling without homing first
if (homing_needed_error()) G29_RETURN(false);
#if ENABLED(AUTO_BED_LEVELING_3POINT)
vector_3 points[3];
probe.get_three_points(points);
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
struct linear_fit_data lsf_results;
#endif
/**
* On the initial G29 fetch command parameters.
*/
if (!g29_in_progress) {
TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0));
#if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
abl.abl_probe_index = -1;
#endif
abl.reenable = planner.leveling_active;
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
const bool seen_w = parser.seen_test('W');
if (seen_w) {
if (!leveling_is_valid()) {
SERIAL_ERROR_MSG("No bilinear grid");
G29_RETURN(false);
}
const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position.z;
if (!WITHIN(rz, -10, 10)) {
SERIAL_ERROR_MSG("Bad Z value");
G29_RETURN(false);
}
const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
int8_t i = parser.byteval('I', -1), j = parser.byteval('J', -1);
if (!isnan(rx) && !isnan(ry)) {
// Get nearest i / j from rx / ry
i = (rx - bilinear_start.x + 0.5 * abl.gridSpacing.x) / abl.gridSpacing.x;
j = (ry - bilinear_start.y + 0.5 * abl.gridSpacing.y) / abl.gridSpacing.y;
LIMIT(i, 0, (GRID_MAX_POINTS_X) - 1);
LIMIT(j, 0, (GRID_MAX_POINTS_Y) - 1);
}
if (WITHIN(i, 0, (GRID_MAX_POINTS_X) - 1) && WITHIN(j, 0, (GRID_MAX_POINTS_Y) - 1)) {
set_bed_leveling_enabled(false);
z_values[i][j] = rz;
TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, rz));
set_bed_leveling_enabled(abl.reenable);
if (abl.reenable) report_current_position();
}
G29_RETURN(false);
} // parser.seen_test('W')
#else
constexpr bool seen_w = false;
#endif
// Jettison bed leveling data
if (!seen_w && parser.seen_test('J')) {
reset_bed_level();
G29_RETURN(false);
}
abl.verbose_level = parser.intval('V');
if (!WITHIN(abl.verbose_level, 0, 4)) {
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
G29_RETURN(false);
}
abl.dryrun = parser.boolval('D') || TERN0(PROBE_MANUALLY, no_action);
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
incremental_LSF_reset(&lsf_results);
abl.topography_map = abl.verbose_level > 2 || parser.boolval('T');
// X and Y specify points in each direction, overriding the default
// These values may be saved with the completed mesh
abl.grid_points.set(
parser.byteval('X', GRID_MAX_POINTS_X),
parser.byteval('Y', GRID_MAX_POINTS_Y)
);
if (parser.seenval('P')) abl.grid_points.x = abl.grid_points.y = parser.value_int();
if (!WITHIN(abl.grid_points.x, 2, GRID_MAX_POINTS_X)) {
SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
G29_RETURN(false);
}
if (!WITHIN(abl.grid_points.y, 2, GRID_MAX_POINTS_Y)) {
SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
G29_RETURN(false);
}
abl.abl_points = abl.grid_points.x * abl.grid_points.y;
abl.mean = 0;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
abl.Z_offset = parser.linearval('Z');
#endif
#if ABL_USES_GRID
xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_FEEDRATE));
const float x_min = probe.min_x(), x_max = probe.max_x(),
y_min = probe.min_y(), y_max = probe.max_y();
if (parser.seen('H')) {
const int16_t size = (int16_t)parser.value_linear_units();
abl.probe_position_lf.set(_MAX((X_CENTER) - size / 2, x_min), _MAX((Y_CENTER) - size / 2, y_min));
abl.probe_position_rb.set(_MIN(abl.probe_position_lf.x + size, x_max), _MIN(abl.probe_position_lf.y + size, y_max));
}
else {
abl.probe_position_lf.set(parser.linearval('L', x_min), parser.linearval('F', y_min));
abl.probe_position_rb.set(parser.linearval('R', x_max), parser.linearval('B', y_max));
}
if (!probe.good_bounds(abl.probe_position_lf, abl.probe_position_rb)) {
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPGM("G29 L", abl.probe_position_lf.x, " R", abl.probe_position_rb.x,
" F", abl.probe_position_lf.y, " B", abl.probe_position_rb.y);
}
SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
G29_RETURN(false);
}
// Probe at the points of a lattice grid
abl.gridSpacing.set((abl.probe_position_rb.x - abl.probe_position_lf.x) / (abl.grid_points.x - 1),
(abl.probe_position_rb.y - abl.probe_position_lf.y) / (abl.grid_points.y - 1));
#endif // ABL_USES_GRID
if (abl.verbose_level > 0) {
SERIAL_ECHOPGM("G29 Auto Bed Leveling");
if (abl.dryrun) SERIAL_ECHOPGM(" (DRYRUN)");
SERIAL_EOL();
}
planner.synchronize();
#if ENABLED(AUTO_BED_LEVELING_3POINT)
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> 3-point Leveling");
points[0].z = points[1].z = points[2].z = 0; // Probe at 3 arbitrary points
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
TERN_(EXTENSIBLE_UI, ExtUI::onMeshLevelingStart());
TERN_(DWIN_CREALITY_LCD_ENHANCED, DWIN_MeshLevelingStart());
#endif
if (!faux) {
remember_feedrate_scaling_off();
#if ENABLED(PREHEAT_BEFORE_LEVELING)
if (!abl.dryrun) probe.preheat_for_probing(LEVELING_NOZZLE_TEMP, LEVELING_BED_TEMP);
#endif
}
// Disable auto bed leveling during G29.
// Be formal so G29 can be done successively without G28.
if (!no_action) set_bed_leveling_enabled(false);
// Deploy certain probes before starting probing
#if HAS_BED_PROBE
if (ENABLED(BLTOUCH))
do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE);
else if (probe.deploy()) {
set_bed_leveling_enabled(abl.reenable);
G29_RETURN(false);
}
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (TERN1(PROBE_MANUALLY, !no_action)
&& (abl.gridSpacing != bilinear_grid_spacing || abl.probe_position_lf != bilinear_start)
) {
// Reset grid to 0.0 or "not probed". (Also disables ABL)
reset_bed_level();
// Initialize a grid with the given dimensions
bilinear_grid_spacing = abl.gridSpacing;
bilinear_start = abl.probe_position_lf;
// Can't re-enable (on error) until the new grid is written
abl.reenable = false;
}
#endif // AUTO_BED_LEVELING_BILINEAR
} // !g29_in_progress
#if ENABLED(PROBE_MANUALLY)
// For manual probing, get the next index to probe now.
// On the first probe this will be incremented to 0.
if (!no_action) {
++abl.abl_probe_index;
g29_in_progress = true;
}
// Abort current G29 procedure, go back to idle state
if (seenA && g29_in_progress) {
SERIAL_ECHOLNPGM("Manual G29 aborted");
SET_SOFT_ENDSTOP_LOOSE(false);
set_bed_leveling_enabled(abl.reenable);
g29_in_progress = false;
TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
}
// Query G29 status
if (abl.verbose_level || seenQ) {
SERIAL_ECHOPGM("Manual G29 ");
if (g29_in_progress)
SERIAL_ECHOLNPGM("point ", _MIN(abl.abl_probe_index + 1, abl.abl_points), " of ", abl.abl_points);
else
SERIAL_ECHOLNPGM("idle");
}
if (no_action) G29_RETURN(false);
if (abl.abl_probe_index == 0) {
// For the initial G29 S2 save software endstop state
SET_SOFT_ENDSTOP_LOOSE(true);
// Move close to the bed before the first point
do_blocking_move_to_z(0);
}
else {
#if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT)
const uint16_t index = abl.abl_probe_index - 1;
#endif
// For G29 after adjusting Z.
// Save the previous Z before going to the next point
abl.measured_z = current_position.z;
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
abl.mean += abl.measured_z;
abl.eqnBVector[index] = abl.measured_z;
abl.eqnAMatrix[index + 0 * abl.abl_points] = abl.probePos.x;
abl.eqnAMatrix[index + 1 * abl.abl_points] = abl.probePos.y;
abl.eqnAMatrix[index + 2 * abl.abl_points] = 1;
incremental_LSF(&lsf_results, abl.probePos, abl.measured_z);
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
points[index].z = abl.measured_z;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
const float newz = abl.measured_z + abl.Z_offset;
z_values[abl.meshCount.x][abl.meshCount.y] = newz;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(abl.meshCount, newz));
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM_P(PSTR("Save X"), abl.meshCount.x, SP_Y_STR, abl.meshCount.y, SP_Z_STR, abl.measured_z + abl.Z_offset);
#endif
}
//
// If there's another point to sample, move there with optional lift.
//
#if ABL_USES_GRID
// Skip any unreachable points
while (abl.abl_probe_index < abl.abl_points) {
// Set abl.meshCount.x, abl.meshCount.y based on abl.abl_probe_index, with zig-zag
PR_OUTER_VAR = abl.abl_probe_index / PR_INNER_SIZE;
PR_INNER_VAR = abl.abl_probe_index - (PR_OUTER_VAR * PR_INNER_SIZE);
// Probe in reverse order for every other row/column
const bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_SIZE) & 1);
if (zig) PR_INNER_VAR = (PR_INNER_SIZE - 1) - PR_INNER_VAR;
abl.probePos = abl.probe_position_lf + abl.gridSpacing * abl.meshCount.asFloat();
TERN_(AUTO_BED_LEVELING_LINEAR, abl.indexIntoAB[abl.meshCount.x][abl.meshCount.y] = abl.abl_probe_index);
// Keep looping till a reachable point is found
if (position_is_reachable(abl.probePos)) break;
++abl.abl_probe_index;
}
// Is there a next point to move to?
if (abl.abl_probe_index < abl.abl_points) {
_manual_goto_xy(abl.probePos); // Can be used here too!
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
SET_SOFT_ENDSTOP_LOOSE(true);
G29_RETURN(false);
}
else {
// Leveling done! Fall through to G29 finishing code below
SERIAL_ECHOLNPGM("Grid probing done.");
// Re-enable software endstops, if needed
SET_SOFT_ENDSTOP_LOOSE(false);
}
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// Probe at 3 arbitrary points
if (abl.abl_probe_index < abl.abl_points) {
abl.probePos = xy_pos_t(points[abl.abl_probe_index]);
_manual_goto_xy(abl.probePos);
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
SET_SOFT_ENDSTOP_LOOSE(true);
G29_RETURN(false);
}
else {
SERIAL_ECHOLNPGM("3-point probing done.");
// Re-enable software endstops, if needed
SET_SOFT_ENDSTOP_LOOSE(false);
if (!abl.dryrun) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) planeNormal *= -1;
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Can't re-enable (on error) until the new grid is written
abl.reenable = false;
}
}
#endif // AUTO_BED_LEVELING_3POINT
#else // !PROBE_MANUALLY
{
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
abl.measured_z = 0;
#if ABL_USES_GRID
bool zig = PR_OUTER_SIZE & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
abl.measured_z = 0;
// Outer loop is X with PROBE_Y_FIRST enabled
// Outer loop is Y with PROBE_Y_FIRST disabled
for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_SIZE && !isnan(abl.measured_z); PR_OUTER_VAR++) {
int8_t inStart, inStop, inInc;
if (zig) { // Zig away from origin
inStart = 0; // Left or front
inStop = PR_INNER_SIZE; // Right or back
inInc = 1; // Zig right
}
else { // Zag towards origin
inStart = PR_INNER_SIZE - 1; // Right or back
inStop = -1; // Left or front
inInc = -1; // Zag left
}
zig ^= true; // zag
// An index to print current state
uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_SIZE) + 1;
// Inner loop is Y with PROBE_Y_FIRST enabled
// Inner loop is X with PROBE_Y_FIRST disabled
for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) {
abl.probePos = abl.probe_position_lf + abl.gridSpacing * abl.meshCount.asFloat();
TERN_(AUTO_BED_LEVELING_LINEAR, abl.indexIntoAB[abl.meshCount.x][abl.meshCount.y] = ++abl.abl_probe_index); // 0...
// Avoid probing outside the round or hexagonal area
if (TERN0(IS_KINEMATIC, !probe.can_reach(abl.probePos))) continue;
if (abl.verbose_level) SERIAL_ECHOLNPGM("Probing mesh point ", pt_index, "/", abl.abl_points, ".");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_POINT), int(pt_index), int(abl.abl_points)));
abl.measured_z = faux ? 0.001f * random(-100, 101) : probe.probe_at_point(abl.probePos, raise_after, abl.verbose_level);
if (isnan(abl.measured_z)) {
set_bed_leveling_enabled(abl.reenable);
break; // Breaks out of both loops
}
#if ENABLED(PROBE_TEMP_COMPENSATION)
temp_comp.compensate_measurement(TSI_BED, thermalManager.degBed(), abl.measured_z);
temp_comp.compensate_measurement(TSI_PROBE, thermalManager.degProbe(), abl.measured_z);
TERN_(USE_TEMP_EXT_COMPENSATION, temp_comp.compensate_measurement(TSI_EXT, thermalManager.degHotend(), abl.measured_z));
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
abl.mean += abl.measured_z;
abl.eqnBVector[abl.abl_probe_index] = abl.measured_z;
abl.eqnAMatrix[abl.abl_probe_index + 0 * abl.abl_points] = abl.probePos.x;
abl.eqnAMatrix[abl.abl_probe_index + 1 * abl.abl_points] = abl.probePos.y;
abl.eqnAMatrix[abl.abl_probe_index + 2 * abl.abl_points] = 1;
incremental_LSF(&lsf_results, abl.probePos, abl.measured_z);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
const float z = abl.measured_z + abl.Z_offset;
z_values[abl.meshCount.x][abl.meshCount.y] = z;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(abl.meshCount, z));
#endif
abl.reenable = false;
idle_no_sleep();
} // inner
} // outer
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// Probe at 3 arbitrary points
LOOP_L_N(i, 3) {
if (abl.verbose_level) SERIAL_ECHOLNPGM("Probing point ", i + 1, "/3.");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_POINT), int(i + 1)));
// Retain the last probe position
abl.probePos = xy_pos_t(points[i]);
abl.measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(abl.probePos, raise_after, abl.verbose_level);
if (isnan(abl.measured_z)) {
set_bed_leveling_enabled(abl.reenable);
break;
}
points[i].z = abl.measured_z;
}
if (!abl.dryrun && !isnan(abl.measured_z)) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) planeNormal *= -1;
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Can't re-enable (on error) until the new grid is written
abl.reenable = false;
}
#endif // AUTO_BED_LEVELING_3POINT
TERN_(HAS_STATUS_MESSAGE, ui.reset_status());
// Stow the probe. No raise for FIX_MOUNTED_PROBE.
if (probe.stow()) {
set_bed_leveling_enabled(abl.reenable);
abl.measured_z = NAN;
}
}
#endif // !PROBE_MANUALLY
//
// G29 Finishing Code
//
// Unless this is a dry run, auto bed leveling will
// definitely be enabled after this point.
//
// If code above wants to continue leveling, it should
// return or loop before this point.
//
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
#if ENABLED(PROBE_MANUALLY)
g29_in_progress = false;
TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
#endif
// Calculate leveling, print reports, correct the position
if (!isnan(abl.measured_z)) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!abl.dryrun) extrapolate_unprobed_bed_level();
print_bilinear_leveling_grid();
refresh_bed_level();
TERN_(ABL_BILINEAR_SUBDIVISION, print_bilinear_leveling_grid_virt());
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
// For LINEAR leveling calculate matrix, print reports, correct the position
/**
* solve the plane equation ax + by + d = z
* A is the matrix with rows [x y 1] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
*/
struct { float a, b, d; } plane_equation_coefficients;
finish_incremental_LSF(&lsf_results);
plane_equation_coefficients.a = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested.
plane_equation_coefficients.d = -lsf_results.D;
abl.mean /= abl.abl_points;
if (abl.verbose_level) {
SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8);
SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8);
SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8);
if (abl.verbose_level > 2)
SERIAL_ECHOPAIR_F("\nMean of sampled points: ", abl.mean, 8);
SERIAL_EOL();
}
// Create the matrix but don't correct the position yet
if (!abl.dryrun)
planner.bed_level_matrix = matrix_3x3::create_look_at(
vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above
);
// Show the Topography map if enabled
if (abl.topography_map) {
float min_diff = 999;
auto print_topo_map = [&](PGM_P const title, const bool get_min) {
SERIAL_ECHOPGM_P(title);
for (int8_t yy = abl.grid_points.y - 1; yy >= 0; yy--) {
LOOP_L_N(xx, abl.grid_points.x) {
const int ind = abl.indexIntoAB[xx][yy];
xyz_float_t tmp = { abl.eqnAMatrix[ind + 0 * abl.abl_points],
abl.eqnAMatrix[ind + 1 * abl.abl_points], 0 };
planner.bed_level_matrix.apply_rotation_xyz(tmp.x, tmp.y, tmp.z);
if (get_min) NOMORE(min_diff, abl.eqnBVector[ind] - tmp.z);
const float subval = get_min ? abl.mean : tmp.z + min_diff,
diff = abl.eqnBVector[ind] - subval;
SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment
SERIAL_ECHO_F(diff, 5);
} // xx
SERIAL_EOL();
} // yy
SERIAL_EOL();
};
print_topo_map(PSTR("\nBed Height Topography:\n"
" +--- BACK --+\n"
" | |\n"
" L | (+) | R\n"
" E | | I\n"
" F | (-) N (+) | G\n"
" T | | H\n"
" | (-) | T\n"
" | |\n"
" O-- FRONT --+\n"
" (0,0)\n"), true);
if (abl.verbose_level > 3)
print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false);
} // abl.topography_map
#endif // AUTO_BED_LEVELING_LINEAR
#if ABL_PLANAR
// For LINEAR and 3POINT leveling correct the current position
if (abl.verbose_level > 0)
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
if (!abl.dryrun) {
//
// Correct the current XYZ position based on the tilted plane.
//
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
xyze_pos_t converted = current_position;
planner.force_unapply_leveling(converted); // use conversion machinery
// Use the last measured distance to the bed, if possible
if ( NEAR(current_position.x, abl.probePos.x - probe.offset_xy.x)
&& NEAR(current_position.y, abl.probePos.y - probe.offset_xy.y)
) {
const float simple_z = current_position.z - abl.measured_z;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z);
converted.z = simple_z;
}
// The rotated XY and corrected Z are now current_position
current_position = converted;
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
}
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!abl.dryrun) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("G29 uncorrected Z:", current_position.z);
// Unapply the offset because it is going to be immediately applied
// and cause compensation movement in Z
const float fade_scaling_factor = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.fade_scaling_factor_for_z(current_position.z), 1);
current_position.z -= fade_scaling_factor * bilinear_z_offset(current_position);
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM(" corrected Z:", current_position.z);
}
#endif // ABL_PLANAR
// Auto Bed Leveling is complete! Enable if possible.
planner.leveling_active = !abl.dryrun || abl.reenable;
} // !isnan(abl.measured_z)
// Restore state after probing
if (!faux) restore_feedrate_and_scaling();
// Sync the planner from the current_position
if (planner.leveling_active) sync_plan_position();
TERN_(HAS_BED_PROBE, probe.move_z_after_probing());
#ifdef Z_PROBE_END_SCRIPT
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
planner.synchronize();
process_subcommands_now(F(Z_PROBE_END_SCRIPT));
#endif
TERN_(HAS_DWIN_E3V2_BASIC, DWIN_CompletedLeveling());
report_current_position();
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_IDLE));
G29_RETURN(isnan(abl.measured_z));
}
#endif // HAS_ABL_NOT_UBL