Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

429 lines
14 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_ESP32
#include "../../inc/MarlinConfig.h"
#include <rom/rtc.h>
#include <driver/adc.h>
#include <esp_adc_cal.h>
#include <HardwareSerial.h>
#if ENABLED(USE_ESP32_TASK_WDT)
#include <esp_task_wdt.h>
#endif
#if ENABLED(WIFISUPPORT)
#include <ESPAsyncWebServer.h>
#include "wifi.h"
#if ENABLED(OTASUPPORT)
#include "ota.h"
#endif
#if ENABLED(WEBSUPPORT)
#include "spiffs.h"
#include "web.h"
#endif
#endif
#if ENABLED(ESP3D_WIFISUPPORT)
DefaultSerial1 MSerial0(false, Serial2Socket);
#endif
// ------------------------
// Externs
// ------------------------
portMUX_TYPE MarlinHAL::spinlock = portMUX_INITIALIZER_UNLOCKED;
// ------------------------
// Local defines
// ------------------------
#define V_REF 1100
// ------------------------
// Public Variables
// ------------------------
uint16_t MarlinHAL::adc_result;
pwm_pin_t MarlinHAL::pwm_pin_data[MAX_EXPANDER_BITS];
// ------------------------
// Private Variables
// ------------------------
esp_adc_cal_characteristics_t characteristics[ADC_ATTEN_MAX];
adc_atten_t attenuations[ADC1_CHANNEL_MAX] = {};
uint32_t thresholds[ADC_ATTEN_MAX];
volatile int numPWMUsed = 0;
volatile struct { pin_t pin; int value; } pwmState[MAX_PWM_PINS];
pin_t chan_pin[CHANNEL_MAX_NUM + 1] = { 0 }; // PWM capable IOpins - not 0 or >33 on ESP32
struct {
uint32_t freq; // ledcReadFreq doesn't work if a duty hasn't been set yet!
uint16_t res;
} pwmInfo[(CHANNEL_MAX_NUM + 1) / 2];
// ------------------------
// Public functions
// ------------------------
#if ENABLED(WIFI_CUSTOM_COMMAND)
bool wifi_custom_command(char * const command_ptr) {
#if ENABLED(ESP3D_WIFISUPPORT)
return esp3dlib.parse(command_ptr);
#else
UNUSED(command_ptr);
return false;
#endif
}
#endif
#if ENABLED(USE_ESP32_EXIO)
HardwareSerial YSerial2(2);
void Write_EXIO(uint8_t IO, uint8_t v) {
if (hal.isr_state()) {
hal.isr_off();
YSerial2.write(0x80 | (((char)v) << 5) | (IO - 100));
hal.isr_on();
}
else
YSerial2.write(0x80 | (((char)v) << 5) | (IO - 100));
}
#endif
void MarlinHAL::init_board() {
#if ENABLED(USE_ESP32_TASK_WDT)
esp_task_wdt_init(10, true);
#endif
#if ENABLED(ESP3D_WIFISUPPORT)
esp3dlib.init();
#elif ENABLED(WIFISUPPORT)
wifi_init();
TERN_(OTASUPPORT, OTA_init());
#if ENABLED(WEBSUPPORT)
spiffs_init();
web_init();
#endif
server.begin();
#endif
// ESP32 uses a GPIO matrix that allows pins to be assigned to hardware serial ports.
// The following code initializes hardware Serial1 and Serial2 to use user-defined pins
// if they have been defined.
#if defined(HARDWARE_SERIAL1_RX) && defined(HARDWARE_SERIAL1_TX)
HardwareSerial Serial1(1);
#ifdef TMC_BAUD_RATE // use TMC_BAUD_RATE for Serial1 if defined
Serial1.begin(TMC_BAUD_RATE, SERIAL_8N1, HARDWARE_SERIAL1_RX, HARDWARE_SERIAL1_TX);
#else // use default BAUDRATE if TMC_BAUD_RATE not defined
Serial1.begin(BAUDRATE, SERIAL_8N1, HARDWARE_SERIAL1_RX, HARDWARE_SERIAL1_TX);
#endif
#endif
#if defined(HARDWARE_SERIAL2_RX) && defined(HARDWARE_SERIAL2_TX)
HardwareSerial Serial2(2);
#ifdef TMC_BAUD_RATE // use TMC_BAUD_RATE for Serial1 if defined
Serial2.begin(TMC_BAUD_RATE, SERIAL_8N1, HARDWARE_SERIAL2_RX, HARDWARE_SERIAL2_TX);
#else // use default BAUDRATE if TMC_BAUD_RATE not defined
Serial2.begin(BAUDRATE, SERIAL_8N1, HARDWARE_SERIAL2_RX, HARDWARE_SERIAL2_TX);
#endif
#endif
// Initialize the i2s peripheral only if the I2S stepper stream is enabled.
// The following initialization is performed after Serial1 and Serial2 are defined as
// their native pins might conflict with the i2s stream even when they are remapped.
#if ENABLED(USE_ESP32_EXIO)
YSerial2.begin(460800 * 3, SERIAL_8N1, 16, 17);
#elif ENABLED(I2S_STEPPER_STREAM)
i2s_init();
#endif
}
void MarlinHAL::idletask() {
#if BOTH(WIFISUPPORT, OTASUPPORT)
OTA_handle();
#endif
TERN_(ESP3D_WIFISUPPORT, esp3dlib.idletask());
}
uint8_t MarlinHAL::get_reset_source() { return rtc_get_reset_reason(1); }
void MarlinHAL::reboot() { ESP.restart(); }
void _delay_ms(int delay_ms) { delay(delay_ms); }
// return free memory between end of heap (or end bss) and whatever is current
int MarlinHAL::freeMemory() { return ESP.getFreeHeap(); }
// ------------------------
// Watchdog Timer
// ------------------------
#if ENABLED(USE_WATCHDOG)
#define WDT_TIMEOUT_US TERN(WATCHDOG_DURATION_8S, 8000000, 4000000) // 4 or 8 second timeout
extern "C" {
esp_err_t esp_task_wdt_reset();
}
void watchdogSetup() {
// do whatever. don't remove this function.
}
void MarlinHAL::watchdog_init() {
// TODO
}
// Reset watchdog.
void MarlinHAL::watchdog_refresh() { esp_task_wdt_reset(); }
#endif
// ------------------------
// ADC
// ------------------------
#define ADC1_CHANNEL(pin) ADC1_GPIO ## pin ## _CHANNEL
adc1_channel_t get_channel(int pin) {
switch (pin) {
case 39: return ADC1_CHANNEL(39);
case 36: return ADC1_CHANNEL(36);
case 35: return ADC1_CHANNEL(35);
case 34: return ADC1_CHANNEL(34);
case 33: return ADC1_CHANNEL(33);
case 32: return ADC1_CHANNEL(32);
}
return ADC1_CHANNEL_MAX;
}
void adc1_set_attenuation(adc1_channel_t chan, adc_atten_t atten) {
if (attenuations[chan] != atten) {
adc1_config_channel_atten(chan, atten);
attenuations[chan] = atten;
}
}
void MarlinHAL::adc_init() {
// Configure ADC
adc1_config_width(ADC_WIDTH_12Bit);
// Configure channels only if used as (re-)configuring a pin for ADC that is used elsewhere might have adverse effects
TERN_(HAS_TEMP_ADC_0, adc1_set_attenuation(get_channel(TEMP_0_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_1, adc1_set_attenuation(get_channel(TEMP_1_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_2, adc1_set_attenuation(get_channel(TEMP_2_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_3, adc1_set_attenuation(get_channel(TEMP_3_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_4, adc1_set_attenuation(get_channel(TEMP_4_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_5, adc1_set_attenuation(get_channel(TEMP_5_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_6, adc2_set_attenuation(get_channel(TEMP_6_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_7, adc3_set_attenuation(get_channel(TEMP_7_PIN), ADC_ATTEN_11db));
TERN_(HAS_HEATED_BED, adc1_set_attenuation(get_channel(TEMP_BED_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_CHAMBER, adc1_set_attenuation(get_channel(TEMP_CHAMBER_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_PROBE, adc1_set_attenuation(get_channel(TEMP_PROBE_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_COOLER, adc1_set_attenuation(get_channel(TEMP_COOLER_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_BOARD, adc1_set_attenuation(get_channel(TEMP_BOARD_PIN), ADC_ATTEN_11db));
TERN_(FILAMENT_WIDTH_SENSOR, adc1_set_attenuation(get_channel(FILWIDTH_PIN), ADC_ATTEN_11db));
// Note that adc2 is shared with the WiFi module, which has higher priority, so the conversion may fail.
// That's why we're not setting it up here.
// Calculate ADC characteristics (i.e., gain and offset factors for each attenuation level)
for (int i = 0; i < ADC_ATTEN_MAX; i++) {
esp_adc_cal_characterize(ADC_UNIT_1, (adc_atten_t)i, ADC_WIDTH_BIT_12, V_REF, &characteristics[i]);
// Change attenuation 100mV below the calibrated threshold
thresholds[i] = esp_adc_cal_raw_to_voltage(4095, &characteristics[i]);
}
}
#ifndef ADC_REFERENCE_VOLTAGE
#define ADC_REFERENCE_VOLTAGE 3.3
#endif
void MarlinHAL::adc_start(const pin_t pin) {
const adc1_channel_t chan = get_channel(pin);
uint32_t mv;
esp_adc_cal_get_voltage((adc_channel_t)chan, &characteristics[attenuations[chan]], &mv);
adc_result = mv * isr_float_t(1023) / isr_float_t(ADC_REFERENCE_VOLTAGE) / isr_float_t(1000);
// Change the attenuation level based on the new reading
adc_atten_t atten;
if (mv < thresholds[ADC_ATTEN_DB_0] - 100)
atten = ADC_ATTEN_DB_0;
else if (mv > thresholds[ADC_ATTEN_DB_0] - 50 && mv < thresholds[ADC_ATTEN_DB_2_5] - 100)
atten = ADC_ATTEN_DB_2_5;
else if (mv > thresholds[ADC_ATTEN_DB_2_5] - 50 && mv < thresholds[ADC_ATTEN_DB_6] - 100)
atten = ADC_ATTEN_DB_6;
else if (mv > thresholds[ADC_ATTEN_DB_6] - 50)
atten = ADC_ATTEN_DB_11;
else return;
adc1_set_attenuation(chan, atten);
}
// ------------------------
// PWM
// ------------------------
int8_t channel_for_pin(const uint8_t pin) {
for (int i = 0; i <= CHANNEL_MAX_NUM; i++)
if (chan_pin[i] == pin) return i;
return -1;
}
// get PWM channel for pin - if none then attach a new one
// return -1 if fail or invalid pin#, channel # (0-15) if success
int8_t get_pwm_channel(const pin_t pin, const uint32_t freq, const uint16_t res) {
if (!WITHIN(pin, 1, MAX_PWM_IOPIN)) return -1; // Not a hardware PWM pin!
int8_t cid = channel_for_pin(pin);
if (cid >= 0) return cid;
// Find an empty adjacent channel (same timer & freq/res)
for (int i = 0; i <= CHANNEL_MAX_NUM; i++) {
if (chan_pin[i] == 0) {
if (chan_pin[i ^ 0x1] != 0) {
if (pwmInfo[i / 2].freq == freq && pwmInfo[i / 2].res == res) {
chan_pin[i] = pin; // Allocate PWM to this channel
ledcAttachPin(pin, i);
return i;
}
}
else if (cid == -1) // Pair of empty channels?
cid = i & 0xFE; // Save lower channel number
}
}
// not attached, is an empty timer slot avail?
if (cid >= 0) {
chan_pin[cid] = pin;
pwmInfo[cid / 2].freq = freq;
pwmInfo[cid / 2].res = res;
ledcSetup(cid, freq, res);
ledcAttachPin(pin, cid);
}
return cid; // -1 if no channel avail
}
void MarlinHAL::set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=_BV(PWM_RESOLUTION)-1*/, const bool invert/*=false*/) {
#if ENABLED(I2S_STEPPER_STREAM)
if (pin > 127) {
const uint8_t pinlo = pin & 0x7F;
pwm_pin_t &pindata = pwm_pin_data[pinlo];
const uint32_t duty = map(invert ? v_size - v : v, 0, v_size, 0, pindata.pwm_cycle_ticks);
if (duty == 0 || duty == pindata.pwm_cycle_ticks) { // max or min (i.e., on/off)
pindata.pwm_duty_ticks = 0; // turn off PWM for this pin
duty ? SBI32(i2s_port_data, pinlo) : CBI32(i2s_port_data, pinlo); // set pin level
}
else
pindata.pwm_duty_ticks = duty; // PWM duty count = # of 4µs ticks per full PWM cycle
}
else
#endif
{
const int8_t cid = get_pwm_channel(pin, PWM_FREQUENCY, PWM_RESOLUTION);
if (cid >= 0) {
const uint32_t duty = map(invert ? v_size - v : v, 0, v_size, 0, _BV(PWM_RESOLUTION)-1);
ledcWrite(cid, duty);
}
}
}
int8_t MarlinHAL::set_pwm_frequency(const pin_t pin, const uint32_t f_desired) {
#if ENABLED(I2S_STEPPER_STREAM)
if (pin > 127) {
pwm_pin_data[pin & 0x7F].pwm_cycle_ticks = 1000000UL / f_desired / 4; // # of 4µs ticks per full PWM cycle
return 0;
}
else
#endif
{
const int8_t cid = channel_for_pin(pin);
if (cid >= 0) {
if (f_desired == ledcReadFreq(cid)) return cid; // no freq change
ledcDetachPin(chan_pin[cid]);
chan_pin[cid] = 0; // remove old freq channel
}
return get_pwm_channel(pin, f_desired, PWM_RESOLUTION); // try for new one
}
}
// use hardware PWM if avail, if not then ISR
void analogWrite(const pin_t pin, const uint16_t value, const uint32_t freq/*=PWM_FREQUENCY*/, const uint16_t res/*=8*/) { // always 8 bit resolution!
// Use ledc hardware for internal pins
const int8_t cid = get_pwm_channel(pin, freq, res);
if (cid >= 0) {
ledcWrite(cid, value); // set duty value
return;
}
// not a hardware PWM pin OR no PWM channels available
int idx = -1;
// Search Pin
for (int i = 0; i < numPWMUsed; ++i)
if (pwmState[i].pin == pin) { idx = i; break; }
// not found ?
if (idx < 0) {
// No slots remaining
if (numPWMUsed >= MAX_PWM_PINS) return;
// Take new slot for pin
idx = numPWMUsed;
pwmState[idx].pin = pin;
// Start timer on first use
if (idx == 0) HAL_timer_start(MF_TIMER_PWM, PWM_TIMER_FREQUENCY);
++numPWMUsed;
}
// Use 7bit internal value - add 1 to have 100% high at 255
pwmState[idx].value = (value + 1) / 2;
}
// Handle PWM timer interrupt
HAL_PWM_TIMER_ISR() {
HAL_timer_isr_prologue(MF_TIMER_PWM);
static uint8_t count = 0;
for (int i = 0; i < numPWMUsed; ++i) {
if (count == 0) // Start of interval
digitalWrite(pwmState[i].pin, pwmState[i].value ? HIGH : LOW);
else if (pwmState[i].value == count) // End of duration
digitalWrite(pwmState[i].pin, LOW);
}
// 128 for 7 Bit resolution
count = (count + 1) & 0x7F;
HAL_timer_isr_epilogue(MF_TIMER_PWM);
}
#endif // ARDUINO_ARCH_ESP32