Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1887 lines
71 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../bedlevel.h"
#include "../../../MarlinCore.h"
#include "../../../HAL/shared/eeprom_api.h"
#include "../../../libs/hex_print.h"
#include "../../../module/settings.h"
#include "../../../lcd/marlinui.h"
#include "../../../module/planner.h"
#include "../../../module/motion.h"
#include "../../../module/probe.h"
#include "../../../gcode/gcode.h"
#include "../../../libs/least_squares_fit.h"
#if HAS_MULTI_HOTEND
#include "../../../module/tool_change.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../../core/debug_out.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
#endif
#if ENABLED(UBL_HILBERT_CURVE)
#include "../hilbert_curve.h"
#endif
#include <math.h>
#define UBL_G29_P31
#if HAS_MARLINUI_MENU
bool unified_bed_leveling::lcd_map_control = false;
void unified_bed_leveling::steppers_were_disabled() {
if (lcd_map_control) {
lcd_map_control = false;
ui.defer_status_screen(false);
}
}
void ubl_map_screen();
#endif
#define SIZE_OF_LITTLE_RAISE 1
#define BIG_RAISE_NOT_NEEDED 0
/**
* G29: Unified Bed Leveling by Roxy
*
* Parameters understood by this leveling system:
*
* A Activate Activate the Unified Bed Leveling system.
*
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
* Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
* In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
* grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
* same resistance is felt in the shim. You can omit the numerical value on first invocation
* of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
* measured thickness by default.
*
* C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
* previous measurements.
*
* C G29 P2 C tells the Manual Probe subsystem to not use the current nozzle
* location in its search for the closest unmeasured Mesh Point. Instead, attempt to
* start at one end of the uprobed points and Continue sequentially.
*
* G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
*
* C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
*
* D Disable Disable the Unified Bed Leveling system.
*
* E Stow_probe Stow the probe after each sampled point.
*
* F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
* specified height, no correction is applied and natural printer kenimatics take over. If no
* number is specified for the command, 10mm is assumed to be reasonable.
*
* H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
* If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
*
* H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
* If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
*
* I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
* the nozzle location is used. If no 'I' value is given, only the point nearest to the location
* is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
* portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
* an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
* can move the nozzle around and use this feature to select the center of the area (or cell) to
* invalidate.
*
* J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
* Not specifying a grid size will invoke the 3-Point leveling function.
*
* L Load Load Mesh from the previously activated location in the EEPROM.
*
* L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
* for subsequent Load and Store operations.
*
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
* start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
* each additional Phase that processes it.
*
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
* was turned on. Setting the entire Mesh to Zero is a special case that allows
* a subsequent G or T leveling operation for backward compatibility.
*
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
* the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. For delta
* printers only the areas where the probe and nozzle can both reach will be automatically probed.
*
* Unreachable points will be handled in Phase 2 and Phase 3.
*
* Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
* to invalidate parts of the Mesh but still use Automatic Probing.
*
* The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
* probe position is used.
*
* Use 'T' (Topology) to generate a report of mesh generation.
*
* P1 will suspend Mesh generation if the controller button is held down. Note that you may need
* to press and hold the switch for several seconds if moves are underway.
*
* P2 Phase 2 Probe unreachable points.
*
* Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
* Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
* nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
* (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
*
* The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
* controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
* with an 'H' parameter more suitable for the area you're manually probing. Note that the command
* tries to start in a corner of the bed where movement will be predictable. Override the distance
* calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
* the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
* indicate that the search should be based on the current position.
*
* The 'B' parameter for this command is described above. It places the manual probe subsystem into
* Business Card mode where the thickness of a business card is measured and then used to accurately
* set the nozzle height in all manual probing for the duration of the command. A Business card can
* be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
* easier to produce similar amounts of force and get more accurate measurements. Google if you're
* not sure how to use a shim.
*
* The 'T' (Map) parameter helps track Mesh building progress.
*
* NOTE: P2 requires an LCD controller!
*
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
* go down:
*
* - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
* and a repeat count can then also be specified with 'R'.
*
* - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
* invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
* upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
* replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
* and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
* Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
*
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
* an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
* G42 and M421. See the UBL documentation for further details.
*
* Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
* of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
* adhesion.
*
* P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
* by the given 'H' offset (or default 0), and waits while the controller is used to adjust the nozzle
* height. On click the displayed height is saved in the mesh.
*
* Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
* the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
* terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
*
* The general form is G29 P4 [R points] [X position] [Y position]
*
* The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
* command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
* and on click the height minus the shim thickness will be saved in the mesh.
*
* !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
*
* NOTE: P4 is not available unless you have LCD support enabled!
*
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
* Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
* execute a G29 P6 C <mean height>.
*
* P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
* with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
* can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
* 0.000 at the Z Home location.
*
* Q Test Load specified Test Pattern to assist in checking correct operation of system. This
* command is not anticipated to be of much value to the typical user. It is intended
* for developers to help them verify correct operation of the Unified Bed Leveling System.
*
* R # Repeat Repeat this command the specified number of times. If no number is specified the
* command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
*
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
* current state of the Unified Bed Leveling system in the EEPROM.
*
* S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
* for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
* extend to a limit related to the available EEPROM storage.
*
* S -1 Store Print the current Mesh as G-code that can be used to restore the mesh anytime.
*
* T Topology Display the Mesh Map Topology.
* 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
* This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
* This parameter can also specify a Map Type. T0 (the default) is user-readable. T1
* is suitable to paste into a spreadsheet for a 3D graph of the mesh.
*
* U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
* Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
* when the entire bed doesn't need to be probed because it will be adjusted.
*
* V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
*
* X # X Location for this command
*
* Y # Y Location for this command
*
* With UBL_DEVEL_DEBUGGING:
*
* K # Kompare Kompare current Mesh with stored Mesh #, replacing current Mesh with the result.
* This command literally performs a diff between two Meshes.
*
* Q-1 Dump EEPROM Dump the UBL contents stored in EEPROM as HEX format. Useful for developers to help
* verify correct operation of the UBL.
*
* W What? Display valuable UBL data.
*
*
* Release Notes:
* You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
* kinds of problems. Enabling EEPROM Storage is required.
*
* When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that
* UBL probes points increasingly further from the starting location. (The starting location defaults
* to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is
* especially better for Delta printers, since it populates the center of the mesh first, allowing for
* a quicker test print to verify settings. You don't need to populate the entire mesh to use it.
* After all, you don't want to spend a lot of time generating a mesh only to realize the resolution
* or probe offsets are incorrect. Mesh-generation gathers points starting closest to the nozzle unless
* an (X,Y) coordinate pair is given.
*
* Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get
* the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure
* evolves, UBL stores all mesh data at the end of EEPROM.
*
* UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of
* 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and
* features of all three systems combined.
*/
G29_parameters_t unified_bed_leveling::param;
void unified_bed_leveling::G29() {
bool probe_deployed = false;
if (G29_parse_parameters()) return; // Abort on parameter error
const uint8_t p_val = parser.byteval('P');
const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen_test('J');
#if HAS_MULTI_HOTEND
const uint8_t old_tool_index = active_extruder;
#endif
// Check for commands that require the printer to be homed
if (may_move) {
planner.synchronize();
// Send 'N' to force homing before G29 (internal only)
if (axes_should_home() || parser.seen_test('N')) gcode.home_all_axes();
TERN_(HAS_MULTI_HOTEND, if (active_extruder != 0) tool_change(0, true));
// Position bed horizontally and Z probe vertically.
#if defined(SAFE_BED_LEVELING_START_X) || defined(SAFE_BED_LEVELING_START_Y) || defined(SAFE_BED_LEVELING_START_Z) \
|| defined(SAFE_BED_LEVELING_START_I) || defined(SAFE_BED_LEVELING_START_J) || defined(SAFE_BED_LEVELING_START_K) \
|| defined(SAFE_BED_LEVELING_START_U) || defined(SAFE_BED_LEVELING_START_V) || defined(SAFE_BED_LEVELING_START_W)
xyze_pos_t safe_position = current_position;
#ifdef SAFE_BED_LEVELING_START_X
safe_position.x = SAFE_BED_LEVELING_START_X;
#endif
#ifdef SAFE_BED_LEVELING_START_Y
safe_position.y = SAFE_BED_LEVELING_START_Y;
#endif
#ifdef SAFE_BED_LEVELING_START_Z
safe_position.z = SAFE_BED_LEVELING_START_Z;
#endif
#ifdef SAFE_BED_LEVELING_START_I
safe_position.i = SAFE_BED_LEVELING_START_I;
#endif
#ifdef SAFE_BED_LEVELING_START_J
safe_position.j = SAFE_BED_LEVELING_START_J;
#endif
#ifdef SAFE_BED_LEVELING_START_K
safe_position.k = SAFE_BED_LEVELING_START_K;
#endif
#ifdef SAFE_BED_LEVELING_START_U
safe_position.u = SAFE_BED_LEVELING_START_U;
#endif
#ifdef SAFE_BED_LEVELING_START_V
safe_position.v = SAFE_BED_LEVELING_START_V;
#endif
#ifdef SAFE_BED_LEVELING_START_W
safe_position.w = SAFE_BED_LEVELING_START_W;
#endif
do_blocking_move_to(safe_position);
#endif
}
// Invalidate one or more nearby mesh points, possibly all.
if (parser.seen('I')) {
uint8_t count = parser.has_value() ? parser.value_byte() : 1;
bool invalidate_all = count >= GRID_MAX_POINTS;
if (!invalidate_all) {
while (count--) {
if ((count & 0x0F) == 0x0F) idle();
const mesh_index_pair closest = find_closest_mesh_point_of_type(REAL, param.XY_pos);
// No more REAL mesh points to invalidate? Assume the user meant
// to invalidate the ENTIRE mesh, which can't be done with
// find_closest_mesh_point (which only returns REAL points).
if (closest.pos.x < 0) { invalidate_all = true; break; }
z_values[closest.pos.x][closest.pos.y] = NAN;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(closest.pos, 0.0f));
}
}
if (invalidate_all) {
invalidate();
SERIAL_ECHOPGM("Entire Mesh");
}
else
SERIAL_ECHOPGM("Locations");
SERIAL_ECHOLNPGM(" invalidated.\n");
}
if (parser.seen('Q')) {
const int16_t test_pattern = parser.has_value() ? parser.value_int() : -99;
if (!WITHIN(test_pattern, TERN0(UBL_DEVEL_DEBUGGING, -1), 2)) {
SERIAL_ECHOLNPGM("?Invalid (Q) test pattern. (" TERN(UBL_DEVEL_DEBUGGING, "-1", "0") " to 2)\n");
return;
}
SERIAL_ECHOLNPGM("Applying test pattern.\n");
switch (test_pattern) {
default:
case -1: TERN_(UBL_DEVEL_DEBUGGING, g29_eeprom_dump()); break;
case 0:
GRID_LOOP(x, y) { // Create a bowl shape similar to a poorly-calibrated Delta
const float p1 = 0.5f * (GRID_MAX_POINTS_X) - x,
p2 = 0.5f * (GRID_MAX_POINTS_Y) - y;
z_values[x][y] += 2.0f * HYPOT(p1, p2);
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
}
break;
case 1:
LOOP_L_N(x, GRID_MAX_POINTS_X) { // Create a diagonal line several Mesh cells thick that is raised
const uint8_t x2 = x + (x < (GRID_MAX_POINTS_Y) - 1 ? 1 : -1);
z_values[x][x] += 9.999f;
z_values[x][x2] += 9.999f; // We want the altered line several mesh points thick
#if ENABLED(EXTENSIBLE_UI)
ExtUI::onMeshUpdate(x, x, z_values[x][x]);
ExtUI::onMeshUpdate(x, x2, z_values[x][x2]);
#endif
}
break;
case 2:
// Allow the user to specify the height because 10mm is a little extreme in some cases.
for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) { // the center of the bed
z_values[x][y] += parser.seen_test('C') ? param.C_constant : 9.99f;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
}
break;
}
}
#if HAS_BED_PROBE
if (parser.seen_test('J')) {
save_ubl_active_state_and_disable();
tilt_mesh_based_on_probed_grid(param.J_grid_size == 0); // Zero size does 3-Point
restore_ubl_active_state_and_leave();
#if ENABLED(UBL_G29_J_RECENTER)
do_blocking_move_to_xy(0.5f * ((MESH_MIN_X) + (MESH_MAX_X)), 0.5f * ((MESH_MIN_Y) + (MESH_MAX_Y)));
#endif
report_current_position();
probe_deployed = true;
}
#endif // HAS_BED_PROBE
if (parser.seen_test('P')) {
if (WITHIN(param.P_phase, 0, 1) && storage_slot == -1) {
storage_slot = 0;
SERIAL_ECHOLNPGM("Default storage slot 0 selected.");
}
switch (param.P_phase) {
case 0:
//
// Zero Mesh Data
//
reset();
SERIAL_ECHOLNPGM("Mesh zeroed.");
break;
#if HAS_BED_PROBE
case 1: {
//
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
//
if (!parser.seen_test('C')) {
invalidate();
SERIAL_ECHOLNPGM("Mesh invalidated. Probing mesh.");
}
if (param.V_verbosity > 1) {
SERIAL_ECHOPGM("Probing around (", param.XY_pos.x);
SERIAL_CHAR(',');
SERIAL_DECIMAL(param.XY_pos.y);
SERIAL_ECHOLNPGM(").\n");
}
probe_entire_mesh(param.XY_pos, parser.seen_test('T'), parser.seen_test('E'), parser.seen_test('U'));
report_current_position();
probe_deployed = true;
} break;
#endif // HAS_BED_PROBE
case 2: {
#if HAS_MARLINUI_MENU
//
// Manually Probe Mesh in areas that can't be reached by the probe
//
SERIAL_ECHOLNPGM("Manually probing unreachable points.");
do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES);
if (parser.seen_test('C') && !param.XY_seen) {
/**
* Use a good default location for the path.
* The flipped > and < operators in these comparisons is intentional.
* It should cause the probed points to follow a nice path on Cartesian printers.
* It may make sense to have Delta printers default to the center of the bed.
* Until that is decided, this can be forced with the X and Y parameters.
*/
param.XY_pos.set(
#if IS_KINEMATIC
X_HOME_POS, Y_HOME_POS
#else
probe.offset_xy.x > 0 ? X_BED_SIZE : 0,
probe.offset_xy.y < 0 ? Y_BED_SIZE : 0
#endif
);
}
if (parser.seen('B')) {
param.B_shim_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness();
if (ABS(param.B_shim_thickness) > 1.5f) {
SERIAL_ECHOLNPGM("?Error in Business Card measurement.");
return;
}
probe_deployed = true;
}
if (!position_is_reachable(param.XY_pos)) {
SERIAL_ECHOLNPGM("XY outside printable radius.");
return;
}
const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
manually_probe_remaining_mesh(param.XY_pos, height, param.B_shim_thickness, parser.seen_test('T'));
SERIAL_ECHOLNPGM("G29 P2 finished.");
report_current_position();
#else
SERIAL_ECHOLNPGM("?P2 is only available when an LCD is present.");
return;
#endif
} break;
case 3: {
/**
* Populate invalid mesh areas. Proceed with caution.
* Two choices are available:
* - Specify a constant with the 'C' parameter.
* - Allow 'G29 P3' to choose a 'reasonable' constant.
*/
if (param.C_seen) {
if (param.R_repetition >= GRID_MAX_POINTS) {
set_all_mesh_points_to_value(param.C_constant);
}
else {
while (param.R_repetition--) { // this only populates reachable mesh points near
const mesh_index_pair closest = find_closest_mesh_point_of_type(INVALID, param.XY_pos);
const xy_int8_t &cpos = closest.pos;
if (cpos.x < 0) {
// No more REAL INVALID mesh points to populate, so we ASSUME
// user meant to populate ALL INVALID mesh points to value
GRID_LOOP(x, y) if (isnan(z_values[x][y])) z_values[x][y] = param.C_constant;
break; // No more invalid Mesh Points to populate
}
else {
z_values[cpos.x][cpos.y] = param.C_constant;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(cpos, param.C_constant));
}
}
}
}
else {
const float cvf = parser.value_float();
switch ((int)TRUNC(cvf * 10.0f) - 30) { // 3.1 -> 1
#if ENABLED(UBL_G29_P31)
case 1: {
// P3.1 use least squares fit to fill missing mesh values
// P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
// P3.11 10X weighting for nearest grid points versus farthest grid points
// P3.12 100X distance weighting
// P3.13 1000X distance weighting, approaches simple average of nearest points
const float weight_power = (cvf - 3.10f) * 100.0f, // 3.12345 -> 2.345
weight_factor = weight_power ? POW(10.0f, weight_power) : 0;
smart_fill_wlsf(weight_factor);
}
break;
#endif
case 0: // P3 or P3.0
default: // and anything P3.x that's not P3.1
smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
break;
}
}
break;
}
case 4: // Fine Tune (i.e., Edit) the Mesh
#if HAS_MARLINUI_MENU
fine_tune_mesh(param.XY_pos, parser.seen_test('T'));
#else
SERIAL_ECHOLNPGM("?P4 is only available when an LCD is present.");
return;
#endif
break;
case 5: adjust_mesh_to_mean(param.C_seen, param.C_constant); break;
case 6: shift_mesh_height(); break;
}
}
#if ENABLED(UBL_DEVEL_DEBUGGING)
//
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
// good to have the extra information. Soon... we prune this to just a few items
//
if (parser.seen_test('W')) g29_what_command();
//
// When we are fully debugged, this may go away. But there are some valid
// use cases for the users. So we can wait and see what to do with it.
//
if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
g29_compare_current_mesh_to_stored_mesh();
#endif // UBL_DEVEL_DEBUGGING
//
// Load a Mesh from the EEPROM
//
if (parser.seen('L')) { // Load Current Mesh Data
param.KLS_storage_slot = parser.has_value() ? (int8_t)parser.value_int() : storage_slot;
int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_ECHOLNPGM("?EEPROM storage not available.");
return;
}
if (!WITHIN(param.KLS_storage_slot, 0, a - 1)) {
SERIAL_ECHOLNPGM("?Invalid storage slot.\n?Use 0 to ", a - 1);
return;
}
settings.load_mesh(param.KLS_storage_slot);
storage_slot = param.KLS_storage_slot;
SERIAL_ECHOLNPGM(STR_DONE);
}
//
// Store a Mesh in the EEPROM
//
if (parser.seen('S')) { // Store (or Save) Current Mesh Data
param.KLS_storage_slot = parser.has_value() ? (int8_t)parser.value_int() : storage_slot;
if (param.KLS_storage_slot == -1) // Special case: 'Export' the mesh to the
return report_current_mesh(); // host so it can be saved in a file.
int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_ECHOLNPGM("?EEPROM storage not available.");
goto LEAVE;
}
if (!WITHIN(param.KLS_storage_slot, 0, a - 1)) {
SERIAL_ECHOLNPGM("?Invalid storage slot.\n?Use 0 to ", a - 1);
goto LEAVE;
}
settings.store_mesh(param.KLS_storage_slot);
storage_slot = param.KLS_storage_slot;
SERIAL_ECHOLNPGM(STR_DONE);
}
if (parser.seen_test('T'))
display_map(param.T_map_type);
LEAVE:
#if HAS_MARLINUI_MENU
ui.reset_alert_level();
ui.quick_feedback();
ui.reset_status();
ui.release();
#endif
#ifdef Z_PROBE_END_SCRIPT
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
if (probe_deployed) {
planner.synchronize();
gcode.process_subcommands_now(F(Z_PROBE_END_SCRIPT));
}
#else
UNUSED(probe_deployed);
#endif
TERN_(HAS_MULTI_HOTEND, if (old_tool_index != 0) tool_change(old_tool_index));
return;
}
/**
* M420 C<value>
* G29 P5 C<value> : Adjust Mesh To Mean (and subtract the given offset).
* Find the mean average and shift the mesh to center on that value.
*/
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const_float_t offset) {
float sum = 0;
uint8_t n = 0;
GRID_LOOP(x, y)
if (!isnan(z_values[x][y])) {
sum += z_values[x][y];
n++;
}
const float mean = sum / n;
//
// Sum the squares of difference from mean
//
float sum_of_diff_squared = 0;
GRID_LOOP(x, y)
if (!isnan(z_values[x][y]))
sum_of_diff_squared += sq(z_values[x][y] - mean);
SERIAL_ECHOLNPGM("# of samples: ", n);
SERIAL_ECHOLNPAIR_F("Mean Mesh Height: ", mean, 6);
const float sigma = SQRT(sum_of_diff_squared / (n + 1));
SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6);
if (cflag)
GRID_LOOP(x, y)
if (!isnan(z_values[x][y])) {
z_values[x][y] -= mean + offset;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
}
}
/**
* G29 P6 C<offset> : Shift Mesh Height by a uniform constant.
*/
void unified_bed_leveling::shift_mesh_height() {
GRID_LOOP(x, y)
if (!isnan(z_values[x][y])) {
z_values[x][y] += param.C_constant;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
}
}
#if HAS_BED_PROBE
/**
* G29 P1 T<maptype> V<verbosity> : Probe Entire Mesh
* Probe all invalidated locations of the mesh that can be reached by the probe.
* This attempts to fill in locations closest to the nozzle's start location first.
*/
void unified_bed_leveling::probe_entire_mesh(const xy_pos_t &nearby, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) {
probe.deploy(); // Deploy before ui.capture() to allow for PAUSE_BEFORE_DEPLOY_STOW
TERN_(HAS_MARLINUI_MENU, ui.capture());
TERN_(EXTENSIBLE_UI, ExtUI::onLevelingStart());
TERN_(DWIN_LCD_PROUI, DWIN_LevelingStart());
save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained
uint8_t count = GRID_MAX_POINTS;
mesh_index_pair best;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::G29_START));
do {
if (do_ubl_mesh_map) display_map(param.T_map_type);
const uint8_t point_num = (GRID_MAX_POINTS - count) + 1;
SERIAL_ECHOLNPGM("Probing mesh point ", point_num, "/", GRID_MAX_POINTS, ".");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_POINT), point_num, int(GRID_MAX_POINTS)));
#if HAS_MARLINUI_MENU
if (ui.button_pressed()) {
ui.quick_feedback(false); // Preserve button state for click-and-hold
SERIAL_ECHOLNPGM("\nMesh only partially populated.\n");
ui.wait_for_release();
ui.quick_feedback();
ui.release();
probe.stow(); // Release UI before stow to allow for PAUSE_BEFORE_DEPLOY_STOW
TERN_(EXTENSIBLE_UI, ExtUI::onLevelingDone());
return restore_ubl_active_state_and_leave();
}
#endif
best = do_furthest
? find_furthest_invalid_mesh_point()
: find_closest_mesh_point_of_type(INVALID, nearby, true);
if (best.pos.x >= 0) { // mesh point found and is reachable by probe
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::G29_POINT_START));
const float measured_z = probe.probe_at_point(
best.meshpos(),
stow_probe ? PROBE_PT_STOW : PROBE_PT_RAISE, param.V_verbosity
);
z_values[best.pos.x][best.pos.y] = measured_z;
#if ENABLED(EXTENSIBLE_UI)
ExtUI::onMeshUpdate(best.pos, ExtUI::G29_POINT_FINISH);
ExtUI::onMeshUpdate(best.pos, measured_z);
#endif
}
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (best.pos.x >= 0 && --count);
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::G29_FINISH));
// Release UI during stow to allow for PAUSE_BEFORE_DEPLOY_STOW
TERN_(HAS_MARLINUI_MENU, ui.release());
probe.stow();
TERN_(HAS_MARLINUI_MENU, ui.capture());
probe.move_z_after_probing();
restore_ubl_active_state_and_leave();
do_blocking_move_to_xy(
constrain(nearby.x - probe.offset_xy.x, MESH_MIN_X, MESH_MAX_X),
constrain(nearby.y - probe.offset_xy.y, MESH_MIN_Y, MESH_MAX_Y)
);
TERN_(EXTENSIBLE_UI, ExtUI::onLevelingDone());
TERN_(DWIN_LCD_PROUI, DWIN_LevelingDone());
}
#endif // HAS_BED_PROBE
void set_message_with_feedback(FSTR_P const fstr) {
#if HAS_MARLINUI_MENU
ui.set_status(fstr);
ui.quick_feedback();
#else
UNUSED(fstr);
#endif
}
#if HAS_MARLINUI_MENU
typedef void (*clickFunc_t)();
bool _click_and_hold(const clickFunc_t func=nullptr) {
if (ui.button_pressed()) {
ui.quick_feedback(false); // Preserve button state for click-and-hold
const millis_t nxt = millis() + 1500UL;
while (ui.button_pressed()) { // Loop while the encoder is pressed. Uses hardware flag!
idle(); // idle, of course
if (ELAPSED(millis(), nxt)) { // After 1.5 seconds
ui.quick_feedback();
if (func) (*func)();
ui.wait_for_release();
return true;
}
}
}
serial_delay(15);
return false;
}
void unified_bed_leveling::move_z_with_encoder(const_float_t multiplier) {
ui.wait_for_release();
while (!ui.button_pressed()) {
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
if (encoder_diff) {
do_blocking_move_to_z(current_position.z + float(encoder_diff) * multiplier);
encoder_diff = 0;
}
}
}
float unified_bed_leveling::measure_point_with_encoder() {
KEEPALIVE_STATE(PAUSED_FOR_USER);
const float z_step = 0.01f;
move_z_with_encoder(z_step);
return current_position.z;
}
static void echo_and_take_a_measurement() { SERIAL_ECHOLNPGM(" and take a measurement."); }
float unified_bed_leveling::measure_business_card_thickness() {
ui.capture();
save_ubl_active_state_and_disable(); // Disable bed level correction for probing
do_blocking_move_to(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)), MANUAL_PROBE_START_Z);
//, _MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]) * 0.5f);
planner.synchronize();
SERIAL_ECHOPGM("Place shim under nozzle");
LCD_MESSAGE(MSG_UBL_BC_INSERT);
ui.return_to_status();
echo_and_take_a_measurement();
const float z1 = measure_point_with_encoder();
do_blocking_move_to_z(current_position.z + SIZE_OF_LITTLE_RAISE);
planner.synchronize();
SERIAL_ECHOPGM("Remove shim");
LCD_MESSAGE(MSG_UBL_BC_REMOVE);
echo_and_take_a_measurement();
const float z2 = measure_point_with_encoder();
do_blocking_move_to_z(current_position.z + Z_CLEARANCE_BETWEEN_PROBES);
const float thickness = ABS(z1 - z2);
if (param.V_verbosity > 1) {
SERIAL_ECHOPAIR_F("Business Card is ", thickness, 4);
SERIAL_ECHOLNPGM("mm thick.");
}
restore_ubl_active_state_and_leave();
return thickness;
}
/**
* G29 P2 : Manually Probe Remaining Mesh Points.
* Move to INVALID points and
* NOTE: Blocks the G-code queue and captures Marlin UI during use.
*/
void unified_bed_leveling::manually_probe_remaining_mesh(const xy_pos_t &pos, const_float_t z_clearance, const_float_t thick, const bool do_ubl_mesh_map) {
ui.capture();
TERN_(EXTENSIBLE_UI, ExtUI::onLevelingStart());
save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained
do_blocking_move_to_xy_z(current_position, z_clearance);
ui.return_to_status();
mesh_index_pair location;
const xy_int8_t &lpos = location.pos;
do {
location = find_closest_mesh_point_of_type(INVALID, pos);
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (!location.valid()) continue;
const xyz_pos_t ppos = { get_mesh_x(lpos.x), get_mesh_y(lpos.y), z_clearance };
if (!position_is_reachable(ppos)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
LCD_MESSAGE(MSG_UBL_MOVING_TO_NEXT);
do_blocking_move_to(ppos);
do_z_clearance(z_clearance);
KEEPALIVE_STATE(PAUSED_FOR_USER);
ui.capture();
if (do_ubl_mesh_map) display_map(param.T_map_type); // Show user where we're probing
if (parser.seen_test('B')) {
SERIAL_ECHOPGM("Place Shim & Measure");
LCD_MESSAGE(MSG_UBL_BC_INSERT);
}
else {
SERIAL_ECHOPGM("Measure");
LCD_MESSAGE(MSG_UBL_BC_INSERT2);
}
const float z_step = 0.01f; // 0.01mm per encoder tick, occasionally step
move_z_with_encoder(z_step);
if (_click_and_hold([]{
SERIAL_ECHOLNPGM("\nMesh only partially populated.");
do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE);
})) return restore_ubl_active_state_and_leave();
// Store the Z position minus the shim height
z_values[lpos.x][lpos.y] = current_position.z - thick;
// Tell the external UI to update
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, z_values[lpos.x][lpos.y]));
if (param.V_verbosity > 2)
SERIAL_ECHOLNPAIR_F("Mesh Point Measured at: ", z_values[lpos.x][lpos.y], 6);
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (location.valid());
if (do_ubl_mesh_map) display_map(param.T_map_type); // show user where we're probing
restore_ubl_active_state_and_leave();
do_blocking_move_to_xy_z(pos, Z_CLEARANCE_DEPLOY_PROBE);
TERN_(EXTENSIBLE_UI, ExtUI::onLevelingDone());
}
/**
* G29 P4 : Mesh Fine-Tuning. Go to point(s) and adjust values with the LCD.
* NOTE: Blocks the G-code queue and captures Marlin UI during use.
*/
void unified_bed_leveling::fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) {
if (!parser.seen_test('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
param.R_repetition = 1; // do exactly one mesh location. Otherwise use what the parser decided.
#if ENABLED(UBL_MESH_EDIT_MOVES_Z)
const float h_offset = parser.seenval('H') ? parser.value_linear_units() : MANUAL_PROBE_START_Z;
if (!WITHIN(h_offset, 0, 10)) {
SERIAL_ECHOLNPGM("Offset out of bounds. (0 to 10mm)\n");
return;
}
#endif
mesh_index_pair location;
if (!position_is_reachable(pos)) {
SERIAL_ECHOLNPGM("(X,Y) outside printable radius.");
return;
}
save_ubl_active_state_and_disable();
LCD_MESSAGE(MSG_UBL_FINE_TUNE_MESH);
ui.capture(); // Take over control of the LCD encoder
do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES); // Move to the given XY with probe clearance
MeshFlags done_flags{0};
const xy_int8_t &lpos = location.pos;
#if IS_TFTGLCD_PANEL
ui.ubl_mesh_edit_start(0); // Change current screen before calling ui.ubl_plot
safe_delay(50);
#endif
do {
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, pos, false, &done_flags);
if (lpos.x < 0) break; // Stop when there are no more reachable points
done_flags.mark(lpos); // Mark this location as 'adjusted' so a new
// location is used on the next loop
const xyz_pos_t raw = { get_mesh_x(lpos.x), get_mesh_y(lpos.y), Z_CLEARANCE_BETWEEN_PROBES };
if (!position_is_reachable(raw)) break; // SHOULD NOT OCCUR (find_closest_mesh_point_of_type only returns reachable)
do_blocking_move_to(raw); // Move the nozzle to the edit point with probe clearance
TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset)); // Move Z to the given 'H' offset before editing
KEEPALIVE_STATE(PAUSED_FOR_USER);
if (do_ubl_mesh_map) display_map(param.T_map_type); // Display the current point
#if IS_TFTGLCD_PANEL
ui.ubl_plot(lpos.x, lpos.y); // update plot screen
#endif
ui.refresh();
float new_z = z_values[lpos.x][lpos.y];
if (isnan(new_z)) new_z = 0; // Invalid points begin at 0
new_z = FLOOR(new_z * 1000) * 0.001f; // Chop off digits after the 1000ths place
ui.ubl_mesh_edit_start(new_z);
SET_SOFT_ENDSTOP_LOOSE(true);
do {
idle_no_sleep();
new_z = ui.ubl_mesh_value();
TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset + new_z)); // Move the nozzle as the point is edited
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (!ui.button_pressed());
SET_SOFT_ENDSTOP_LOOSE(false);
if (!lcd_map_control) ui.return_to_status(); // Just editing a single point? Return to status
// Button held down? Abort editing
if (_click_and_hold([]{
ui.return_to_status();
do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES);
set_message_with_feedback(GET_TEXT_F(MSG_EDITING_STOPPED));
})) break;
// TODO: Disable leveling here so the Z value becomes the 'native' Z value.
z_values[lpos.x][lpos.y] = new_z; // Save the updated Z value
// TODO: Re-enable leveling here so Z is correctly based on the updated mesh.
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, new_z));
serial_delay(20); // No switch noise
ui.refresh();
} while (lpos.x >= 0 && --param.R_repetition > 0);
if (do_ubl_mesh_map) display_map(param.T_map_type);
restore_ubl_active_state_and_leave();
do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES);
LCD_MESSAGE(MSG_UBL_DONE_EDITING_MESH);
SERIAL_ECHOLNPGM("Done Editing Mesh");
if (lcd_map_control)
ui.goto_screen(ubl_map_screen);
else
ui.return_to_status();
}
#endif // HAS_MARLINUI_MENU
/**
* Parse and validate most G29 parameters, store for use by G29 functions.
*/
bool unified_bed_leveling::G29_parse_parameters() {
bool err_flag = false;
set_message_with_feedback(GET_TEXT_F(MSG_UBL_DOING_G29));
param.C_constant = 0;
param.R_repetition = 0;
if (parser.seen('R')) {
param.R_repetition = parser.has_value() ? parser.value_byte() : GRID_MAX_POINTS;
NOMORE(param.R_repetition, GRID_MAX_POINTS);
if (param.R_repetition < 1) {
SERIAL_ECHOLNPGM("?(R)epetition count invalid (1+).\n");
return UBL_ERR;
}
}
param.V_verbosity = parser.byteval('V');
if (!WITHIN(param.V_verbosity, 0, 4)) {
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).\n");
err_flag = true;
}
if (parser.seen('P')) {
const uint8_t pv = parser.value_byte();
#if !HAS_BED_PROBE
if (pv == 1) {
SERIAL_ECHOLNPGM("G29 P1 requires a probe.\n");
err_flag = true;
}
else
#endif
{
param.P_phase = pv;
if (!WITHIN(param.P_phase, 0, 6)) {
SERIAL_ECHOLNPGM("?(P)hase value invalid (0-6).\n");
err_flag = true;
}
}
}
if (parser.seen('J')) {
#if HAS_BED_PROBE
param.J_grid_size = parser.value_byte();
if (param.J_grid_size && !WITHIN(param.J_grid_size, 2, 9)) {
SERIAL_ECHOLNPGM("?Invalid grid size (J) specified (2-9).\n");
err_flag = true;
}
#else
SERIAL_ECHOLNPGM("G29 J action requires a probe.\n");
err_flag = true;
#endif
}
param.XY_seen.x = parser.seenval('X');
float sx = param.XY_seen.x ? parser.value_float() : current_position.x;
param.XY_seen.y = parser.seenval('Y');
float sy = param.XY_seen.y ? parser.value_float() : current_position.y;
if (param.XY_seen.x != param.XY_seen.y) {
SERIAL_ECHOLNPGM("Both X & Y locations must be specified.\n");
err_flag = true;
}
// If X or Y are not valid, use center of the bed values
// (for UBL_HILBERT_CURVE default to lower-left corner instead)
if (!COORDINATE_OKAY(sx, X_MIN_BED, X_MAX_BED)) sx = TERN(UBL_HILBERT_CURVE, 0, X_CENTER);
if (!COORDINATE_OKAY(sy, Y_MIN_BED, Y_MAX_BED)) sy = TERN(UBL_HILBERT_CURVE, 0, Y_CENTER);
if (err_flag) return UBL_ERR;
param.XY_pos.set(sx, sy);
/**
* Activate or deactivate UBL
* Note: UBL's G29 restores the state set here when done.
* Leveling is being enabled here with old data, possibly
* none. Error handling should disable for safety...
*/
if (parser.seen_test('A')) {
if (parser.seen_test('D')) {
SERIAL_ECHOLNPGM("?Can't activate and deactivate at the same time.\n");
return UBL_ERR;
}
set_bed_leveling_enabled(true);
report_state();
}
else if (parser.seen_test('D')) {
set_bed_leveling_enabled(false);
report_state();
}
// Set global 'C' flag and its value
if ((param.C_seen = parser.seen('C')))
param.C_constant = parser.value_float();
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (parser.seenval('F')) {
const float fh = parser.value_float();
if (!WITHIN(fh, 0, 100)) {
SERIAL_ECHOLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
return UBL_ERR;
}
set_z_fade_height(fh);
}
#endif
param.T_map_type = parser.byteval('T');
if (!WITHIN(param.T_map_type, 0, 2)) {
SERIAL_ECHOLNPGM("Invalid map type.\n");
return UBL_ERR;
}
return UBL_OK;
}
static uint8_t ubl_state_at_invocation = 0;
#if ENABLED(UBL_DEVEL_DEBUGGING)
static uint8_t ubl_state_recursion_chk = 0;
#endif
void unified_bed_leveling::save_ubl_active_state_and_disable() {
#if ENABLED(UBL_DEVEL_DEBUGGING)
ubl_state_recursion_chk++;
if (ubl_state_recursion_chk != 1) {
SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
set_message_with_feedback(GET_TEXT_F(MSG_UBL_SAVE_ERROR));
return;
}
#endif
ubl_state_at_invocation = planner.leveling_active;
set_bed_leveling_enabled(false);
}
void unified_bed_leveling::restore_ubl_active_state_and_leave() {
TERN_(HAS_MARLINUI_MENU, ui.release());
#if ENABLED(UBL_DEVEL_DEBUGGING)
if (--ubl_state_recursion_chk) {
SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
set_message_with_feedback(GET_TEXT_F(MSG_UBL_RESTORE_ERROR));
return;
}
#endif
set_bed_leveling_enabled(ubl_state_at_invocation);
TERN_(EXTENSIBLE_UI, ExtUI::onLevelingDone());
}
mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() {
bool found_a_NAN = false, found_a_real = false;
mesh_index_pair farthest { -1, -1, -99999.99 };
GRID_LOOP(i, j) {
if (!isnan(z_values[i][j])) continue; // Skip valid mesh points
// Skip unreachable points
if (!probe.can_reach(get_mesh_x(i), get_mesh_y(j)))
continue;
found_a_NAN = true;
xy_int8_t nearby { -1, -1 };
float d1, d2 = 99999.9f;
GRID_LOOP(k, l) {
if (isnan(z_values[k][l])) continue;
found_a_real = true;
// Add in a random weighting factor that scrambles the probing of the
// last half of the mesh (when every unprobed mesh point is one index
// from a probed location).
d1 = HYPOT(i - k, j - l) + (1.0f / ((millis() % 47) + 13));
if (d1 < d2) { // Invalid mesh point (i,j) is closer to the defined point (k,l)
d2 = d1;
nearby.set(i, j);
}
}
//
// At this point d2 should have the near defined mesh point to invalid mesh point (i,j)
//
if (found_a_real && nearby.x >= 0 && d2 > farthest.distance) {
farthest.pos = nearby; // Found an invalid location farther from the defined mesh point
farthest.distance = d2;
}
} // GRID_LOOP
if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
farthest.pos.set((GRID_MAX_POINTS_X) / 2, (GRID_MAX_POINTS_Y) / 2);
farthest.distance = 1;
}
return farthest;
}
#if ENABLED(UBL_HILBERT_CURVE)
typedef struct {
MeshPointType type;
MeshFlags *done_flags;
bool probe_relative;
mesh_index_pair closest;
} find_closest_t;
static bool test_func(uint8_t i, uint8_t j, void *data) {
find_closest_t *d = (find_closest_t*)data;
if ( d->type == CLOSEST || d->type == (isnan(bedlevel.z_values[i][j]) ? INVALID : REAL)
|| (d->type == SET_IN_BITMAP && !d->done_flags->marked(i, j))
) {
// Found a Mesh Point of the specified type!
const xy_pos_t mpos = { bedlevel.get_mesh_x(i), bedlevel.get_mesh_y(j) };
// If using the probe as the reference there are some unreachable locations.
// Also for round beds, there are grid points outside the bed the nozzle can't reach.
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
if (!(d->probe_relative ? probe.can_reach(mpos) : position_is_reachable(mpos)))
return false;
d->closest.pos.set(i, j);
return true;
}
return false;
}
#endif
mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const xy_pos_t &pos, const bool probe_relative/*=false*/, MeshFlags *done_flags/*=nullptr*/) {
#if ENABLED(UBL_HILBERT_CURVE)
find_closest_t d;
d.type = type;
d.done_flags = done_flags;
d.probe_relative = probe_relative;
d.closest.invalidate();
hilbert_curve::search_from_closest(pos, test_func, &d);
return d.closest;
#else
mesh_index_pair closest;
closest.invalidate();
closest.distance = -99999.9f;
// Get the reference position, either nozzle or probe
const xy_pos_t ref = probe_relative ? pos + probe.offset_xy : pos;
float best_so_far = 99999.99f;
GRID_LOOP(i, j) {
if ( type == CLOSEST || type == (isnan(z_values[i][j]) ? INVALID : REAL)
|| (type == SET_IN_BITMAP && !done_flags->marked(i, j))
) {
// Found a Mesh Point of the specified type!
const xy_pos_t mpos = { get_mesh_x(i), get_mesh_y(j) };
// If using the probe as the reference there are some unreachable locations.
// Also for round beds, there are grid points outside the bed the nozzle can't reach.
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
if (!(probe_relative ? probe.can_reach(mpos) : position_is_reachable(mpos)))
continue;
// Reachable. Check if it's the best_so_far location to the nozzle.
const xy_pos_t diff = current_position - mpos;
const float distance = (ref - mpos).magnitude() + diff.magnitude() * 0.1f;
// factor in the distance from the current location for the normal case
// so the nozzle isn't running all over the bed.
if (distance < best_so_far) {
best_so_far = distance; // Found a closer location with the desired value type.
closest.pos.set(i, j);
closest.distance = best_so_far;
}
}
} // GRID_LOOP
return closest;
#endif
}
/**
* 'Smart Fill': Scan from the outward edges of the mesh towards the center.
* If an invalid location is found, use the next two points (if valid) to
* calculate a 'reasonable' value for the unprobed mesh point.
*/
bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
const float v = z_values[x][y];
if (isnan(v)) { // A NAN...
const int8_t dx = x + xdir, dy = y + ydir;
const float v1 = z_values[dx][dy];
if (!isnan(v1)) { // ...next to a pair of real values?
const float v2 = z_values[dx + xdir][dy + ydir];
if (!isnan(v2)) {
z_values[x][y] = v1 < v2 ? v1 : v1 + v1 - v2;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
return true;
}
}
}
return false;
}
typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
void unified_bed_leveling::smart_fill_mesh() {
static const smart_fill_info
info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, (GRID_MAX_POINTS_Y) - 2, false }, // Bottom of the mesh looking up
info1 PROGMEM = { 0, GRID_MAX_POINTS_X, (GRID_MAX_POINTS_Y) - 1, 0, false }, // Top of the mesh looking down
info2 PROGMEM = { 0, (GRID_MAX_POINTS_X) - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
info3 PROGMEM = { (GRID_MAX_POINTS_X) - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
LOOP_L_N(i, COUNT(info)) {
const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy),
ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey);
if (pgm_read_byte(&f->yfirst)) {
const int8_t dir = ex > sx ? 1 : -1;
for (uint8_t y = sy; y != ey; ++y)
for (uint8_t x = sx; x != ex; x += dir)
if (smart_fill_one(x, y, dir, 0)) break;
}
else {
const int8_t dir = ey > sy ? 1 : -1;
for (uint8_t x = sx; x != ex; ++x)
for (uint8_t y = sy; y != ey; y += dir)
if (smart_fill_one(x, y, 0, dir)) break;
}
}
}
#if HAS_BED_PROBE
//#define VALIDATE_MESH_TILT
#include "../../../libs/vector_3.h"
void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_3_pt_leveling) {
const float x_min = probe.min_x(), x_max = probe.max_x(),
y_min = probe.min_y(), y_max = probe.max_y(),
dx = (x_max - x_min) / (param.J_grid_size - 1),
dy = (y_max - y_min) / (param.J_grid_size - 1);
xy_float_t points[3];
probe.get_three_points(points);
float measured_z;
bool abort_flag = false;
#ifdef VALIDATE_MESH_TILT
float z1, z2, z3; // Needed for algorithm validation below
#endif
struct linear_fit_data lsf_results;
incremental_LSF_reset(&lsf_results);
if (do_3_pt_leveling) {
SERIAL_ECHOLNPGM("Tilting mesh (1/3)");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " 1/3"), GET_TEXT(MSG_LCD_TILTING_MESH)));
measured_z = probe.probe_at_point(points[0], PROBE_PT_RAISE, param.V_verbosity);
if (isnan(measured_z))
abort_flag = true;
else {
measured_z -= get_z_correction(points[0]);
#ifdef VALIDATE_MESH_TILT
z1 = measured_z;
#endif
if (param.V_verbosity > 3) {
serial_spaces(16);
SERIAL_ECHOLNPGM("Corrected_Z=", measured_z);
}
incremental_LSF(&lsf_results, points[0], measured_z);
}
if (!abort_flag) {
SERIAL_ECHOLNPGM("Tilting mesh (2/3)");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " 2/3"), GET_TEXT(MSG_LCD_TILTING_MESH)));
measured_z = probe.probe_at_point(points[1], PROBE_PT_RAISE, param.V_verbosity);
#ifdef VALIDATE_MESH_TILT
z2 = measured_z;
#endif
if (isnan(measured_z))
abort_flag = true;
else {
measured_z -= get_z_correction(points[1]);
if (param.V_verbosity > 3) {
serial_spaces(16);
SERIAL_ECHOLNPGM("Corrected_Z=", measured_z);
}
incremental_LSF(&lsf_results, points[1], measured_z);
}
}
if (!abort_flag) {
SERIAL_ECHOLNPGM("Tilting mesh (3/3)");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " 3/3"), GET_TEXT(MSG_LCD_TILTING_MESH)));
measured_z = probe.probe_at_point(points[2], PROBE_PT_LAST_STOW, param.V_verbosity);
#ifdef VALIDATE_MESH_TILT
z3 = measured_z;
#endif
if (isnan(measured_z))
abort_flag = true;
else {
measured_z -= get_z_correction(points[2]);
if (param.V_verbosity > 3) {
serial_spaces(16);
SERIAL_ECHOLNPGM("Corrected_Z=", measured_z);
}
incremental_LSF(&lsf_results, points[2], measured_z);
}
}
probe.stow();
probe.move_z_after_probing();
if (abort_flag) {
SERIAL_ECHOLNPGM("?Error probing point. Aborting operation.");
return;
}
}
else { // !do_3_pt_leveling
bool zig_zag = false;
const uint16_t total_points = sq(param.J_grid_size);
uint16_t point_num = 1;
xy_pos_t rpos;
LOOP_L_N(ix, param.J_grid_size) {
rpos.x = x_min + ix * dx;
LOOP_L_N(iy, param.J_grid_size) {
rpos.y = y_min + dy * (zig_zag ? param.J_grid_size - 1 - iy : iy);
if (!abort_flag) {
SERIAL_ECHOLNPGM("Tilting mesh point ", point_num, "/", total_points, "\n");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT(MSG_LCD_TILTING_MESH), point_num, total_points));
measured_z = probe.probe_at_point(rpos, parser.seen_test('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, param.V_verbosity); // TODO: Needs error handling
abort_flag = isnan(measured_z);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
const xy_pos_t lpos = rpos.asLogical();
DEBUG_CHAR('(');
DEBUG_ECHO_F(rpos.x, 7);
DEBUG_CHAR(',');
DEBUG_ECHO_F(rpos.y, 7);
DEBUG_ECHOPAIR_F(") logical: (", lpos.x, 7);
DEBUG_CHAR(',');
DEBUG_ECHO_F(lpos.y, 7);
DEBUG_ECHOPAIR_F(") measured: ", measured_z, 7);
DEBUG_ECHOPAIR_F(" correction: ", get_z_correction(rpos), 7);
}
#endif
measured_z -= get_z_correction(rpos) /* + probe.offset.z */ ;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_F(" final >>>---> ", measured_z, 7);
if (param.V_verbosity > 3) {
serial_spaces(16);
SERIAL_ECHOLNPGM("Corrected_Z=", measured_z);
}
incremental_LSF(&lsf_results, rpos, measured_z);
}
point_num++;
}
zig_zag ^= true;
}
}
probe.stow();
probe.move_z_after_probing();
if (abort_flag || finish_incremental_LSF(&lsf_results)) {
SERIAL_ECHOPGM("Could not complete LSF!");
return;
}
vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1).get_normal();
if (param.V_verbosity > 2) {
SERIAL_ECHOPAIR_F("bed plane normal = [", normal.x, 7);
SERIAL_CHAR(',');
SERIAL_ECHO_F(normal.y, 7);
SERIAL_CHAR(',');
SERIAL_ECHO_F(normal.z, 7);
SERIAL_ECHOLNPGM("]");
}
matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
GRID_LOOP(i, j) {
float mx = get_mesh_x(i), my = get_mesh_y(j), mz = z_values[i][j];
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOPAIR_F("before rotation = [", mx, 7);
DEBUG_CHAR(',');
DEBUG_ECHO_F(my, 7);
DEBUG_CHAR(',');
DEBUG_ECHO_F(mz, 7);
DEBUG_ECHOPGM("] ---> ");
DEBUG_DELAY(20);
}
rotation.apply_rotation_xyz(mx, my, mz);
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOPAIR_F("after rotation = [", mx, 7);
DEBUG_CHAR(',');
DEBUG_ECHO_F(my, 7);
DEBUG_CHAR(',');
DEBUG_ECHO_F(mz, 7);
DEBUG_ECHOLNPGM("]");
DEBUG_DELAY(20);
}
z_values[i][j] = mz - lsf_results.D;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, z_values[i][j]));
}
if (DEBUGGING(LEVELING)) {
rotation.debug(F("rotation matrix:\n"));
DEBUG_ECHOPAIR_F("LSF Results A=", lsf_results.A, 7);
DEBUG_ECHOPAIR_F(" B=", lsf_results.B, 7);
DEBUG_ECHOLNPAIR_F(" D=", lsf_results.D, 7);
DEBUG_DELAY(55);
DEBUG_ECHOPAIR_F("bed plane normal = [", normal.x, 7);
DEBUG_CHAR(',');
DEBUG_ECHO_F(normal.y, 7);
DEBUG_CHAR(',');
DEBUG_ECHO_F(normal.z, 7);
DEBUG_ECHOLNPGM("]");
DEBUG_EOL();
/**
* Use the code below to check the validity of the mesh tilting algorithm.
* 3-Point Mesh Tilt uses the same algorithm as grid-based tilting, but only
* three points are used in the calculation. This guarantees that each probed point
* has an exact match when get_z_correction() for that location is calculated.
* The Z error between the probed point locations and the get_z_correction()
* numbers for those locations should be 0.
*/
#ifdef VALIDATE_MESH_TILT
auto d_from = []{ DEBUG_ECHOPGM("D from "); };
auto normed = [&](const xy_pos_t &pos, const_float_t zadd) {
return normal.x * pos.x + normal.y * pos.y + zadd;
};
auto debug_pt = [](FSTR_P const pre, const xy_pos_t &pos, const_float_t zadd) {
d_from(); SERIAL_ECHOF(pre);
DEBUG_ECHO_F(normed(pos, zadd), 6);
DEBUG_ECHOLNPAIR_F(" Z error = ", zadd - get_z_correction(pos), 6);
};
debug_pt(F("1st point: "), probe_pt[0], normal.z * z1);
debug_pt(F("2nd point: "), probe_pt[1], normal.z * z2);
debug_pt(F("3rd point: "), probe_pt[2], normal.z * z3);
d_from(); DEBUG_ECHOPGM("safe home with Z=");
DEBUG_ECHOLNPAIR_F("0 : ", normed(safe_homing_xy, 0), 6);
d_from(); DEBUG_ECHOPGM("safe home with Z=");
DEBUG_ECHOLNPAIR_F("mesh value ", normed(safe_homing_xy, get_z_correction(safe_homing_xy)), 6);
DEBUG_ECHOPGM(" Z error = (", Z_SAFE_HOMING_X_POINT, ",", Z_SAFE_HOMING_Y_POINT);
DEBUG_ECHOLNPAIR_F(") = ", get_z_correction(safe_homing_xy), 6);
#endif
} // DEBUGGING(LEVELING)
}
#endif // HAS_BED_PROBE
#if ENABLED(UBL_G29_P31)
void unified_bed_leveling::smart_fill_wlsf(const_float_t weight_factor) {
// For each undefined mesh point, compute a distance-weighted least squares fit
// from all the originally populated mesh points, weighted toward the point
// being extrapolated so that nearby points will have greater influence on
// the point being extrapolated. Then extrapolate the mesh point from WLSF.
static_assert((GRID_MAX_POINTS_Y) <= 16, "GRID_MAX_POINTS_Y too big");
uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
struct linear_fit_data lsf_results;
SERIAL_ECHOPGM("Extrapolating mesh...");
const float weight_scaled = weight_factor * _MAX(MESH_X_DIST, MESH_Y_DIST);
GRID_LOOP(jx, jy) if (!isnan(z_values[jx][jy])) SBI(bitmap[jx], jy);
xy_pos_t ppos;
LOOP_L_N(ix, GRID_MAX_POINTS_X) {
ppos.x = get_mesh_x(ix);
LOOP_L_N(iy, GRID_MAX_POINTS_Y) {
ppos.y = get_mesh_y(iy);
if (isnan(z_values[ix][iy])) {
// undefined mesh point at (ppos.x,ppos.y), compute weighted LSF from original valid mesh points.
incremental_LSF_reset(&lsf_results);
xy_pos_t rpos;
LOOP_L_N(jx, GRID_MAX_POINTS_X) {
rpos.x = get_mesh_x(jx);
LOOP_L_N(jy, GRID_MAX_POINTS_Y) {
if (TEST(bitmap[jx], jy)) {
rpos.y = get_mesh_y(jy);
const float rz = z_values[jx][jy],
w = 1.0f + weight_scaled / (rpos - ppos).magnitude();
incremental_WLSF(&lsf_results, rpos, rz, w);
}
}
}
if (finish_incremental_LSF(&lsf_results)) {
SERIAL_ECHOLNPGM("Insufficient data");
return;
}
const float ez = -lsf_results.D - lsf_results.A * ppos.x - lsf_results.B * ppos.y;
z_values[ix][iy] = ez;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, z_values[ix][iy]));
idle(); // housekeeping
}
}
}
SERIAL_ECHOLNPGM("done");
}
#endif // UBL_G29_P31
#if ENABLED(UBL_DEVEL_DEBUGGING)
/**
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
* good to have the extra information. Soon... we prune this to just a few items
*/
void unified_bed_leveling::g29_what_command() {
report_state();
if (storage_slot == -1)
SERIAL_ECHOPGM("No Mesh Loaded.");
else
SERIAL_ECHOPGM("Mesh ", storage_slot, " Loaded.");
SERIAL_EOL();
serial_delay(50);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHOLNPAIR_F("Fade Height M420 Z", planner.z_fade_height, 4);
#endif
adjust_mesh_to_mean(param.C_seen, param.C_constant);
#if HAS_BED_PROBE
SERIAL_ECHOLNPAIR_F("Probe Offset M851 Z", probe.offset.z, 7);
#endif
SERIAL_ECHOLNPGM("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X); serial_delay(50);
SERIAL_ECHOLNPGM("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y); serial_delay(50);
SERIAL_ECHOLNPGM("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X); serial_delay(50);
SERIAL_ECHOLNPGM("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y); serial_delay(50);
SERIAL_ECHOLNPGM("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X); serial_delay(50);
SERIAL_ECHOLNPGM("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y); serial_delay(50);
SERIAL_ECHOLNPGM("MESH_X_DIST ", MESH_X_DIST);
SERIAL_ECHOLNPGM("MESH_Y_DIST ", MESH_Y_DIST); serial_delay(50);
SERIAL_ECHOPGM("X-Axis Mesh Points at: ");
LOOP_L_N(i, GRID_MAX_POINTS_X) {
SERIAL_ECHO_F(LOGICAL_X_POSITION(get_mesh_x(i)), 3);
SERIAL_ECHOPGM(" ");
serial_delay(25);
}
SERIAL_EOL();
SERIAL_ECHOPGM("Y-Axis Mesh Points at: ");
LOOP_L_N(i, GRID_MAX_POINTS_Y) {
SERIAL_ECHO_F(LOGICAL_Y_POSITION(get_mesh_y(i)), 3);
SERIAL_ECHOPGM(" ");
serial_delay(25);
}
SERIAL_EOL();
#if HAS_KILL
SERIAL_ECHOLNPGM("Kill pin on :", KILL_PIN, " state:", kill_state());
#endif
SERIAL_EOL();
serial_delay(50);
#if ENABLED(UBL_DEVEL_DEBUGGING)
SERIAL_ECHOLNPGM("ubl_state_at_invocation :", ubl_state_at_invocation, "\nubl_state_recursion_chk :", ubl_state_recursion_chk);
serial_delay(50);
SERIAL_ECHOLNPGM("Meshes go from ", hex_address((void*)settings.meshes_start_index()), " to ", hex_address((void*)settings.meshes_end_index()));
serial_delay(50);
SERIAL_ECHOLNPGM("sizeof(ubl) : ", sizeof(ubl)); SERIAL_EOL();
SERIAL_ECHOLNPGM("z_value[][] size: ", sizeof(z_values)); SERIAL_EOL();
serial_delay(25);
SERIAL_ECHOLNPGM("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index())));
serial_delay(50);
SERIAL_ECHOLNPGM("EEPROM can hold ", settings.calc_num_meshes(), " meshes.\n");
serial_delay(25);
#endif // UBL_DEVEL_DEBUGGING
if (!sanity_check()) {
echo_name();
SERIAL_ECHOLNPGM(" sanity checks passed.");
}
}
/**
* When we are fully debugged, the EEPROM dump command will get deleted also. But
* right now, it is good to have the extra information. Soon... we prune this.
*/
void unified_bed_leveling::g29_eeprom_dump() {
uint8_t cccc;
SERIAL_ECHO_MSG("EEPROM Dump:");
persistentStore.access_start();
for (uint16_t i = 0; i < persistentStore.capacity(); i += 16) {
if (!(i & 0x3)) idle();
print_hex_word(i);
SERIAL_ECHOPGM(": ");
for (uint16_t j = 0; j < 16; j++) {
persistentStore.read_data(i + j, &cccc, sizeof(uint8_t));
print_hex_byte(cccc);
SERIAL_CHAR(' ');
}
SERIAL_EOL();
}
SERIAL_EOL();
persistentStore.access_finish();
}
/**
* When we are fully debugged, this may go away. But there are some valid
* use cases for the users. So we can wait and see what to do with it.
*/
void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
const int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_ECHOLNPGM("?EEPROM storage not available.");
return;
}
if (!parser.has_value() || !WITHIN(parser.value_int(), 0, a - 1)) {
SERIAL_ECHOLNPGM("?Invalid storage slot.\n?Use 0 to ", a - 1);
return;
}
param.KLS_storage_slot = (int8_t)parser.value_int();
float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
settings.load_mesh(param.KLS_storage_slot, &tmp_z_values);
SERIAL_ECHOLNPGM("Subtracting mesh in slot ", param.KLS_storage_slot, " from current mesh.");
GRID_LOOP(x, y) {
z_values[x][y] -= tmp_z_values[x][y];
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
}
}
#endif // UBL_DEVEL_DEBUGGING
#endif // AUTO_BED_LEVELING_UBL