Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3622 lines
104 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* settings.cpp
*
* Settings and EEPROM storage
*
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
* in the functions below, also increment the version number. This makes sure that
* the default values are used whenever there is a change to the data, to prevent
* wrong data being written to the variables.
*
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
* If a feature is disabled, some data must still be written that, when read,
* either sets a Sane Default, or results in No Change to the existing value.
*/
// Change EEPROM version if the structure changes
#define EEPROM_VERSION "V86"
#define EEPROM_OFFSET 100
// Check the integrity of data offsets.
// Can be disabled for production build.
//#define DEBUG_EEPROM_READWRITE
#include "settings.h"
#include "endstops.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "../lcd/marlinui.h"
#include "../libs/vector_3.h" // for matrix_3x3
#include "../gcode/gcode.h"
#include "../MarlinCore.h"
#if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
#include "../HAL/shared/eeprom_api.h"
#endif
#include "probe.h"
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#if ENABLED(X_AXIS_TWIST_COMPENSATION)
#include "../feature/x_twist.h"
#endif
#endif
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
#include "../feature/z_stepper_align.h"
#endif
#if ENABLED(EXTENSIBLE_UI)
#include "../lcd/extui/ui_api.h"
#elif ENABLED(DWIN_LCD_PROUI)
#include "../lcd/e3v2/proui/dwin.h"
#include "../lcd/e3v2/proui/bedlevel_tools.h"
#elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
#include "../lcd/e3v2/jyersui/dwin.h"
#endif
#if ENABLED(HOST_PROMPT_SUPPORT)
#include "../feature/host_actions.h"
#endif
#if HAS_SERVOS
#include "servo.h"
#endif
#if HAS_SERVOS && HAS_SERVO_ANGLES
#define EEPROM_NUM_SERVOS NUM_SERVOS
#else
#define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
#endif
#include "../feature/fwretract.h"
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../feature/powerloss.h"
#endif
#if HAS_POWER_MONITOR
#include "../feature/power_monitor.h"
#endif
#include "../feature/pause.h"
#if ENABLED(BACKLASH_COMPENSATION)
#include "../feature/backlash.h"
#endif
#if HAS_FILAMENT_SENSOR
#include "../feature/runout.h"
#ifndef FIL_RUNOUT_ENABLED_DEFAULT
#define FIL_RUNOUT_ENABLED_DEFAULT true
#endif
#endif
#if ENABLED(EXTRA_LIN_ADVANCE_K)
extern float other_extruder_advance_K[EXTRUDERS];
#endif
#if HAS_MULTI_EXTRUDER
#include "tool_change.h"
void M217_report(const bool eeprom);
#endif
#if ENABLED(BLTOUCH)
#include "../feature/bltouch.h"
#endif
#if HAS_TRINAMIC_CONFIG
#include "stepper/indirection.h"
#include "../feature/tmc_util.h"
#endif
#if HAS_PTC
#include "../feature/probe_temp_comp.h"
#endif
#include "../feature/controllerfan.h"
#if ENABLED(CASE_LIGHT_ENABLE)
#include "../feature/caselight.h"
#endif
#if ENABLED(PASSWORD_FEATURE)
#include "../feature/password/password.h"
#endif
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
#include "../lcd/tft_io/touch_calibration.h"
#endif
#if HAS_ETHERNET
#include "../feature/ethernet.h"
#endif
#if ENABLED(SOUND_MENU_ITEM)
#include "../libs/buzzer.h"
#endif
#if HAS_FANCHECK
#include "../feature/fancheck.h"
#endif
#if ENABLED(DGUS_LCD_UI_MKS)
#include "../lcd/extui/dgus/DGUSScreenHandler.h"
#include "../lcd/extui/dgus/DGUSDisplayDef.h"
#endif
#pragma pack(push, 1) // No padding between variables
#if HAS_ETHERNET
void ETH0_report();
void MAC_report();
#endif
#define _EN_ITEM(N) , E##N
#define _EN1_ITEM(N) , E##N:1
typedef struct { uint16_t MAIN_AXIS_NAMES, X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } per_stepper_uint16_t;
typedef struct { uint32_t MAIN_AXIS_NAMES, X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } per_stepper_uint32_t;
typedef struct { int16_t MAIN_AXIS_NAMES, X2, Y2, Z2, Z3, Z4; } mot_stepper_int16_t;
typedef struct { bool NUM_AXIS_LIST(X:1, Y:1, Z:1, I:1, J:1, K:1, U:1, V:1, W:1), X2:1, Y2:1, Z2:1, Z3:1, Z4:1 REPEAT(E_STEPPERS, _EN1_ITEM); } per_stepper_bool_t;
#undef _EN_ITEM
// Limit an index to an array size
#define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
// Defaults for reset / fill in on load
static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
/**
* Current EEPROM Layout
*
* Keep this data structure up to date so
* EEPROM size is known at compile time!
*/
typedef struct SettingsDataStruct {
char version[4]; // Vnn\0
#if ENABLED(EEPROM_INIT_NOW)
uint32_t build_hash; // Unique build hash
#endif
uint16_t crc; // Data Checksum
//
// DISTINCT_E_FACTORS
//
uint8_t e_factors; // DISTINCT_AXES - NUM_AXES
//
// Planner settings
//
planner_settings_t planner_settings;
xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
//
// Home Offset
//
xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
//
// Hotend Offset
//
#if HAS_HOTEND_OFFSET
xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
#endif
//
// FILAMENT_RUNOUT_SENSOR
//
bool runout_sensor_enabled; // M412 S
float runout_distance_mm; // M412 D
//
// ENABLE_LEVELING_FADE_HEIGHT
//
float planner_z_fade_height; // M420 Zn planner.z_fade_height
//
// MESH_BED_LEVELING
//
float mbl_z_offset; // bedlevel.z_offset
uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // bedlevel.z_values
[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
//
// HAS_BED_PROBE
//
xyz_pos_t probe_offset;
//
// ABL_PLANAR
//
matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
//
// AUTO_BED_LEVELING_BILINEAR
//
uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
bed_mesh_t z_values; // G29
#else
float z_values[3][3];
#endif
//
// X_AXIS_TWIST_COMPENSATION
//
#if ENABLED(X_AXIS_TWIST_COMPENSATION)
float xatc_spacing; // M423 X Z
float xatc_start;
xatc_array_t xatc_z_offset;
#endif
//
// AUTO_BED_LEVELING_UBL
//
bool planner_leveling_active; // M420 S planner.leveling_active
int8_t ubl_storage_slot; // bedlevel.storage_slot
//
// SERVO_ANGLES
//
uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
//
// Temperature first layer compensation values
//
#if HAS_PTC
#if ENABLED(PTC_PROBE)
int16_t z_offsets_probe[COUNT(ptc.z_offsets_probe)]; // M871 P I V
#endif
#if ENABLED(PTC_BED)
int16_t z_offsets_bed[COUNT(ptc.z_offsets_bed)]; // M871 B I V
#endif
#if ENABLED(PTC_HOTEND)
int16_t z_offsets_hotend[COUNT(ptc.z_offsets_hotend)]; // M871 E I V
#endif
#endif
//
// BLTOUCH
//
bool bltouch_od_5v_mode;
#ifdef BLTOUCH_HS_MODE
bool bltouch_high_speed_mode; // M401 S
#endif
//
// Kinematic Settings
//
#if IS_KINEMATIC
float segments_per_second; // M665 S
#if ENABLED(DELTA)
float delta_height; // M666 H
abc_float_t delta_endstop_adj; // M666 X Y Z
float delta_radius, // M665 R
delta_diagonal_rod; // M665 L
abc_float_t delta_tower_angle_trim, // M665 X Y Z
delta_diagonal_rod_trim; // M665 A B C
#endif
#endif
//
// Extra Endstops offsets
//
#if HAS_EXTRA_ENDSTOPS
float x2_endstop_adj, // M666 X
y2_endstop_adj, // M666 Y
z2_endstop_adj, // M666 (S2) Z
z3_endstop_adj, // M666 (S3) Z
z4_endstop_adj; // M666 (S4) Z
#endif
//
// Z_STEPPER_AUTO_ALIGN, HAS_Z_STEPPER_ALIGN_STEPPER_XY
//
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
xy_pos_t z_stepper_align_xy[NUM_Z_STEPPERS]; // M422 S X Y
#if HAS_Z_STEPPER_ALIGN_STEPPER_XY
xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPERS]; // M422 W X Y
#endif
#endif
//
// Material Presets
//
#if HAS_PREHEAT
preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
#endif
//
// PIDTEMP
//
raw_pidcf_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
int16_t lpq_len; // M301 L
//
// PIDTEMPBED
//
raw_pid_t bedPID; // M304 PID / M303 E-1 U
//
// PIDTEMPCHAMBER
//
raw_pid_t chamberPID; // M309 PID / M303 E-2 U
//
// User-defined Thermistors
//
#if HAS_USER_THERMISTORS
user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
#endif
//
// Power monitor
//
uint8_t power_monitor_flags; // M430 I V W
//
// HAS_LCD_CONTRAST
//
uint8_t lcd_contrast; // M250 C
//
// HAS_LCD_BRIGHTNESS
//
uint8_t lcd_brightness; // M256 B
//
// Display Sleep
//
#if LCD_BACKLIGHT_TIMEOUT_MINS
uint8_t backlight_timeout_minutes; // M255 S
#elif HAS_DISPLAY_SLEEP
uint8_t sleep_timeout_minutes; // M255 S
#endif
//
// Controller fan settings
//
controllerFan_settings_t controllerFan_settings; // M710
//
// POWER_LOSS_RECOVERY
//
bool recovery_enabled; // M413 S
//
// FWRETRACT
//
fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
bool autoretract_enabled; // M209 S
//
// !NO_VOLUMETRIC
//
bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
//
// HAS_TRINAMIC_CONFIG
//
per_stepper_uint16_t tmc_stepper_current; // M906 X Y Z...
per_stepper_uint32_t tmc_hybrid_threshold; // M913 X Y Z...
mot_stepper_int16_t tmc_sgt; // M914 X Y Z...
per_stepper_bool_t tmc_stealth_enabled; // M569 X Y Z...
//
// LIN_ADVANCE
//
float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
//
// HAS_MOTOR_CURRENT_PWM
//
#ifndef MOTOR_CURRENT_COUNT
#if HAS_MOTOR_CURRENT_PWM
#define MOTOR_CURRENT_COUNT 3
#elif HAS_MOTOR_CURRENT_DAC
#define MOTOR_CURRENT_COUNT LOGICAL_AXES
#elif HAS_MOTOR_CURRENT_I2C
#define MOTOR_CURRENT_COUNT DIGIPOT_I2C_NUM_CHANNELS
#else // HAS_MOTOR_CURRENT_SPI
#define MOTOR_CURRENT_COUNT DISTINCT_AXES
#endif
#endif
uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E ...
//
// CNC_COORDINATE_SYSTEMS
//
xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
//
// SKEW_CORRECTION
//
skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
//
// ADVANCED_PAUSE_FEATURE
//
#if HAS_EXTRUDERS
fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
#endif
//
// Tool-change settings
//
#if HAS_MULTI_EXTRUDER
toolchange_settings_t toolchange_settings; // M217 S P R
#endif
//
// BACKLASH_COMPENSATION
//
xyz_float_t backlash_distance_mm; // M425 X Y Z
uint8_t backlash_correction; // M425 F
float backlash_smoothing_mm; // M425 S
//
// EXTENSIBLE_UI
//
#if ENABLED(EXTENSIBLE_UI)
uint8_t extui_data[ExtUI::eeprom_data_size];
#endif
//
// Ender-3 V2 DWIN
//
#if ENABLED(DWIN_LCD_PROUI)
uint8_t dwin_data[eeprom_data_size];
#elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
uint8_t dwin_settings[CrealityDWIN.eeprom_data_size];
#endif
//
// CASELIGHT_USES_BRIGHTNESS
//
#if CASELIGHT_USES_BRIGHTNESS
uint8_t caselight_brightness; // M355 P
#endif
//
// PASSWORD_FEATURE
//
#if ENABLED(PASSWORD_FEATURE)
bool password_is_set;
uint32_t password_value;
#endif
//
// TOUCH_SCREEN_CALIBRATION
//
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
touch_calibration_t touch_calibration_data;
#endif
// Ethernet settings
#if HAS_ETHERNET
bool ethernet_hardware_enabled; // M552 S
uint32_t ethernet_ip, // M552 P
ethernet_dns,
ethernet_gateway, // M553 P
ethernet_subnet; // M554 P
#endif
//
// Buzzer enable/disable
//
#if ENABLED(SOUND_MENU_ITEM)
bool sound_on;
#endif
//
// Fan tachometer check
//
#if HAS_FANCHECK
bool fan_check_enabled;
#endif
//
// MKS UI controller
//
#if ENABLED(DGUS_LCD_UI_MKS)
MKS_Language mks_language_index; // Display Language
xy_int_t mks_corner_offsets[5]; // Bed Tramming
xyz_int_t mks_park_pos; // Custom Parking (without NOZZLE_PARK)
celsius_t mks_min_extrusion_temp; // Min E Temp (shadow M302 value)
#endif
#if HAS_MULTI_LANGUAGE
uint8_t ui_language; // M414 S
#endif
//
// Model predictive control
//
#if ENABLED(MPCTEMP)
MPC_t mpc_constants[HOTENDS]; // M306
#endif
} SettingsData;
//static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
MarlinSettings settings;
uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
/**
* Post-process after Retrieve or Reset
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float new_z_fade_height;
#endif
void MarlinSettings::postprocess() {
xyze_pos_t oldpos = current_position;
// steps per s2 needs to be updated to agree with units per s2
planner.refresh_acceleration_rates();
// Make sure delta kinematics are updated before refreshing the
// planner position so the stepper counts will be set correctly.
TERN_(DELTA, recalc_delta_settings());
TERN_(PIDTEMP, thermalManager.updatePID());
#if DISABLED(NO_VOLUMETRICS)
planner.calculate_volumetric_multipliers();
#elif EXTRUDERS
for (uint8_t i = COUNT(planner.e_factor); i--;)
planner.refresh_e_factor(i);
#endif
// Software endstops depend on home_offset
LOOP_NUM_AXES(i) {
update_workspace_offset((AxisEnum)i);
update_software_endstops((AxisEnum)i);
}
TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
TERN_(AUTO_BED_LEVELING_BILINEAR, bedlevel.refresh_bed_level());
TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
TERN_(FWRETRACT, fwretract.refresh_autoretract());
TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
TERN_(EXTENSIBLE_UI, ExtUI::onPostprocessSettings());
// Refresh mm_per_step with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
// Various factors can change the current position
if (oldpos != current_position)
report_current_position();
// Moved as last update due to interference with Neopixel init
TERN_(HAS_LCD_CONTRAST, ui.refresh_contrast());
TERN_(HAS_LCD_BRIGHTNESS, ui.refresh_brightness());
#if LCD_BACKLIGHT_TIMEOUT_MINS
ui.refresh_backlight_timeout();
#elif HAS_DISPLAY_SLEEP
ui.refresh_screen_timeout();
#endif
}
#if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
#include "printcounter.h"
static_assert(
!WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
!WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
"STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
);
#endif
#if ENABLED(SD_FIRMWARE_UPDATE)
#if ENABLED(EEPROM_SETTINGS)
static_assert(
!WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
"SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
);
#endif
bool MarlinSettings::sd_update_status() {
uint8_t val;
persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
}
bool MarlinSettings::set_sd_update_status(const bool enable) {
if (enable != sd_update_status())
persistentStore.write_data(
SD_FIRMWARE_UPDATE_EEPROM_ADDR,
enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
);
return true;
}
#endif // SD_FIRMWARE_UPDATE
#ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
"ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data.");
#endif
//
// This file simply uses the DEBUG_ECHO macros to implement EEPROM_CHITCHAT.
// For deeper debugging of EEPROM issues enable DEBUG_EEPROM_READWRITE.
//
#define DEBUG_OUT EITHER(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
#include "../core/debug_out.h"
#if BOTH(EEPROM_CHITCHAT, HOST_PROMPT_SUPPORT)
#define HOST_EEPROM_CHITCHAT 1
#endif
#if ENABLED(EEPROM_SETTINGS)
#define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
#if ENABLED(DEBUG_EEPROM_READWRITE)
#define _FIELD_TEST(FIELD) \
EEPROM_ASSERT( \
eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
"Field " STRINGIFY(FIELD) " mismatch." \
)
#else
#define _FIELD_TEST(FIELD) NOOP
#endif
const char version[4] = EEPROM_VERSION;
#if ENABLED(EEPROM_INIT_NOW)
constexpr uint32_t strhash32(const char *s, const uint32_t h=0) {
return *s ? strhash32(s + 1, ((h + *s) << (*s & 3)) ^ *s) : h;
}
constexpr uint32_t build_hash = strhash32(__DATE__ __TIME__);
#endif
bool MarlinSettings::eeprom_error, MarlinSettings::validating;
int MarlinSettings::eeprom_index;
uint16_t MarlinSettings::working_crc;
bool MarlinSettings::size_error(const uint16_t size) {
if (size != datasize()) {
DEBUG_ERROR_MSG("EEPROM datasize error."
#if ENABLED(MARLIN_DEV_MODE)
" (Actual:", size, " Expected:", datasize(), ")"
#endif
);
return true;
}
return false;
}
/**
* M500 - Store Configuration
*/
bool MarlinSettings::save() {
float dummyf = 0;
char ver[4] = "ERR";
if (!EEPROM_START(EEPROM_OFFSET)) return false;
eeprom_error = false;
// Write or Skip version. (Flash doesn't allow rewrite without erase.)
TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
#if ENABLED(EEPROM_INIT_NOW)
EEPROM_SKIP(build_hash); // Skip the hash slot
#endif
EEPROM_SKIP(working_crc); // Skip the checksum slot
working_crc = 0; // clear before first "real data"
const uint8_t e_factors = DISTINCT_AXES - (NUM_AXES);
_FIELD_TEST(e_factors);
EEPROM_WRITE(e_factors);
//
// Planner Motion
//
{
EEPROM_WRITE(planner.settings);
#if HAS_CLASSIC_JERK
EEPROM_WRITE(planner.max_jerk);
#if HAS_LINEAR_E_JERK
dummyf = float(DEFAULT_EJERK);
EEPROM_WRITE(dummyf);
#endif
#else
const xyze_pos_t planner_max_jerk = LOGICAL_AXIS_ARRAY(float(DEFAULT_EJERK), 10, 10, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4);
EEPROM_WRITE(planner_max_jerk);
#endif
TERN_(CLASSIC_JERK, dummyf = 0.02f);
EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
}
//
// Home Offset
//
{
_FIELD_TEST(home_offset);
#if HAS_SCARA_OFFSET
EEPROM_WRITE(scara_home_offset);
#else
#if !HAS_HOME_OFFSET
const xyz_pos_t home_offset{0};
#endif
EEPROM_WRITE(home_offset);
#endif
}
//
// Hotend Offsets, if any
//
{
#if HAS_HOTEND_OFFSET
// Skip hotend 0 which must be 0
LOOP_S_L_N(e, 1, HOTENDS)
EEPROM_WRITE(hotend_offset[e]);
#endif
}
//
// Filament Runout Sensor
//
{
#if HAS_FILAMENT_SENSOR
const bool &runout_sensor_enabled = runout.enabled;
#else
constexpr int8_t runout_sensor_enabled = -1;
#endif
_FIELD_TEST(runout_sensor_enabled);
EEPROM_WRITE(runout_sensor_enabled);
#if HAS_FILAMENT_RUNOUT_DISTANCE
const float &runout_distance_mm = runout.runout_distance();
#else
constexpr float runout_distance_mm = 0;
#endif
EEPROM_WRITE(runout_distance_mm);
}
//
// Global Leveling
//
{
const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT));
EEPROM_WRITE(zfh);
}
//
// Mesh Bed Leveling
//
{
#if ENABLED(MESH_BED_LEVELING)
static_assert(
sizeof(bedlevel.z_values) == (GRID_MAX_POINTS) * sizeof(bedlevel.z_values[0][0]),
"MBL Z array is the wrong size."
);
#else
dummyf = 0;
#endif
const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
EEPROM_WRITE(TERN(MESH_BED_LEVELING, bedlevel.z_offset, dummyf));
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
EEPROM_WRITE(bedlevel.z_values);
#else
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
#endif
}
//
// Probe XYZ Offsets
//
{
_FIELD_TEST(probe_offset);
#if HAS_BED_PROBE
const xyz_pos_t &zpo = probe.offset;
#else
constexpr xyz_pos_t zpo{0};
#endif
EEPROM_WRITE(zpo);
}
//
// Planar Bed Leveling matrix
//
{
#if ABL_PLANAR
EEPROM_WRITE(planner.bed_level_matrix);
#else
dummyf = 0;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
#endif
}
//
// Bilinear Auto Bed Leveling
//
{
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
static_assert(
sizeof(bedlevel.z_values) == (GRID_MAX_POINTS) * sizeof(bedlevel.z_values[0][0]),
"Bilinear Z array is the wrong size."
);
#endif
const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
EEPROM_WRITE(grid_max_x);
EEPROM_WRITE(grid_max_y);
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
EEPROM_WRITE(bedlevel.grid_spacing);
EEPROM_WRITE(bedlevel.grid_start);
#else
const xy_pos_t bilinear_grid_spacing{0}, bilinear_start{0};
EEPROM_WRITE(bilinear_grid_spacing);
EEPROM_WRITE(bilinear_start);
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
EEPROM_WRITE(bedlevel.z_values); // 9-256 floats
#else
dummyf = 0;
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
#endif
}
//
// X Axis Twist Compensation
//
#if ENABLED(X_AXIS_TWIST_COMPENSATION)
_FIELD_TEST(xatc_spacing);
EEPROM_WRITE(xatc.spacing);
EEPROM_WRITE(xatc.start);
EEPROM_WRITE(xatc.z_offset);
#endif
//
// Unified Bed Leveling
//
{
_FIELD_TEST(planner_leveling_active);
const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, bedlevel.storage_slot, -1);
EEPROM_WRITE(ubl_active);
EEPROM_WRITE(storage_slot);
}
//
// Servo Angles
//
{
_FIELD_TEST(servo_angles);
#if !HAS_SERVO_ANGLES
uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
#endif
EEPROM_WRITE(servo_angles);
}
//
// Thermal first layer compensation values
//
#if HAS_PTC
#if ENABLED(PTC_PROBE)
EEPROM_WRITE(ptc.z_offsets_probe);
#endif
#if ENABLED(PTC_BED)
EEPROM_WRITE(ptc.z_offsets_bed);
#endif
#if ENABLED(PTC_HOTEND)
EEPROM_WRITE(ptc.z_offsets_hotend);
#endif
#else
// No placeholder data for this feature
#endif
//
// BLTOUCH
//
{
_FIELD_TEST(bltouch_od_5v_mode);
const bool bltouch_od_5v_mode = TERN0(BLTOUCH, bltouch.od_5v_mode);
EEPROM_WRITE(bltouch_od_5v_mode);
#ifdef BLTOUCH_HS_MODE
_FIELD_TEST(bltouch_high_speed_mode);
const bool bltouch_high_speed_mode = TERN0(BLTOUCH, bltouch.high_speed_mode);
EEPROM_WRITE(bltouch_high_speed_mode);
#endif
}
//
// Kinematic Settings
//
#if IS_KINEMATIC
{
EEPROM_WRITE(segments_per_second);
#if ENABLED(DELTA)
_FIELD_TEST(delta_height);
EEPROM_WRITE(delta_height); // 1 float
EEPROM_WRITE(delta_endstop_adj); // 3 floats
EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
#endif
}
#endif
//
// Extra Endstops offsets
//
#if HAS_EXTRA_ENDSTOPS
{
_FIELD_TEST(x2_endstop_adj);
// Write dual endstops in X, Y, Z order. Unused = 0.0
dummyf = 0;
EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPERS >= 3
EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummyf);
#endif
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPERS >= 4
EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummyf);
#endif
}
#endif
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
EEPROM_WRITE(z_stepper_align.xy);
#if HAS_Z_STEPPER_ALIGN_STEPPER_XY
EEPROM_WRITE(z_stepper_align.stepper_xy);
#endif
#endif
//
// LCD Preheat settings
//
#if HAS_PREHEAT
_FIELD_TEST(ui_material_preset);
EEPROM_WRITE(ui.material_preset);
#endif
//
// PIDTEMP
//
{
_FIELD_TEST(hotendPID);
#if DISABLED(PIDTEMP)
raw_pidcf_t pidcf = { NAN, NAN, NAN, NAN, NAN };
#endif
HOTEND_LOOP() {
#if ENABLED(PIDTEMP)
const hotend_pid_t &pid = thermalManager.temp_hotend[e].pid;
raw_pidcf_t pidcf = { pid.p(), pid.i(), pid.d(), pid.c(), pid.f() };
#endif
EEPROM_WRITE(pidcf);
}
_FIELD_TEST(lpq_len);
const int16_t lpq_len = TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, 20);
EEPROM_WRITE(lpq_len);
}
//
// PIDTEMPBED
//
{
_FIELD_TEST(bedPID);
#if ENABLED(PIDTEMPBED)
const PID_t &pid = thermalManager.temp_bed.pid;
const raw_pid_t bed_pid = { pid.p(), pid.i(), pid.d() };
#else
const raw_pid_t bed_pid = { NAN, NAN, NAN };
#endif
EEPROM_WRITE(bed_pid);
}
//
// PIDTEMPCHAMBER
//
{
_FIELD_TEST(chamberPID);
#if ENABLED(PIDTEMPCHAMBER)
const PID_t &pid = thermalManager.temp_chamber.pid;
const raw_pid_t chamber_pid = { pid.p(), pid.i(), pid.d() };
#else
const raw_pid_t chamber_pid = { NAN, NAN, NAN };
#endif
EEPROM_WRITE(chamber_pid);
}
//
// User-defined Thermistors
//
#if HAS_USER_THERMISTORS
_FIELD_TEST(user_thermistor);
EEPROM_WRITE(thermalManager.user_thermistor);
#endif
//
// Power monitor
//
{
#if HAS_POWER_MONITOR
const uint8_t &power_monitor_flags = power_monitor.flags;
#else
constexpr uint8_t power_monitor_flags = 0x00;
#endif
_FIELD_TEST(power_monitor_flags);
EEPROM_WRITE(power_monitor_flags);
}
//
// LCD Contrast
//
{
_FIELD_TEST(lcd_contrast);
const uint8_t lcd_contrast = TERN(HAS_LCD_CONTRAST, ui.contrast, 127);
EEPROM_WRITE(lcd_contrast);
}
//
// LCD Brightness
//
{
_FIELD_TEST(lcd_brightness);
const uint8_t lcd_brightness = TERN(HAS_LCD_BRIGHTNESS, ui.brightness, 255);
EEPROM_WRITE(lcd_brightness);
}
//
// LCD Backlight / Sleep Timeout
//
#if LCD_BACKLIGHT_TIMEOUT_MINS
EEPROM_WRITE(ui.backlight_timeout_minutes);
#elif HAS_DISPLAY_SLEEP
EEPROM_WRITE(ui.sleep_timeout_minutes);
#endif
//
// Controller Fan
//
{
_FIELD_TEST(controllerFan_settings);
#if ENABLED(USE_CONTROLLER_FAN)
const controllerFan_settings_t &cfs = controllerFan.settings;
#else
constexpr controllerFan_settings_t cfs = controllerFan_defaults;
#endif
EEPROM_WRITE(cfs);
}
//
// Power-Loss Recovery
//
{
_FIELD_TEST(recovery_enabled);
const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
EEPROM_WRITE(recovery_enabled);
}
//
// Firmware Retraction
//
{
_FIELD_TEST(fwretract_settings);
#if DISABLED(FWRETRACT)
const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
#endif
EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
#if DISABLED(FWRETRACT_AUTORETRACT)
const bool autoretract_enabled = false;
#endif
EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
}
//
// Volumetric & Filament Size
//
{
_FIELD_TEST(parser_volumetric_enabled);
#if DISABLED(NO_VOLUMETRICS)
EEPROM_WRITE(parser.volumetric_enabled);
EEPROM_WRITE(planner.filament_size);
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
EEPROM_WRITE(planner.volumetric_extruder_limit);
#else
dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
#endif
#else
const bool volumetric_enabled = false;
EEPROM_WRITE(volumetric_enabled);
dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
#endif
}
//
// TMC Configuration
//
{
_FIELD_TEST(tmc_stepper_current);
per_stepper_uint16_t tmc_stepper_current{0};
#if HAS_TRINAMIC_CONFIG
#if AXIS_IS_TMC(X)
tmc_stepper_current.X = stepperX.getMilliamps();
#endif
#if AXIS_IS_TMC(Y)
tmc_stepper_current.Y = stepperY.getMilliamps();
#endif
#if AXIS_IS_TMC(Z)
tmc_stepper_current.Z = stepperZ.getMilliamps();
#endif
#if AXIS_IS_TMC(I)
tmc_stepper_current.I = stepperI.getMilliamps();
#endif
#if AXIS_IS_TMC(J)
tmc_stepper_current.J = stepperJ.getMilliamps();
#endif
#if AXIS_IS_TMC(K)
tmc_stepper_current.K = stepperK.getMilliamps();
#endif
#if AXIS_IS_TMC(U)
tmc_stepper_current.U = stepperU.getMilliamps();
#endif
#if AXIS_IS_TMC(V)
tmc_stepper_current.V = stepperV.getMilliamps();
#endif
#if AXIS_IS_TMC(W)
tmc_stepper_current.W = stepperW.getMilliamps();
#endif
#if AXIS_IS_TMC(X2)
tmc_stepper_current.X2 = stepperX2.getMilliamps();
#endif
#if AXIS_IS_TMC(Y2)
tmc_stepper_current.Y2 = stepperY2.getMilliamps();
#endif
#if AXIS_IS_TMC(Z2)
tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
#endif
#if AXIS_IS_TMC(Z3)
tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
#endif
#if AXIS_IS_TMC(Z4)
tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
#endif
#if AXIS_IS_TMC(E0)
tmc_stepper_current.E0 = stepperE0.getMilliamps();
#endif
#if AXIS_IS_TMC(E1)
tmc_stepper_current.E1 = stepperE1.getMilliamps();
#endif
#if AXIS_IS_TMC(E2)
tmc_stepper_current.E2 = stepperE2.getMilliamps();
#endif
#if AXIS_IS_TMC(E3)
tmc_stepper_current.E3 = stepperE3.getMilliamps();
#endif
#if AXIS_IS_TMC(E4)
tmc_stepper_current.E4 = stepperE4.getMilliamps();
#endif
#if AXIS_IS_TMC(E5)
tmc_stepper_current.E5 = stepperE5.getMilliamps();
#endif
#if AXIS_IS_TMC(E6)
tmc_stepper_current.E6 = stepperE6.getMilliamps();
#endif
#if AXIS_IS_TMC(E7)
tmc_stepper_current.E7 = stepperE7.getMilliamps();
#endif
#endif
EEPROM_WRITE(tmc_stepper_current);
}
//
// TMC Hybrid Threshold, and placeholder values
//
{
_FIELD_TEST(tmc_hybrid_threshold);
#if ENABLED(HYBRID_THRESHOLD)
per_stepper_uint32_t tmc_hybrid_threshold{0};
TERN_(X_HAS_STEALTHCHOP, tmc_hybrid_threshold.X = stepperX.get_pwm_thrs());
TERN_(Y_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs());
TERN_(Z_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs());
TERN_(I_HAS_STEALTHCHOP, tmc_hybrid_threshold.I = stepperI.get_pwm_thrs());
TERN_(J_HAS_STEALTHCHOP, tmc_hybrid_threshold.J = stepperJ.get_pwm_thrs());
TERN_(K_HAS_STEALTHCHOP, tmc_hybrid_threshold.K = stepperK.get_pwm_thrs());
TERN_(U_HAS_STEALTHCHOP, tmc_hybrid_threshold.U = stepperU.get_pwm_thrs());
TERN_(V_HAS_STEALTHCHOP, tmc_hybrid_threshold.V = stepperV.get_pwm_thrs());
TERN_(W_HAS_STEALTHCHOP, tmc_hybrid_threshold.W = stepperW.get_pwm_thrs());
TERN_(X2_HAS_STEALTHCHOP, tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs());
TERN_(Y2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs());
TERN_(Z2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs());
TERN_(Z3_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs());
TERN_(Z4_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs());
TERN_(E0_HAS_STEALTHCHOP, tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs());
TERN_(E1_HAS_STEALTHCHOP, tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs());
TERN_(E2_HAS_STEALTHCHOP, tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs());
TERN_(E3_HAS_STEALTHCHOP, tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs());
TERN_(E4_HAS_STEALTHCHOP, tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs());
TERN_(E5_HAS_STEALTHCHOP, tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs());
TERN_(E6_HAS_STEALTHCHOP, tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs());
TERN_(E7_HAS_STEALTHCHOP, tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs());
#else
#define _EN_ITEM(N) , .E##N = 30
const per_stepper_uint32_t tmc_hybrid_threshold = {
NUM_AXIS_LIST(.X = 100, .Y = 100, .Z = 3, .I = 3, .J = 3, .K = 3, .U = 3, .V = 3, .W = 3),
.X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3
REPEAT(E_STEPPERS, _EN_ITEM)
};
#undef _EN_ITEM
#endif
EEPROM_WRITE(tmc_hybrid_threshold);
}
//
// TMC StallGuard threshold
//
{
mot_stepper_int16_t tmc_sgt{0};
#if USE_SENSORLESS
NUM_AXIS_CODE(
TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold()),
TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold()),
TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold()),
TERN_(I_SENSORLESS, tmc_sgt.I = stepperI.homing_threshold()),
TERN_(J_SENSORLESS, tmc_sgt.J = stepperJ.homing_threshold()),
TERN_(K_SENSORLESS, tmc_sgt.K = stepperK.homing_threshold()),
TERN_(U_SENSORLESS, tmc_sgt.U = stepperU.homing_threshold()),
TERN_(V_SENSORLESS, tmc_sgt.V = stepperV.homing_threshold()),
TERN_(W_SENSORLESS, tmc_sgt.W = stepperW.homing_threshold())
);
TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
#endif
EEPROM_WRITE(tmc_sgt);
}
//
// TMC stepping mode
//
{
_FIELD_TEST(tmc_stealth_enabled);
per_stepper_bool_t tmc_stealth_enabled = { false };
TERN_(X_HAS_STEALTHCHOP, tmc_stealth_enabled.X = stepperX.get_stored_stealthChop());
TERN_(Y_HAS_STEALTHCHOP, tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop());
TERN_(Z_HAS_STEALTHCHOP, tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop());
TERN_(I_HAS_STEALTHCHOP, tmc_stealth_enabled.I = stepperI.get_stored_stealthChop());
TERN_(J_HAS_STEALTHCHOP, tmc_stealth_enabled.J = stepperJ.get_stored_stealthChop());
TERN_(K_HAS_STEALTHCHOP, tmc_stealth_enabled.K = stepperK.get_stored_stealthChop());
TERN_(U_HAS_STEALTHCHOP, tmc_stealth_enabled.U = stepperU.get_stored_stealthChop());
TERN_(V_HAS_STEALTHCHOP, tmc_stealth_enabled.V = stepperV.get_stored_stealthChop());
TERN_(W_HAS_STEALTHCHOP, tmc_stealth_enabled.W = stepperW.get_stored_stealthChop());
TERN_(X2_HAS_STEALTHCHOP, tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop());
TERN_(Y2_HAS_STEALTHCHOP, tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop());
TERN_(Z2_HAS_STEALTHCHOP, tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop());
TERN_(Z3_HAS_STEALTHCHOP, tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop());
TERN_(Z4_HAS_STEALTHCHOP, tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop());
TERN_(E0_HAS_STEALTHCHOP, tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop());
TERN_(E1_HAS_STEALTHCHOP, tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop());
TERN_(E2_HAS_STEALTHCHOP, tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop());
TERN_(E3_HAS_STEALTHCHOP, tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop());
TERN_(E4_HAS_STEALTHCHOP, tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop());
TERN_(E5_HAS_STEALTHCHOP, tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop());
TERN_(E6_HAS_STEALTHCHOP, tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop());
TERN_(E7_HAS_STEALTHCHOP, tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop());
EEPROM_WRITE(tmc_stealth_enabled);
}
//
// Linear Advance
//
{
_FIELD_TEST(planner_extruder_advance_K);
#if ENABLED(LIN_ADVANCE)
EEPROM_WRITE(planner.extruder_advance_K);
#else
dummyf = 0;
for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
#endif
}
//
// Motor Current PWM
//
{
_FIELD_TEST(motor_current_setting);
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
EEPROM_WRITE(stepper.motor_current_setting);
#else
const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
EEPROM_WRITE(no_current);
#endif
}
//
// CNC Coordinate Systems
//
_FIELD_TEST(coordinate_system);
#if DISABLED(CNC_COORDINATE_SYSTEMS)
const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
#endif
EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
//
// Skew correction factors
//
_FIELD_TEST(planner_skew_factor);
EEPROM_WRITE(planner.skew_factor);
//
// Advanced Pause filament load & unload lengths
//
#if HAS_EXTRUDERS
{
#if DISABLED(ADVANCED_PAUSE_FEATURE)
const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
#endif
_FIELD_TEST(fc_settings);
EEPROM_WRITE(fc_settings);
}
#endif
//
// Multiple Extruders
//
#if HAS_MULTI_EXTRUDER
_FIELD_TEST(toolchange_settings);
EEPROM_WRITE(toolchange_settings);
#endif
//
// Backlash Compensation
//
{
#if ENABLED(BACKLASH_GCODE)
xyz_float_t backlash_distance_mm;
LOOP_NUM_AXES(axis) backlash_distance_mm[axis] = backlash.get_distance_mm((AxisEnum)axis);
const uint8_t backlash_correction = backlash.get_correction_uint8();
#else
const xyz_float_t backlash_distance_mm{0};
const uint8_t backlash_correction = 0;
#endif
#if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
const float backlash_smoothing_mm = backlash.get_smoothing_mm();
#else
const float backlash_smoothing_mm = 3;
#endif
_FIELD_TEST(backlash_distance_mm);
EEPROM_WRITE(backlash_distance_mm);
EEPROM_WRITE(backlash_correction);
EEPROM_WRITE(backlash_smoothing_mm);
}
//
// Extensible UI User Data
//
#if ENABLED(EXTENSIBLE_UI)
{
char extui_data[ExtUI::eeprom_data_size] = { 0 };
ExtUI::onStoreSettings(extui_data);
_FIELD_TEST(extui_data);
EEPROM_WRITE(extui_data);
}
#endif
//
// Creality DWIN User Data
//
#if ENABLED(DWIN_LCD_PROUI)
{
_FIELD_TEST(dwin_data);
char dwin_data[eeprom_data_size] = { 0 };
DWIN_CopySettingsTo(dwin_data);
EEPROM_WRITE(dwin_data);
}
#endif
#if ENABLED(DWIN_CREALITY_LCD_JYERSUI)
{
_FIELD_TEST(dwin_settings);
char dwin_settings[CrealityDWIN.eeprom_data_size] = { 0 };
CrealityDWIN.Save_Settings(dwin_settings);
EEPROM_WRITE(dwin_settings);
}
#endif
//
// Case Light Brightness
//
#if CASELIGHT_USES_BRIGHTNESS
EEPROM_WRITE(caselight.brightness);
#endif
//
// Password feature
//
#if ENABLED(PASSWORD_FEATURE)
EEPROM_WRITE(password.is_set);
EEPROM_WRITE(password.value);
#endif
//
// TOUCH_SCREEN_CALIBRATION
//
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
EEPROM_WRITE(touch_calibration.calibration);
#endif
//
// Ethernet network info
//
#if HAS_ETHERNET
{
_FIELD_TEST(ethernet_hardware_enabled);
const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
const uint32_t ethernet_ip = ethernet.ip,
ethernet_dns = ethernet.myDns,
ethernet_gateway = ethernet.gateway,
ethernet_subnet = ethernet.subnet;
EEPROM_WRITE(ethernet_hardware_enabled);
EEPROM_WRITE(ethernet_ip);
EEPROM_WRITE(ethernet_dns);
EEPROM_WRITE(ethernet_gateway);
EEPROM_WRITE(ethernet_subnet);
}
#endif
//
// Buzzer enable/disable
//
#if ENABLED(SOUND_MENU_ITEM)
EEPROM_WRITE(ui.sound_on);
#endif
//
// Fan tachometer check
//
#if HAS_FANCHECK
EEPROM_WRITE(fan_check.enabled);
#endif
//
// MKS UI controller
//
#if ENABLED(DGUS_LCD_UI_MKS)
EEPROM_WRITE(mks_language_index);
EEPROM_WRITE(mks_corner_offsets);
EEPROM_WRITE(mks_park_pos);
EEPROM_WRITE(mks_min_extrusion_temp);
#endif
//
// Selected LCD language
//
#if HAS_MULTI_LANGUAGE
EEPROM_WRITE(ui.language);
#endif
//
// Model predictive control
//
#if ENABLED(MPCTEMP)
HOTEND_LOOP()
EEPROM_WRITE(thermalManager.temp_hotend[e].constants);
#endif
//
// Report final CRC and Data Size
//
if (!eeprom_error) {
const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
final_crc = working_crc;
// Write the EEPROM header
eeprom_index = EEPROM_OFFSET;
EEPROM_WRITE(version);
#if ENABLED(EEPROM_INIT_NOW)
EEPROM_WRITE(build_hash);
#endif
EEPROM_WRITE(final_crc);
// Report storage size
DEBUG_ECHO_MSG("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
eeprom_error |= size_error(eeprom_size);
}
EEPROM_FINISH();
//
// UBL Mesh
//
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
if (bedlevel.storage_slot >= 0)
store_mesh(bedlevel.storage_slot);
#endif
if (!eeprom_error) {
LCD_MESSAGE(MSG_SETTINGS_STORED);
TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_SETTINGS_STORED)));
}
TERN_(EXTENSIBLE_UI, ExtUI::onSettingsStored(!eeprom_error));
return !eeprom_error;
}
/**
* M501 - Retrieve Configuration
*/
bool MarlinSettings::_load() {
if (!EEPROM_START(EEPROM_OFFSET)) return false;
char stored_ver[4];
EEPROM_READ_ALWAYS(stored_ver);
// Version has to match or defaults are used
if (strncmp(version, stored_ver, 3) != 0) {
if (stored_ver[3] != '\0') {
stored_ver[0] = '?';
stored_ver[1] = '\0';
}
DEBUG_ECHO_MSG("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
TERN_(DWIN_LCD_PROUI, LCD_MESSAGE(MSG_ERR_EEPROM_VERSION));
TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_ERR_EEPROM_VERSION)));
IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
eeprom_error = true;
}
else {
// Optionally reset on the first boot after flashing
#if ENABLED(EEPROM_INIT_NOW)
uint32_t stored_hash;
EEPROM_READ_ALWAYS(stored_hash);
if (stored_hash != build_hash) { EEPROM_FINISH(); return false; }
#endif
uint16_t stored_crc;
EEPROM_READ_ALWAYS(stored_crc);
float dummyf = 0;
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
_FIELD_TEST(e_factors);
// Number of e_factors may change
uint8_t e_factors;
EEPROM_READ_ALWAYS(e_factors);
//
// Planner Motion
//
{
// Get only the number of E stepper parameters previously stored
// Any steppers added later are set to their defaults
uint32_t tmp1[NUM_AXES + e_factors];
float tmp2[NUM_AXES + e_factors];
feedRate_t tmp3[NUM_AXES + e_factors];
EEPROM_READ((uint8_t *)tmp1, sizeof(tmp1)); // max_acceleration_mm_per_s2
EEPROM_READ(planner.settings.min_segment_time_us);
EEPROM_READ((uint8_t *)tmp2, sizeof(tmp2)); // axis_steps_per_mm
EEPROM_READ((uint8_t *)tmp3, sizeof(tmp3)); // max_feedrate_mm_s
if (!validating) LOOP_DISTINCT_AXES(i) {
const bool in = (i < e_factors + NUM_AXES);
planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
}
EEPROM_READ(planner.settings.acceleration);
EEPROM_READ(planner.settings.retract_acceleration);
EEPROM_READ(planner.settings.travel_acceleration);
EEPROM_READ(planner.settings.min_feedrate_mm_s);
EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
#if HAS_CLASSIC_JERK
EEPROM_READ(planner.max_jerk);
#if HAS_LINEAR_E_JERK
EEPROM_READ(dummyf);
#endif
#else
for (uint8_t q = LOGICAL_AXES; q--;) EEPROM_READ(dummyf);
#endif
EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
}
//
// Home Offset (M206 / M665)
//
{
_FIELD_TEST(home_offset);
#if HAS_SCARA_OFFSET
EEPROM_READ(scara_home_offset);
#else
#if !HAS_HOME_OFFSET
xyz_pos_t home_offset;
#endif
EEPROM_READ(home_offset);
#endif
}
//
// Hotend Offsets, if any
//
{
#if HAS_HOTEND_OFFSET
// Skip hotend 0 which must be 0
LOOP_S_L_N(e, 1, HOTENDS)
EEPROM_READ(hotend_offset[e]);
#endif
}
//
// Filament Runout Sensor
//
{
int8_t runout_sensor_enabled;
_FIELD_TEST(runout_sensor_enabled);
EEPROM_READ(runout_sensor_enabled);
#if HAS_FILAMENT_SENSOR
runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
#endif
TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
float runout_distance_mm;
EEPROM_READ(runout_distance_mm);
#if HAS_FILAMENT_RUNOUT_DISTANCE
if (!validating) runout.set_runout_distance(runout_distance_mm);
#endif
}
//
// Global Leveling
//
EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
//
// Mesh (Manual) Bed Leveling
//
{
uint8_t mesh_num_x, mesh_num_y;
EEPROM_READ(dummyf);
EEPROM_READ_ALWAYS(mesh_num_x);
EEPROM_READ_ALWAYS(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
if (!validating) bedlevel.z_offset = dummyf;
if (mesh_num_x == (GRID_MAX_POINTS_X) && mesh_num_y == (GRID_MAX_POINTS_Y)) {
// EEPROM data fits the current mesh
EEPROM_READ(bedlevel.z_values);
}
else {
// EEPROM data is stale
if (!validating) bedlevel.reset();
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
}
#else
// MBL is disabled - skip the stored data
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
#endif
}
//
// Probe Z Offset
//
{
_FIELD_TEST(probe_offset);
#if HAS_BED_PROBE
const xyz_pos_t &zpo = probe.offset;
#else
xyz_pos_t zpo;
#endif
EEPROM_READ(zpo);
}
//
// Planar Bed Leveling matrix
//
{
#if ABL_PLANAR
EEPROM_READ(planner.bed_level_matrix);
#else
for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
#endif
}
//
// Bilinear Auto Bed Leveling
//
{
uint8_t grid_max_x, grid_max_y;
EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
xy_pos_t spacing, start;
EEPROM_READ(spacing); // 2 ints
EEPROM_READ(start); // 2 ints
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (grid_max_x == (GRID_MAX_POINTS_X) && grid_max_y == (GRID_MAX_POINTS_Y)) {
if (!validating) set_bed_leveling_enabled(false);
bedlevel.set_grid(spacing, start);
EEPROM_READ(bedlevel.z_values); // 9 to 256 floats
}
else // EEPROM data is stale
#endif // AUTO_BED_LEVELING_BILINEAR
{
// Skip past disabled (or stale) Bilinear Grid data
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
}
}
//
// X Axis Twist Compensation
//
#if ENABLED(X_AXIS_TWIST_COMPENSATION)
_FIELD_TEST(xatc_spacing);
EEPROM_READ(xatc.spacing);
EEPROM_READ(xatc.start);
EEPROM_READ(xatc.z_offset);
#endif
//
// Unified Bed Leveling active state
//
{
_FIELD_TEST(planner_leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL)
const bool &planner_leveling_active = planner.leveling_active;
const int8_t &ubl_storage_slot = bedlevel.storage_slot;
#else
bool planner_leveling_active;
int8_t ubl_storage_slot;
#endif
EEPROM_READ(planner_leveling_active);
EEPROM_READ(ubl_storage_slot);
}
//
// SERVO_ANGLES
//
{
_FIELD_TEST(servo_angles);
#if ENABLED(EDITABLE_SERVO_ANGLES)
uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
#else
uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
#endif
EEPROM_READ(servo_angles_arr);
}
//
// Thermal first layer compensation values
//
#if HAS_PTC
#if ENABLED(PTC_PROBE)
EEPROM_READ(ptc.z_offsets_probe);
#endif
# if ENABLED(PTC_BED)
EEPROM_READ(ptc.z_offsets_bed);
#endif
#if ENABLED(PTC_HOTEND)
EEPROM_READ(ptc.z_offsets_hotend);
#endif
ptc.reset_index();
#else
// No placeholder data for this feature
#endif
//
// BLTOUCH
//
{
_FIELD_TEST(bltouch_od_5v_mode);
#if ENABLED(BLTOUCH)
const bool &bltouch_od_5v_mode = bltouch.od_5v_mode;
#else
bool bltouch_od_5v_mode;
#endif
EEPROM_READ(bltouch_od_5v_mode);
#ifdef BLTOUCH_HS_MODE
_FIELD_TEST(bltouch_high_speed_mode);
#if ENABLED(BLTOUCH)
const bool &bltouch_high_speed_mode = bltouch.high_speed_mode;
#else
bool bltouch_high_speed_mode;
#endif
EEPROM_READ(bltouch_high_speed_mode);
#endif
}
//
// Kinematic Segments-per-second
//
#if IS_KINEMATIC
{
EEPROM_READ(segments_per_second);
#if ENABLED(DELTA)
_FIELD_TEST(delta_height);
EEPROM_READ(delta_height); // 1 float
EEPROM_READ(delta_endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_tower_angle_trim); // 3 floats
EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
#endif
}
#endif
//
// Extra Endstops offsets
//
#if HAS_EXTRA_ENDSTOPS
{
_FIELD_TEST(x2_endstop_adj);
EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPERS >= 3
EEPROM_READ(endstops.z3_endstop_adj); // 1 float
#else
EEPROM_READ(dummyf);
#endif
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPERS >= 4
EEPROM_READ(endstops.z4_endstop_adj); // 1 float
#else
EEPROM_READ(dummyf);
#endif
}
#endif
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
EEPROM_READ(z_stepper_align.xy);
#if HAS_Z_STEPPER_ALIGN_STEPPER_XY
EEPROM_READ(z_stepper_align.stepper_xy);
#endif
#endif
//
// LCD Preheat settings
//
#if HAS_PREHEAT
_FIELD_TEST(ui_material_preset);
EEPROM_READ(ui.material_preset);
#endif
//
// Hotend PID
//
{
HOTEND_LOOP() {
raw_pidcf_t pidcf;
EEPROM_READ(pidcf);
#if ENABLED(PIDTEMP)
if (!validating && !isnan(pidcf.p))
thermalManager.temp_hotend[e].pid.set(pidcf);
#endif
}
}
//
// PID Extrusion Scaling
//
{
_FIELD_TEST(lpq_len);
#if ENABLED(PID_EXTRUSION_SCALING)
const int16_t &lpq_len = thermalManager.lpq_len;
#else
int16_t lpq_len;
#endif
EEPROM_READ(lpq_len);
}
//
// Heated Bed PID
//
{
raw_pid_t pid;
EEPROM_READ(pid);
#if ENABLED(PIDTEMPBED)
if (!validating && !isnan(pid.p))
thermalManager.temp_bed.pid.set(pid);
#endif
}
//
// Heated Chamber PID
//
{
raw_pid_t pid;
EEPROM_READ(pid);
#if ENABLED(PIDTEMPCHAMBER)
if (!validating && !isnan(pid.p))
thermalManager.temp_chamber.pid.set(pid);
#endif
}
//
// User-defined Thermistors
//
#if HAS_USER_THERMISTORS
{
user_thermistor_t user_thermistor[USER_THERMISTORS];
_FIELD_TEST(user_thermistor);
EEPROM_READ(user_thermistor);
if (!validating) COPY(thermalManager.user_thermistor, user_thermistor);
}
#endif
//
// Power monitor
//
{
uint8_t power_monitor_flags;
_FIELD_TEST(power_monitor_flags);
EEPROM_READ(power_monitor_flags);
TERN_(HAS_POWER_MONITOR, if (!validating) power_monitor.flags = power_monitor_flags);
}
//
// LCD Contrast
//
{
uint8_t lcd_contrast;
_FIELD_TEST(lcd_contrast);
EEPROM_READ(lcd_contrast);
TERN_(HAS_LCD_CONTRAST, if (!validating) ui.contrast = lcd_contrast);
}
//
// LCD Brightness
//
{
uint8_t lcd_brightness;
_FIELD_TEST(lcd_brightness);
EEPROM_READ(lcd_brightness);
TERN_(HAS_LCD_BRIGHTNESS, if (!validating) ui.brightness = lcd_brightness);
}
//
// LCD Backlight / Sleep Timeout
//
#if LCD_BACKLIGHT_TIMEOUT_MINS
EEPROM_READ(ui.backlight_timeout_minutes);
#elif HAS_DISPLAY_SLEEP
EEPROM_READ(ui.sleep_timeout_minutes);
#endif
//
// Controller Fan
//
{
controllerFan_settings_t cfs = { 0 };
_FIELD_TEST(controllerFan_settings);
EEPROM_READ(cfs);
TERN_(CONTROLLER_FAN_EDITABLE, if (!validating) controllerFan.settings = cfs);
}
//
// Power-Loss Recovery
//
{
bool recovery_enabled;
_FIELD_TEST(recovery_enabled);
EEPROM_READ(recovery_enabled);
TERN_(POWER_LOSS_RECOVERY, if (!validating) recovery.enabled = recovery_enabled);
}
//
// Firmware Retraction
//
{
fwretract_settings_t fwretract_settings;
bool autoretract_enabled;
_FIELD_TEST(fwretract_settings);
EEPROM_READ(fwretract_settings);
EEPROM_READ(autoretract_enabled);
#if ENABLED(FWRETRACT)
if (!validating) {
fwretract.settings = fwretract_settings;
TERN_(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled = autoretract_enabled);
}
#endif
}
//
// Volumetric & Filament Size
//
{
struct {
bool volumetric_enabled;
float filament_size[EXTRUDERS];
float volumetric_extruder_limit[EXTRUDERS];
} storage;
_FIELD_TEST(parser_volumetric_enabled);
EEPROM_READ(storage);
#if DISABLED(NO_VOLUMETRICS)
if (!validating) {
parser.volumetric_enabled = storage.volumetric_enabled;
COPY(planner.filament_size, storage.filament_size);
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
#endif
}
#endif
}
//
// TMC Stepper Settings
//
if (!validating) reset_stepper_drivers();
// TMC Stepper Current
{
_FIELD_TEST(tmc_stepper_current);
per_stepper_uint16_t currents;
EEPROM_READ(currents);
#if HAS_TRINAMIC_CONFIG
#define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
if (!validating) {
#if AXIS_IS_TMC(X)
SET_CURR(X);
#endif
#if AXIS_IS_TMC(Y)
SET_CURR(Y);
#endif
#if AXIS_IS_TMC(Z)
SET_CURR(Z);
#endif
#if AXIS_IS_TMC(X2)
SET_CURR(X2);
#endif
#if AXIS_IS_TMC(Y2)
SET_CURR(Y2);
#endif
#if AXIS_IS_TMC(Z2)
SET_CURR(Z2);
#endif
#if AXIS_IS_TMC(Z3)
SET_CURR(Z3);
#endif
#if AXIS_IS_TMC(Z4)
SET_CURR(Z4);
#endif
#if AXIS_IS_TMC(I)
SET_CURR(I);
#endif
#if AXIS_IS_TMC(J)
SET_CURR(J);
#endif
#if AXIS_IS_TMC(K)
SET_CURR(K);
#endif
#if AXIS_IS_TMC(U)
SET_CURR(U);
#endif
#if AXIS_IS_TMC(V)
SET_CURR(V);
#endif
#if AXIS_IS_TMC(W)
SET_CURR(W);
#endif
#if AXIS_IS_TMC(E0)
SET_CURR(E0);
#endif
#if AXIS_IS_TMC(E1)
SET_CURR(E1);
#endif
#if AXIS_IS_TMC(E2)
SET_CURR(E2);
#endif
#if AXIS_IS_TMC(E3)
SET_CURR(E3);
#endif
#if AXIS_IS_TMC(E4)
SET_CURR(E4);
#endif
#if AXIS_IS_TMC(E5)
SET_CURR(E5);
#endif
#if AXIS_IS_TMC(E6)
SET_CURR(E6);
#endif
#if AXIS_IS_TMC(E7)
SET_CURR(E7);
#endif
}
#endif
}
// TMC Hybrid Threshold
{
per_stepper_uint32_t tmc_hybrid_threshold;
_FIELD_TEST(tmc_hybrid_threshold);
EEPROM_READ(tmc_hybrid_threshold);
#if ENABLED(HYBRID_THRESHOLD)
if (!validating) {
TERN_(X_HAS_STEALTHCHOP, stepperX.set_pwm_thrs(tmc_hybrid_threshold.X));
TERN_(Y_HAS_STEALTHCHOP, stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y));
TERN_(Z_HAS_STEALTHCHOP, stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z));
TERN_(X2_HAS_STEALTHCHOP, stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2));
TERN_(Y2_HAS_STEALTHCHOP, stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2));
TERN_(Z2_HAS_STEALTHCHOP, stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2));
TERN_(Z3_HAS_STEALTHCHOP, stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3));
TERN_(Z4_HAS_STEALTHCHOP, stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4));
TERN_(I_HAS_STEALTHCHOP, stepperI.set_pwm_thrs(tmc_hybrid_threshold.I));
TERN_(J_HAS_STEALTHCHOP, stepperJ.set_pwm_thrs(tmc_hybrid_threshold.J));
TERN_(K_HAS_STEALTHCHOP, stepperK.set_pwm_thrs(tmc_hybrid_threshold.K));
TERN_(U_HAS_STEALTHCHOP, stepperU.set_pwm_thrs(tmc_hybrid_threshold.U));
TERN_(V_HAS_STEALTHCHOP, stepperV.set_pwm_thrs(tmc_hybrid_threshold.V));
TERN_(W_HAS_STEALTHCHOP, stepperW.set_pwm_thrs(tmc_hybrid_threshold.W));
TERN_(E0_HAS_STEALTHCHOP, stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0));
TERN_(E1_HAS_STEALTHCHOP, stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1));
TERN_(E2_HAS_STEALTHCHOP, stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2));
TERN_(E3_HAS_STEALTHCHOP, stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3));
TERN_(E4_HAS_STEALTHCHOP, stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4));
TERN_(E5_HAS_STEALTHCHOP, stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5));
TERN_(E6_HAS_STEALTHCHOP, stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6));
TERN_(E7_HAS_STEALTHCHOP, stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7));
}
#endif
}
//
// TMC StallGuard threshold.
//
{
mot_stepper_int16_t tmc_sgt;
_FIELD_TEST(tmc_sgt);
EEPROM_READ(tmc_sgt);
#if USE_SENSORLESS
if (!validating) {
NUM_AXIS_CODE(
TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X)),
TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y)),
TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z)),
TERN_(I_SENSORLESS, stepperI.homing_threshold(tmc_sgt.I)),
TERN_(J_SENSORLESS, stepperJ.homing_threshold(tmc_sgt.J)),
TERN_(K_SENSORLESS, stepperK.homing_threshold(tmc_sgt.K)),
TERN_(U_SENSORLESS, stepperU.homing_threshold(tmc_sgt.U)),
TERN_(V_SENSORLESS, stepperV.homing_threshold(tmc_sgt.V)),
TERN_(W_SENSORLESS, stepperW.homing_threshold(tmc_sgt.W))
);
TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
}
#endif
}
// TMC stepping mode
{
_FIELD_TEST(tmc_stealth_enabled);
per_stepper_bool_t tmc_stealth_enabled;
EEPROM_READ(tmc_stealth_enabled);
#if HAS_TRINAMIC_CONFIG
#define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
if (!validating) {
TERN_(X_HAS_STEALTHCHOP, SET_STEPPING_MODE(X));
TERN_(Y_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y));
TERN_(Z_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z));
TERN_(I_HAS_STEALTHCHOP, SET_STEPPING_MODE(I));
TERN_(J_HAS_STEALTHCHOP, SET_STEPPING_MODE(J));
TERN_(K_HAS_STEALTHCHOP, SET_STEPPING_MODE(K));
TERN_(U_HAS_STEALTHCHOP, SET_STEPPING_MODE(U));
TERN_(V_HAS_STEALTHCHOP, SET_STEPPING_MODE(V));
TERN_(W_HAS_STEALTHCHOP, SET_STEPPING_MODE(W));
TERN_(X2_HAS_STEALTHCHOP, SET_STEPPING_MODE(X2));
TERN_(Y2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y2));
TERN_(Z2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z2));
TERN_(Z3_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z3));
TERN_(Z4_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z4));
TERN_(E0_HAS_STEALTHCHOP, SET_STEPPING_MODE(E0));
TERN_(E1_HAS_STEALTHCHOP, SET_STEPPING_MODE(E1));
TERN_(E2_HAS_STEALTHCHOP, SET_STEPPING_MODE(E2));
TERN_(E3_HAS_STEALTHCHOP, SET_STEPPING_MODE(E3));
TERN_(E4_HAS_STEALTHCHOP, SET_STEPPING_MODE(E4));
TERN_(E5_HAS_STEALTHCHOP, SET_STEPPING_MODE(E5));
TERN_(E6_HAS_STEALTHCHOP, SET_STEPPING_MODE(E6));
TERN_(E7_HAS_STEALTHCHOP, SET_STEPPING_MODE(E7));
}
#endif
}
//
// Linear Advance
//
{
float extruder_advance_K[_MAX(EXTRUDERS, 1)];
_FIELD_TEST(planner_extruder_advance_K);
EEPROM_READ(extruder_advance_K);
#if ENABLED(LIN_ADVANCE)
if (!validating)
COPY(planner.extruder_advance_K, extruder_advance_K);
#endif
}
//
// Motor Current PWM
//
{
_FIELD_TEST(motor_current_setting);
uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
#if HAS_MOTOR_CURRENT_SPI
= DIGIPOT_MOTOR_CURRENT
#endif
;
#if HAS_MOTOR_CURRENT_SPI
DEBUG_ECHO_MSG("DIGIPOTS Loading");
#endif
EEPROM_READ(motor_current_setting);
#if HAS_MOTOR_CURRENT_SPI
DEBUG_ECHO_MSG("DIGIPOTS Loaded");
#endif
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
if (!validating)
COPY(stepper.motor_current_setting, motor_current_setting);
#endif
}
//
// CNC Coordinate System
//
{
_FIELD_TEST(coordinate_system);
#if ENABLED(CNC_COORDINATE_SYSTEMS)
if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
EEPROM_READ(gcode.coordinate_system);
#else
xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
EEPROM_READ(coordinate_system);
#endif
}
//
// Skew correction factors
//
{
skew_factor_t skew_factor;
_FIELD_TEST(planner_skew_factor);
EEPROM_READ(skew_factor);
#if ENABLED(SKEW_CORRECTION_GCODE)
if (!validating) {
planner.skew_factor.xy = skew_factor.xy;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
planner.skew_factor.xz = skew_factor.xz;
planner.skew_factor.yz = skew_factor.yz;
#endif
}
#endif
}
//
// Advanced Pause filament load & unload lengths
//
#if HAS_EXTRUDERS
{
#if DISABLED(ADVANCED_PAUSE_FEATURE)
fil_change_settings_t fc_settings[EXTRUDERS];
#endif
_FIELD_TEST(fc_settings);
EEPROM_READ(fc_settings);
}
#endif
//
// Tool-change settings
//
#if HAS_MULTI_EXTRUDER
_FIELD_TEST(toolchange_settings);
EEPROM_READ(toolchange_settings);
#endif
//
// Backlash Compensation
//
{
xyz_float_t backlash_distance_mm;
uint8_t backlash_correction;
float backlash_smoothing_mm;
_FIELD_TEST(backlash_distance_mm);
EEPROM_READ(backlash_distance_mm);
EEPROM_READ(backlash_correction);
EEPROM_READ(backlash_smoothing_mm);
#if ENABLED(BACKLASH_GCODE)
LOOP_NUM_AXES(axis) backlash.set_distance_mm((AxisEnum)axis, backlash_distance_mm[axis]);
backlash.set_correction_uint8(backlash_correction);
#ifdef BACKLASH_SMOOTHING_MM
backlash.set_smoothing_mm(backlash_smoothing_mm);
#endif
#endif
}
//
// Extensible UI User Data
//
#if ENABLED(EXTENSIBLE_UI)
{ // This is a significant hardware change; don't reserve EEPROM space when not present
const char extui_data[ExtUI::eeprom_data_size] = { 0 };
_FIELD_TEST(extui_data);
EEPROM_READ(extui_data);
if (!validating) ExtUI::onLoadSettings(extui_data);
}
#endif
//
// Creality DWIN User Data
//
#if ENABLED(DWIN_LCD_PROUI)
{
const char dwin_data[eeprom_data_size] = { 0 };
_FIELD_TEST(dwin_data);
EEPROM_READ(dwin_data);
if (!validating) DWIN_CopySettingsFrom(dwin_data);
}
#elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
{
const char dwin_settings[CrealityDWIN.eeprom_data_size] = { 0 };
_FIELD_TEST(dwin_settings);
EEPROM_READ(dwin_settings);
if (!validating) CrealityDWIN.Load_Settings(dwin_settings);
}
#endif
//
// Case Light Brightness
//
#if CASELIGHT_USES_BRIGHTNESS
_FIELD_TEST(caselight_brightness);
EEPROM_READ(caselight.brightness);
#endif
//
// Password feature
//
#if ENABLED(PASSWORD_FEATURE)
_FIELD_TEST(password_is_set);
EEPROM_READ(password.is_set);
EEPROM_READ(password.value);
#endif
//
// TOUCH_SCREEN_CALIBRATION
//
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
_FIELD_TEST(touch_calibration_data);
EEPROM_READ(touch_calibration.calibration);
#endif
//
// Ethernet network info
//
#if HAS_ETHERNET
_FIELD_TEST(ethernet_hardware_enabled);
uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
EEPROM_READ(ethernet.hardware_enabled);
EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
#endif
//
// Buzzer enable/disable
//
#if ENABLED(SOUND_MENU_ITEM)
_FIELD_TEST(sound_on);
EEPROM_READ(ui.sound_on);
#endif
//
// Fan tachometer check
//
#if HAS_FANCHECK
_FIELD_TEST(fan_check_enabled);
EEPROM_READ(fan_check.enabled);
#endif
//
// MKS UI controller
//
#if ENABLED(DGUS_LCD_UI_MKS)
_FIELD_TEST(mks_language_index);
EEPROM_READ(mks_language_index);
EEPROM_READ(mks_corner_offsets);
EEPROM_READ(mks_park_pos);
EEPROM_READ(mks_min_extrusion_temp);
#endif
//
// Selected LCD language
//
#if HAS_MULTI_LANGUAGE
{
uint8_t ui_language;
EEPROM_READ(ui_language);
if (ui_language >= NUM_LANGUAGES) ui_language = 0;
ui.set_language(ui_language);
}
#endif
//
// Model predictive control
//
#if ENABLED(MPCTEMP)
{
HOTEND_LOOP()
EEPROM_READ(thermalManager.temp_hotend[e].constants);
}
#endif
//
// Validate Final Size and CRC
//
eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
if (eeprom_error) {
DEBUG_ECHO_MSG("Index: ", eeprom_index - (EEPROM_OFFSET), " Size: ", datasize());
IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
}
else if (working_crc != stored_crc) {
eeprom_error = true;
DEBUG_ERROR_MSG("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
TERN_(DWIN_LCD_PROUI, LCD_MESSAGE(MSG_ERR_EEPROM_CRC));
TERN_(HOST_EEPROM_CHITCHAT, hostui.notify(GET_TEXT_F(MSG_ERR_EEPROM_CRC)));
IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
}
else if (!validating) {
DEBUG_ECHO_START();
DEBUG_ECHO(version);
DEBUG_ECHOLNPGM(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
TERN_(HOST_EEPROM_CHITCHAT, hostui.notify(F("Stored settings retrieved")));
}
if (!validating && !eeprom_error) postprocess();
#if ENABLED(AUTO_BED_LEVELING_UBL)
if (!validating) {
bedlevel.report_state();
if (!bedlevel.sanity_check()) {
#if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
bedlevel.echo_name();
DEBUG_ECHOLNPGM(" initialized.\n");
#endif
}
else {
eeprom_error = true;
#if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
DEBUG_ECHOPGM("?Can't enable ");
bedlevel.echo_name();
DEBUG_ECHOLNPGM(".");
#endif
bedlevel.reset();
}
if (bedlevel.storage_slot >= 0) {
load_mesh(bedlevel.storage_slot);
DEBUG_ECHOLNPGM("Mesh ", bedlevel.storage_slot, " loaded from storage.");
}
else {
bedlevel.reset();
DEBUG_ECHOLNPGM("UBL reset");
}
}
#endif
}
#if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
// Report the EEPROM settings
if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
#endif
EEPROM_FINISH();
return !eeprom_error;
}
#ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
extern bool restoreEEPROM();
#endif
bool MarlinSettings::validate() {
validating = true;
#ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
bool success = _load();
if (!success && restoreEEPROM()) {
SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
success = _load();
}
#else
const bool success = _load();
#endif
validating = false;
return success;
}
bool MarlinSettings::load() {
if (validate()) {
const bool success = _load();
TERN_(EXTENSIBLE_UI, ExtUI::onSettingsLoaded(success));
return success;
}
reset();
#if EITHER(EEPROM_AUTO_INIT, EEPROM_INIT_NOW)
(void)save();
SERIAL_ECHO_MSG("EEPROM Initialized");
#endif
return false;
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
inline void ubl_invalid_slot(const int s) {
DEBUG_ECHOLNPGM("?Invalid slot.\n", s, " mesh slots available.");
UNUSED(s);
}
// 128 (+1 because of the change to capacity rather than last valid address)
// is a placeholder for the size of the MAT; the MAT will always
// live at the very end of the eeprom
const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129;
uint16_t MarlinSettings::meshes_start_index() {
// Pad the end of configuration data so it can float up
// or down a little bit without disrupting the mesh data
return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8;
}
#define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, bedlevel.z_values))
uint16_t MarlinSettings::calc_num_meshes() {
return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE;
}
int MarlinSettings::mesh_slot_offset(const int8_t slot) {
return meshes_end - (slot + 1) * MESH_STORE_SIZE;
}
void MarlinSettings::store_mesh(const int8_t slot) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
ubl_invalid_slot(a);
DEBUG_ECHOLNPGM("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
DEBUG_EOL();
return;
}
int pos = mesh_slot_offset(slot);
uint16_t crc = 0;
#if ENABLED(OPTIMIZED_MESH_STORAGE)
int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
bedlevel.set_store_from_mesh(bedlevel.z_values, z_mesh_store);
uint8_t * const src = (uint8_t*)&z_mesh_store;
#else
uint8_t * const src = (uint8_t*)&bedlevel.z_values;
#endif
// Write crc to MAT along with other data, or just tack on to the beginning or end
persistentStore.access_start();
const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc);
persistentStore.access_finish();
if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
else DEBUG_ECHOLNPGM("Mesh saved in slot ", slot);
#else
// Other mesh types
#endif
}
void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = settings.calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
ubl_invalid_slot(a);
return;
}
int pos = mesh_slot_offset(slot);
uint16_t crc = 0;
#if ENABLED(OPTIMIZED_MESH_STORAGE)
int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
uint8_t * const dest = (uint8_t*)&z_mesh_store;
#else
uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&bedlevel.z_values;
#endif
persistentStore.access_start();
uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc);
persistentStore.access_finish();
#if ENABLED(OPTIMIZED_MESH_STORAGE)
if (into) {
float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
bedlevel.set_mesh_from_store(z_mesh_store, z_values);
memcpy(into, z_values, sizeof(z_values));
}
else
bedlevel.set_mesh_from_store(z_mesh_store, bedlevel.z_values);
#endif
#if ENABLED(DWIN_LCD_PROUI)
status = !BedLevelTools.meshvalidate();
if (status) {
bedlevel.invalidate();
LCD_MESSAGE(MSG_UBL_MESH_INVALID);
}
else
ui.status_printf(0, GET_TEXT_F(MSG_MESH_LOADED), bedlevel.storage_slot);
#endif
if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
else DEBUG_ECHOLNPGM("Mesh loaded from slot ", slot);
EEPROM_FINISH();
#else
// Other mesh types
#endif
}
//void MarlinSettings::delete_mesh() { return; }
//void MarlinSettings::defrag_meshes() { return; }
#endif // AUTO_BED_LEVELING_UBL
#else // !EEPROM_SETTINGS
bool MarlinSettings::save() {
DEBUG_ERROR_MSG("EEPROM disabled");
return false;
}
#endif // !EEPROM_SETTINGS
/**
* M502 - Reset Configuration
*/
void MarlinSettings::reset() {
LOOP_DISTINCT_AXES(i) {
planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
}
planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
planner.settings.acceleration = DEFAULT_ACCELERATION;
planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
#if HAS_CLASSIC_JERK
#ifndef DEFAULT_XJERK
#define DEFAULT_XJERK 0
#endif
#if HAS_Y_AXIS && !defined(DEFAULT_YJERK)
#define DEFAULT_YJERK 0
#endif
#if HAS_Z_AXIS && !defined(DEFAULT_ZJERK)
#define DEFAULT_ZJERK 0
#endif
#if HAS_I_AXIS && !defined(DEFAULT_IJERK)
#define DEFAULT_IJERK 0
#endif
#if HAS_J_AXIS && !defined(DEFAULT_JJERK)
#define DEFAULT_JJERK 0
#endif
#if HAS_K_AXIS && !defined(DEFAULT_KJERK)
#define DEFAULT_KJERK 0
#endif
#if HAS_U_AXIS && !defined(DEFAULT_UJERK)
#define DEFAULT_UJERK 0
#endif
#if HAS_V_AXIS && !defined(DEFAULT_VJERK)
#define DEFAULT_VJERK 0
#endif
#if HAS_W_AXIS && !defined(DEFAULT_WJERK)
#define DEFAULT_WJERK 0
#endif
planner.max_jerk.set(
NUM_AXIS_LIST(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK, DEFAULT_IJERK, DEFAULT_JJERK, DEFAULT_KJERK, DEFAULT_UJERK, DEFAULT_VJERK, DEFAULT_WJERK)
);
TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK);
#endif
TERN_(HAS_JUNCTION_DEVIATION, planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM));
#if HAS_SCARA_OFFSET
scara_home_offset.reset();
#elif HAS_HOME_OFFSET
home_offset.reset();
#endif
TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
//
// Filament Runout Sensor
//
#if HAS_FILAMENT_SENSOR
runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
runout.reset();
TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
#endif
//
// Tool-change Settings
//
#if HAS_MULTI_EXTRUDER
#if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
#endif
#if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
enable_first_prime = false;
#endif
#if ENABLED(TOOLCHANGE_PARK)
constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
toolchange_settings.enable_park = true;
toolchange_settings.change_point = tpxy;
#endif
toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
#if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
migration = migration_defaults;
#endif
#endif
#if ENABLED(BACKLASH_GCODE)
backlash.set_correction(BACKLASH_CORRECTION);
constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
LOOP_NUM_AXES(axis) backlash.set_distance_mm((AxisEnum)axis, tmp[axis]);
#ifdef BACKLASH_SMOOTHING_MM
backlash.set_smoothing_mm(BACKLASH_SMOOTHING_MM);
#endif
#endif
TERN_(DWIN_CREALITY_LCD_JYERSUI, CrealityDWIN.Reset_Settings());
//
// Case Light Brightness
//
TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
//
// TOUCH_SCREEN_CALIBRATION
//
TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
//
// Buzzer enable/disable
//
#if ENABLED(SOUND_MENU_ITEM)
ui.sound_on = ENABLED(SOUND_ON_DEFAULT);
#endif
//
// Magnetic Parking Extruder
//
TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
//
// Global Leveling
//
TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT));
TERN_(HAS_LEVELING, reset_bed_level());
//
// X Axis Twist Compensation
//
TERN_(X_AXIS_TWIST_COMPENSATION, xatc.reset());
//
// Nozzle-to-probe Offset
//
#if HAS_BED_PROBE
constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
static_assert(COUNT(dpo) == NUM_AXES, "NOZZLE_TO_PROBE_OFFSET must contain offsets for each linear axis X, Y, Z....");
#if HAS_PROBE_XY_OFFSET
LOOP_NUM_AXES(a) probe.offset[a] = dpo[a];
#else
probe.offset.set(NUM_AXIS_LIST(0, 0, dpo[Z_AXIS], 0, 0, 0, 0, 0, 0));
#endif
#endif
//
// Z Stepper Auto-alignment points
//
TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
//
// Servo Angles
//
TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
//
// Probe Temperature Compensation
//
TERN_(HAS_PTC, ptc.reset());
//
// BLTouch
//
#ifdef BLTOUCH_HS_MODE
bltouch.high_speed_mode = ENABLED(BLTOUCH_HS_MODE);
#endif
//
// Kinematic settings
//
#if IS_KINEMATIC
segments_per_second = (
TERN_(DELTA, DELTA_SEGMENTS_PER_SECOND)
TERN_(IS_SCARA, SCARA_SEGMENTS_PER_SECOND)
TERN_(POLARGRAPH, POLAR_SEGMENTS_PER_SECOND)
);
#if ENABLED(DELTA)
const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
delta_height = DELTA_HEIGHT;
delta_endstop_adj = adj;
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_tower_angle_trim = dta;
delta_diagonal_rod_trim = ddr;
#endif
#endif
//
// Endstop Adjustments
//
#if ENABLED(X_DUAL_ENDSTOPS)
#ifndef X2_ENDSTOP_ADJUSTMENT
#define X2_ENDSTOP_ADJUSTMENT 0
#endif
endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
#ifndef Y2_ENDSTOP_ADJUSTMENT
#define Y2_ENDSTOP_ADJUSTMENT 0
#endif
endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
#endif
#if ENABLED(Z_MULTI_ENDSTOPS)
#ifndef Z2_ENDSTOP_ADJUSTMENT
#define Z2_ENDSTOP_ADJUSTMENT 0
#endif
endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
#if NUM_Z_STEPPERS >= 3
#ifndef Z3_ENDSTOP_ADJUSTMENT
#define Z3_ENDSTOP_ADJUSTMENT 0
#endif
endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
#endif
#if NUM_Z_STEPPERS >= 4
#ifndef Z4_ENDSTOP_ADJUSTMENT
#define Z4_ENDSTOP_ADJUSTMENT 0
#endif
endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
#endif
#endif
//
// Preheat parameters
//
#if HAS_PREHEAT
#define _PITEM(N,T) PREHEAT_##N##_##T,
#if HAS_HOTEND
constexpr uint16_t hpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_HOTEND) };
#endif
#if HAS_HEATED_BED
constexpr uint16_t bpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_BED) };
#endif
#if HAS_FAN
constexpr uint8_t fpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, FAN_SPEED) };
#endif
LOOP_L_N(i, PREHEAT_COUNT) {
TERN_(HAS_HOTEND, ui.material_preset[i].hotend_temp = hpre[i]);
TERN_(HAS_HEATED_BED, ui.material_preset[i].bed_temp = bpre[i]);
TERN_(HAS_FAN, ui.material_preset[i].fan_speed = fpre[i]);
}
#endif
//
// Hotend PID
//
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND)
constexpr float defKp[] =
#ifdef DEFAULT_Kp_LIST
DEFAULT_Kp_LIST
#else
ARRAY_BY_HOTENDS1(DEFAULT_Kp)
#endif
, defKi[] =
#ifdef DEFAULT_Ki_LIST
DEFAULT_Ki_LIST
#else
ARRAY_BY_HOTENDS1(DEFAULT_Ki)
#endif
, defKd[] =
#ifdef DEFAULT_Kd_LIST
DEFAULT_Kd_LIST
#else
ARRAY_BY_HOTENDS1(DEFAULT_Kd)
#endif
;
static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
#if ENABLED(PID_EXTRUSION_SCALING)
constexpr float defKc[] =
#ifdef DEFAULT_Kc_LIST
DEFAULT_Kc_LIST
#else
ARRAY_BY_HOTENDS1(DEFAULT_Kc)
#endif
;
static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
#endif
#if ENABLED(PID_FAN_SCALING)
constexpr float defKf[] =
#ifdef DEFAULT_Kf_LIST
DEFAULT_Kf_LIST
#else
ARRAY_BY_HOTENDS1(DEFAULT_Kf)
#endif
;
static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
#endif
#define PID_DEFAULT(N,E) def##N[E]
#else
#define PID_DEFAULT(N,E) DEFAULT_##N
#endif
HOTEND_LOOP() {
thermalManager.temp_hotend[e].pid.set(
PID_DEFAULT(Kp, ALIM(e, defKp)),
PID_DEFAULT(Ki, ALIM(e, defKi)),
PID_DEFAULT(Kd, ALIM(e, defKd))
OPTARG(PID_EXTRUSION_SCALING, PID_DEFAULT(Kc, ALIM(e, defKc)))
OPTARG(PID_FAN_SCALING, PID_DEFAULT(Kf, ALIM(e, defKf)))
);
}
#endif
//
// PID Extrusion Scaling
//
TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
//
// Heated Bed PID
//
#if ENABLED(PIDTEMPBED)
thermalManager.temp_bed.pid.set(DEFAULT_bedKp, DEFAULT_bedKi, DEFAULT_bedKd);
#endif
//
// Heated Chamber PID
//
#if ENABLED(PIDTEMPCHAMBER)
thermalManager.temp_chamber.pid.set(DEFAULT_chamberKp, DEFAULT_chamberKi, DEFAULT_chamberKd);
#endif
//
// User-Defined Thermistors
//
TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
//
// Power Monitor
//
TERN_(POWER_MONITOR, power_monitor.reset());
//
// LCD Contrast
//
TERN_(HAS_LCD_CONTRAST, ui.contrast = LCD_CONTRAST_DEFAULT);
//
// LCD Brightness
//
TERN_(HAS_LCD_BRIGHTNESS, ui.brightness = LCD_BRIGHTNESS_DEFAULT);
//
// LCD Backlight / Sleep Timeout
//
#if LCD_BACKLIGHT_TIMEOUT_MINS
ui.backlight_timeout_minutes = LCD_BACKLIGHT_TIMEOUT_MINS;
#elif HAS_DISPLAY_SLEEP
ui.sleep_timeout_minutes = DISPLAY_SLEEP_MINUTES;
#endif
//
// Controller Fan
//
TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
//
// Power-Loss Recovery
//
TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
//
// Firmware Retraction
//
TERN_(FWRETRACT, fwretract.reset());
//
// Volumetric & Filament Size
//
#if DISABLED(NO_VOLUMETRICS)
parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
LOOP_L_N(q, COUNT(planner.filament_size))
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
#endif
#endif
endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
reset_stepper_drivers();
//
// Linear Advance
//
#if ENABLED(LIN_ADVANCE)
EXTRUDER_LOOP() {
planner.extruder_advance_K[e] = LIN_ADVANCE_K;
TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[e] = LIN_ADVANCE_K);
}
#endif
//
// Motor Current PWM
//
#if HAS_MOTOR_CURRENT_PWM
constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
LOOP_L_N(q, MOTOR_CURRENT_COUNT)
stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
#endif
//
// DIGIPOTS
//
#if HAS_MOTOR_CURRENT_SPI
static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
DEBUG_ECHOLNPGM("Writing Digipot");
LOOP_L_N(q, COUNT(tmp_motor_current_setting))
stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
DEBUG_ECHOLNPGM("Digipot Written");
#endif
//
// CNC Coordinate System
//
TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
//
// Skew Correction
//
#if ENABLED(SKEW_CORRECTION_GCODE)
planner.skew_factor.xy = XY_SKEW_FACTOR;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
planner.skew_factor.xz = XZ_SKEW_FACTOR;
planner.skew_factor.yz = YZ_SKEW_FACTOR;
#endif
#endif
//
// Advanced Pause filament load & unload lengths
//
#if ENABLED(ADVANCED_PAUSE_FEATURE)
EXTRUDER_LOOP() {
fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
}
#endif
#if ENABLED(PASSWORD_FEATURE)
#ifdef PASSWORD_DEFAULT_VALUE
password.is_set = true;
password.value = PASSWORD_DEFAULT_VALUE;
#else
password.is_set = false;
#endif
#endif
//
// Fan tachometer check
//
TERN_(HAS_FANCHECK, fan_check.enabled = true);
//
// MKS UI controller
//
TERN_(DGUS_LCD_UI_MKS, MKS_reset_settings());
//
// Ender-3 V2 with ProUI
//
TERN_(DWIN_LCD_PROUI, DWIN_SetDataDefaults());
//
// Model predictive control
//
#if ENABLED(MPCTEMP)
constexpr float _mpc_heater_power[] = MPC_HEATER_POWER;
constexpr float _mpc_block_heat_capacity[] = MPC_BLOCK_HEAT_CAPACITY;
constexpr float _mpc_sensor_responsiveness[] = MPC_SENSOR_RESPONSIVENESS;
constexpr float _mpc_ambient_xfer_coeff[] = MPC_AMBIENT_XFER_COEFF;
#if ENABLED(MPC_INCLUDE_FAN)
constexpr float _mpc_ambient_xfer_coeff_fan255[] = MPC_AMBIENT_XFER_COEFF_FAN255;
#endif
constexpr float _filament_heat_capacity_permm[] = FILAMENT_HEAT_CAPACITY_PERMM;
static_assert(COUNT(_mpc_heater_power) == HOTENDS, "MPC_HEATER_POWER must have HOTENDS items.");
static_assert(COUNT(_mpc_block_heat_capacity) == HOTENDS, "MPC_BLOCK_HEAT_CAPACITY must have HOTENDS items.");
static_assert(COUNT(_mpc_sensor_responsiveness) == HOTENDS, "MPC_SENSOR_RESPONSIVENESS must have HOTENDS items.");
static_assert(COUNT(_mpc_ambient_xfer_coeff) == HOTENDS, "MPC_AMBIENT_XFER_COEFF must have HOTENDS items.");
#if ENABLED(MPC_INCLUDE_FAN)
static_assert(COUNT(_mpc_ambient_xfer_coeff_fan255) == HOTENDS, "MPC_AMBIENT_XFER_COEFF_FAN255 must have HOTENDS items.");
#endif
static_assert(COUNT(_filament_heat_capacity_permm) == HOTENDS, "FILAMENT_HEAT_CAPACITY_PERMM must have HOTENDS items.");
HOTEND_LOOP() {
MPC_t &constants = thermalManager.temp_hotend[e].constants;
constants.heater_power = _mpc_heater_power[e];
constants.block_heat_capacity = _mpc_block_heat_capacity[e];
constants.sensor_responsiveness = _mpc_sensor_responsiveness[e];
constants.ambient_xfer_coeff_fan0 = _mpc_ambient_xfer_coeff[e];
#if ENABLED(MPC_INCLUDE_FAN)
constants.fan255_adjustment = _mpc_ambient_xfer_coeff_fan255[e] - _mpc_ambient_xfer_coeff[e];
#endif
constants.filament_heat_capacity_permm = _filament_heat_capacity_permm[e];
}
#endif
postprocess();
#if EITHER(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
FSTR_P const hdsl = F("Hardcoded Default Settings Loaded");
TERN_(HOST_EEPROM_CHITCHAT, hostui.notify(hdsl));
DEBUG_ECHO_START(); DEBUG_ECHOLNF(hdsl);
#endif
TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
}
#if DISABLED(DISABLE_M503)
#define CONFIG_ECHO_START() gcode.report_echo_start(forReplay)
#define CONFIG_ECHO_MSG(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(V); }while(0)
#define CONFIG_ECHO_MSG_P(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM_P(V); }while(0)
#define CONFIG_ECHO_HEADING(STR) gcode.report_heading(forReplay, F(STR))
void M92_report(const bool echo=true, const int8_t e=-1);
/**
* M503 - Report current settings in RAM
*
* Unless specifically disabled, M503 is available even without EEPROM
*/
void MarlinSettings::report(const bool forReplay) {
//
// Announce current units, in case inches are being displayed
//
CONFIG_ECHO_HEADING("Linear Units");
CONFIG_ECHO_START();
#if ENABLED(INCH_MODE_SUPPORT)
SERIAL_ECHOPGM(" G2", AS_DIGIT(parser.linear_unit_factor == 1.0), " ;");
#else
SERIAL_ECHOPGM(" G21 ;");
#endif
gcode.say_units(); // " (in/mm)"
//
// M149 Temperature units
//
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
gcode.M149_report(forReplay);
#else
CONFIG_ECHO_HEADING(STR_TEMPERATURE_UNITS);
CONFIG_ECHO_MSG(" M149 C ; Units in Celsius");
#endif
//
// M200 Volumetric Extrusion
//
IF_DISABLED(NO_VOLUMETRICS, gcode.M200_report(forReplay));
//
// M92 Steps per Unit
//
gcode.M92_report(forReplay);
//
// M203 Maximum feedrates (units/s)
//
gcode.M203_report(forReplay);
//
// M201 Maximum Acceleration (units/s2)
//
gcode.M201_report(forReplay);
//
// M204 Acceleration (units/s2)
//
gcode.M204_report(forReplay);
//
// M205 "Advanced" Settings
//
gcode.M205_report(forReplay);
//
// M206 Home Offset
//
TERN_(HAS_M206_COMMAND, gcode.M206_report(forReplay));
//
// M218 Hotend offsets
//
TERN_(HAS_HOTEND_OFFSET, gcode.M218_report(forReplay));
//
// Bed Leveling
//
#if HAS_LEVELING
gcode.M420_report(forReplay);
#if ENABLED(MESH_BED_LEVELING)
if (leveling_is_valid()) {
LOOP_L_N(py, GRID_MAX_POINTS_Y) {
LOOP_L_N(px, GRID_MAX_POINTS_X) {
CONFIG_ECHO_START();
SERIAL_ECHOPGM(" G29 S3 I", px, " J", py);
SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(bedlevel.z_values[px][py]), 5);
}
}
CONFIG_ECHO_START();
SERIAL_ECHOLNPAIR_F(" G29 S4 Z", LINEAR_UNIT(bedlevel.z_offset), 5);
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (!forReplay) {
SERIAL_EOL();
bedlevel.report_state();
SERIAL_ECHO_MSG("Active Mesh Slot ", bedlevel.storage_slot);
SERIAL_ECHO_MSG("EEPROM can hold ", calc_num_meshes(), " meshes.\n");
}
//bedlevel.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
// solution needs to be found.
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (leveling_is_valid()) {
LOOP_L_N(py, GRID_MAX_POINTS_Y) {
LOOP_L_N(px, GRID_MAX_POINTS_X) {
CONFIG_ECHO_START();
SERIAL_ECHOPGM(" G29 W I", px, " J", py);
SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(bedlevel.z_values[px][py]), 5);
}
}
}
#endif
#endif // HAS_LEVELING
//
// X Axis Twist Compensation
//
TERN_(X_AXIS_TWIST_COMPENSATION, gcode.M423_report(forReplay));
//
// Editable Servo Angles
//
TERN_(EDITABLE_SERVO_ANGLES, gcode.M281_report(forReplay));
//
// Kinematic Settings
//
TERN_(IS_KINEMATIC, gcode.M665_report(forReplay));
//
// M666 Endstops Adjustment
//
#if EITHER(DELTA, HAS_EXTRA_ENDSTOPS)
gcode.M666_report(forReplay);
#endif
//
// Z Auto-Align
//
TERN_(Z_STEPPER_AUTO_ALIGN, gcode.M422_report(forReplay));
//
// LCD Preheat Settings
//
#if HAS_PREHEAT
gcode.M145_report(forReplay);
#endif
//
// PID
//
TERN_(PIDTEMP, gcode.M301_report(forReplay));
TERN_(PIDTEMPBED, gcode.M304_report(forReplay));
TERN_(PIDTEMPCHAMBER, gcode.M309_report(forReplay));
#if HAS_USER_THERMISTORS
LOOP_L_N(i, USER_THERMISTORS)
thermalManager.M305_report(i, forReplay);
#endif
//
// LCD Contrast
//
TERN_(HAS_LCD_CONTRAST, gcode.M250_report(forReplay));
//
// Display Sleep
//
TERN_(HAS_GCODE_M255, gcode.M255_report(forReplay));
//
// LCD Brightness
//
TERN_(HAS_LCD_BRIGHTNESS, gcode.M256_report(forReplay));
//
// Controller Fan
//
TERN_(CONTROLLER_FAN_EDITABLE, gcode.M710_report(forReplay));
//
// Power-Loss Recovery
//
TERN_(POWER_LOSS_RECOVERY, gcode.M413_report(forReplay));
//
// Firmware Retraction
//
#if ENABLED(FWRETRACT)
gcode.M207_report(forReplay);
gcode.M208_report(forReplay);
TERN_(FWRETRACT_AUTORETRACT, gcode.M209_report(forReplay));
#endif
//
// Probe Offset
//
TERN_(HAS_BED_PROBE, gcode.M851_report(forReplay));
//
// Bed Skew Correction
//
TERN_(SKEW_CORRECTION_GCODE, gcode.M852_report(forReplay));
#if HAS_TRINAMIC_CONFIG
//
// TMC Stepper driver current
//
gcode.M906_report(forReplay);
//
// TMC Hybrid Threshold
//
TERN_(HYBRID_THRESHOLD, gcode.M913_report(forReplay));
//
// TMC Sensorless homing thresholds
//
TERN_(USE_SENSORLESS, gcode.M914_report(forReplay));
#endif
//
// TMC stepping mode
//
TERN_(HAS_STEALTHCHOP, gcode.M569_report(forReplay));
//
// Linear Advance
//
TERN_(LIN_ADVANCE, gcode.M900_report(forReplay));
//
// Motor Current (SPI or PWM)
//
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
gcode.M907_report(forReplay);
#endif
//
// Advanced Pause filament load & unload lengths
//
TERN_(ADVANCED_PAUSE_FEATURE, gcode.M603_report(forReplay));
//
// Tool-changing Parameters
//
E_TERN_(gcode.M217_report(forReplay));
//
// Backlash Compensation
//
TERN_(BACKLASH_GCODE, gcode.M425_report(forReplay));
//
// Filament Runout Sensor
//
TERN_(HAS_FILAMENT_SENSOR, gcode.M412_report(forReplay));
#if HAS_ETHERNET
CONFIG_ECHO_HEADING("Ethernet");
if (!forReplay) ETH0_report();
CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); gcode.M552_report();
CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); gcode.M553_report();
CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); gcode.M554_report();
#endif
TERN_(HAS_MULTI_LANGUAGE, gcode.M414_report(forReplay));
//
// Model predictive control
//
TERN_(MPCTEMP, gcode.M306_report(forReplay));
}
#endif // !DISABLE_M503
#pragma pack(pop)