Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

597 lines
19 KiB

/***************************************************************************
* ARM Stack Unwinder, Michael.McTernan.2001@cs.bris.ac.uk
* Updated, adapted and several bug fixes on 2018 by Eduardo José Tagle
*
* This program is PUBLIC DOMAIN.
* This means that there is no copyright and anyone is able to take a copy
* for free and use it as they wish, with or without modifications, and in
* any context, commercially or otherwise. The only limitation is that I
* don't guarantee that the software is fit for any purpose or accept any
* liability for it's use or misuse - this software is without warranty.
***************************************************************************
* File Description: Abstract interpreter for ARM mode.
**************************************************************************/
#if defined(__arm__) || defined(__thumb__)
#define MODULE_NAME "UNWARM_ARM"
#include <stdio.h>
#include "unwarm.h"
/** Check if some instruction is a data-processing instruction.
* Decodes the passed instruction, checks if it is a data-processing and
* verifies that the parameters and operation really indicate a data-
* processing instruction. This is needed because some parts of the
* instruction space under this instruction can be extended or represent
* other operations such as MRS, MSR.
*
* \param[in] inst The instruction word.
* \retval true Further decoding of the instruction indicates that this is
* a valid data-processing instruction.
* \retval false This is not a data-processing instruction,
*/
static bool isDataProc(uint32_t instr) {
uint8_t opcode = (instr & 0x01e00000) >> 21;
bool S = (instr & 0x00100000) ? true : false;
if((instr & 0xfc000000) != 0xe0000000) {
return false;
} else
if(!S && opcode >= 8 && opcode <= 11) {
/* TST, TEQ, CMP and CMN all require S to be set */
return false;
} else {
return true;
}
}
UnwResult UnwStartArm(UnwState * const state) {
bool found = false;
uint16_t t = UNW_MAX_INSTR_COUNT;
do {
uint32_t instr;
/* Attempt to read the instruction */
if(!state->cb->readW(state->regData[15].v, &instr)) {
return UNWIND_IREAD_W_FAIL;
}
UnwPrintd4("A %x %x %08x:", state->regData[13].v, state->regData[15].v, instr);
/* Check that the PC is still on Arm alignment */
if(state->regData[15].v & 0x3) {
UnwPrintd1("\nError: PC misalignment\n");
return UNWIND_INCONSISTENT;
}
/* Check that the SP and PC have not been invalidated */
if(!M_IsOriginValid(state->regData[13].o) || !M_IsOriginValid(state->regData[15].o)) {
UnwPrintd1("\nError: PC or SP invalidated\n");
return UNWIND_INCONSISTENT;
}
/* Branch and Exchange (BX)
* This is tested prior to data processing to prevent
* mis-interpretation as an invalid TEQ instruction.
*/
if((instr & 0xfffffff0) == 0xe12fff10) {
uint8_t rn = instr & 0xf;
UnwPrintd4("BX r%d\t ; r%d %s\n", rn, rn, M_Origin2Str(state->regData[rn].o));
if(!M_IsOriginValid(state->regData[rn].o)) {
UnwPrintd1("\nUnwind failure: BX to untracked register\n");
return UNWIND_FAILURE;
}
/* Set the new PC value */
state->regData[15].v = state->regData[rn].v;
/* Check if the return value is from the stack */
if(state->regData[rn].o == REG_VAL_FROM_STACK) {
/* Now have the return address */
UnwPrintd2(" Return PC=%x\n", state->regData[15].v & (~0x1));
/* Report the return address */
if(!UnwReportRetAddr(state, state->regData[rn].v)) {
return UNWIND_TRUNCATED;
}
}
/* Determine the return mode */
if(state->regData[rn].v & 0x1) {
/* Branching to THUMB */
return UnwStartThumb(state);
}
else {
/* Branch to ARM */
/* Account for the auto-increment which isn't needed */
state->regData[15].v -= 4;
}
}
/* Branch */
else if((instr & 0xff000000) == 0xea000000) {
int32_t offset = (instr & 0x00ffffff);
/* Shift value */
offset = offset << 2;
/* Sign extend if needed */
if(offset & 0x02000000) {
offset |= 0xfc000000;
}
UnwPrintd2("B %d\n", offset);
/* Adjust PC */
state->regData[15].v += offset;
/* Account for pre-fetch, where normally the PC is 8 bytes
* ahead of the instruction just executed.
*/
state->regData[15].v += 4;
}
/* MRS */
else if((instr & 0xffbf0fff) == 0xe10f0000) {
#if defined(UNW_DEBUG)
bool R = (instr & 0x00400000) ? true : false;
#endif
uint8_t rd = (instr & 0x0000f000) >> 12;
UnwPrintd4("MRS r%d,%s\t; r%d invalidated", rd, R ? "SPSR" : "CPSR", rd);
/* Status registers untracked */
state->regData[rd].o = REG_VAL_INVALID;
}
/* MSR */
else if((instr & 0xffb0f000) == 0xe120f000) {
#if defined(UNW_DEBUG)
bool R = (instr & 0x00400000) ? true : false;
UnwPrintd2("MSR %s_?, ???", R ? "SPSR" : "CPSR");
#endif
/* Status registers untracked.
* Potentially this could change processor mode and switch
* banked registers r8-r14. Most likely is that r13 (sp) will
* be banked. However, invalidating r13 will stop unwinding
* when potentially this write is being used to disable/enable
* interrupts (a common case). Therefore no invalidation is
* performed.
*/
}
/* Data processing */
else if(isDataProc(instr)) {
bool I = (instr & 0x02000000) ? true : false;
uint8_t opcode = (instr & 0x01e00000) >> 21;
#if defined(UNW_DEBUG)
bool S = (instr & 0x00100000) ? true : false;
#endif
uint8_t rn = (instr & 0x000f0000) >> 16;
uint8_t rd = (instr & 0x0000f000) >> 12;
uint16_t operand2 = (instr & 0x00000fff);
uint32_t op2val;
int op2origin;
switch(opcode) {
case 0: UnwPrintd4("AND%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 1: UnwPrintd4("EOR%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 2: UnwPrintd4("SUB%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 3: UnwPrintd4("RSB%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 4: UnwPrintd4("ADD%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 5: UnwPrintd4("ADC%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 6: UnwPrintd4("SBC%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 7: UnwPrintd4("RSC%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 8: UnwPrintd3("TST%s r%d,", S ? "S" : "", rn); break;
case 9: UnwPrintd3("TEQ%s r%d,", S ? "S" : "", rn); break;
case 10: UnwPrintd3("CMP%s r%d,", S ? "S" : "", rn); break;
case 11: UnwPrintd3("CMN%s r%d,", S ? "S" : "", rn); break;
case 12: UnwPrintd3("ORR%s r%d,", S ? "S" : "", rn); break;
case 13: UnwPrintd3("MOV%s r%d,", S ? "S" : "", rd); break;
case 14: UnwPrintd4("BIC%s r%d,r%d", S ? "S" : "", rd, rn); break;
case 15: UnwPrintd3("MVN%s r%d,", S ? "S" : "", rd); break;
}
/* Decode operand 2 */
if (I) {
uint8_t shiftDist = (operand2 & 0x0f00) >> 8;
uint8_t shiftConst = (operand2 & 0x00ff);
/* rotate const right by 2 * shiftDist */
shiftDist *= 2;
op2val = (shiftConst >> shiftDist) |
(shiftConst << (32 - shiftDist));
op2origin = REG_VAL_FROM_CONST;
UnwPrintd2("#0x%x", op2val);
}
else {
/* Register and shift */
uint8_t rm = (operand2 & 0x000f);
uint8_t regShift = (operand2 & 0x0010) ? true : false;
uint8_t shiftType = (operand2 & 0x0060) >> 5;
uint32_t shiftDist;
#if defined(UNW_DEBUG)
const char * const shiftMnu[4] = { "LSL", "LSR", "ASR", "ROR" };
#endif
UnwPrintd2("r%d ", rm);
/* Get the shift distance */
if(regShift) {
uint8_t rs = (operand2 & 0x0f00) >> 8;
if(operand2 & 0x00800) {
UnwPrintd1("\nError: Bit should be zero\n");
return UNWIND_ILLEGAL_INSTR;
}
else if(rs == 15) {
UnwPrintd1("\nError: Cannot use R15 with register shift\n");
return UNWIND_ILLEGAL_INSTR;
}
/* Get shift distance */
shiftDist = state->regData[rs].v;
op2origin = state->regData[rs].o;
UnwPrintd7("%s r%d\t; r%d %s r%d %s", shiftMnu[shiftType], rs, rm, M_Origin2Str(state->regData[rm].o), rs, M_Origin2Str(state->regData[rs].o));
}
else {
shiftDist = (operand2 & 0x0f80) >> 7;
op2origin = REG_VAL_FROM_CONST;
if(shiftDist) {
UnwPrintd3("%s #%d", shiftMnu[shiftType], shiftDist);
}
UnwPrintd3("\t; r%d %s", rm, M_Origin2Str(state->regData[rm].o));
}
/* Apply the shift type to the source register */
switch(shiftType) {
case 0: /* logical left */
op2val = state->regData[rm].v << shiftDist;
break;
case 1: /* logical right */
if(!regShift && shiftDist == 0) {
shiftDist = 32;
}
op2val = state->regData[rm].v >> shiftDist;
break;
case 2: /* arithmetic right */
if(!regShift && shiftDist == 0) {
shiftDist = 32;
}
if(state->regData[rm].v & 0x80000000) {
/* Register shifts maybe greater than 32 */
if(shiftDist >= 32) {
op2val = 0xffffffff;
}
else {
op2val = state->regData[rm].v >> shiftDist;
op2val |= 0xffffffff << (32 - shiftDist);
}
}
else {
op2val = state->regData[rm].v >> shiftDist;
}
break;
case 3: /* rotate right */
if(!regShift && shiftDist == 0) {
/* Rotate right with extend.
* This uses the carry bit and so always has an
* untracked result.
*/
op2origin = REG_VAL_INVALID;
op2val = 0;
}
else {
/* Limit shift distance to 0-31 incase of register shift */
shiftDist &= 0x1f;
op2val = (state->regData[rm].v >> shiftDist) |
(state->regData[rm].v << (32 - shiftDist));
}
break;
default:
UnwPrintd2("\nError: Invalid shift type: %d\n", shiftType);
return UNWIND_FAILURE;
}
/* Decide the data origin */
if(M_IsOriginValid(op2origin) &&
M_IsOriginValid(state->regData[rm].o)) {
op2origin = state->regData[rm].o;
op2origin |= REG_VAL_ARITHMETIC;
}
else {
op2origin = REG_VAL_INVALID;
}
}
/* Propagate register validity */
switch(opcode) {
case 0: /* AND: Rd := Op1 AND Op2 */
case 1: /* EOR: Rd := Op1 EOR Op2 */
case 2: /* SUB: Rd:= Op1 - Op2 */
case 3: /* RSB: Rd:= Op2 - Op1 */
case 4: /* ADD: Rd:= Op1 + Op2 */
case 12: /* ORR: Rd:= Op1 OR Op2 */
case 14: /* BIC: Rd:= Op1 AND NOT Op2 */
if(!M_IsOriginValid(state->regData[rn].o) ||
!M_IsOriginValid(op2origin)) {
state->regData[rd].o = REG_VAL_INVALID;
}
else {
state->regData[rd].o = state->regData[rn].o;
state->regData[rd].o = (RegValOrigin)(state->regData[rd].o | op2origin);
}
break;
case 5: /* ADC: Rd:= Op1 + Op2 + C */
case 6: /* SBC: Rd:= Op1 - Op2 + C */
case 7: /* RSC: Rd:= Op2 - Op1 + C */
/* CPSR is not tracked */
state->regData[rd].o = REG_VAL_INVALID;
break;
case 8: /* TST: set condition codes on Op1 AND Op2 */
case 9: /* TEQ: set condition codes on Op1 EOR Op2 */
case 10: /* CMP: set condition codes on Op1 - Op2 */
case 11: /* CMN: set condition codes on Op1 + Op2 */
break;
case 13: /* MOV: Rd:= Op2 */
case 15: /* MVN: Rd:= NOT Op2 */
state->regData[rd].o = (RegValOrigin) op2origin;
break;
}
/* Account for pre-fetch by temporarily adjusting PC */
if(rn == 15) {
/* If the shift amount is specified in the instruction,
* the PC will be 8 bytes ahead. If a register is used
* to specify the shift amount the PC will be 12 bytes
* ahead.
*/
if(!I && (operand2 & 0x0010))
state->regData[rn].v += 12;
else
state->regData[rn].v += 8;
}
/* Compute values */
switch(opcode) {
case 0: /* AND: Rd := Op1 AND Op2 */
state->regData[rd].v = state->regData[rn].v & op2val;
break;
case 1: /* EOR: Rd := Op1 EOR Op2 */
state->regData[rd].v = state->regData[rn].v ^ op2val;
break;
case 2: /* SUB: Rd:= Op1 - Op2 */
state->regData[rd].v = state->regData[rn].v - op2val;
break;
case 3: /* RSB: Rd:= Op2 - Op1 */
state->regData[rd].v = op2val - state->regData[rn].v;
break;
case 4: /* ADD: Rd:= Op1 + Op2 */
state->regData[rd].v = state->regData[rn].v + op2val;
break;
case 5: /* ADC: Rd:= Op1 + Op2 + C */
case 6: /* SBC: Rd:= Op1 - Op2 + C */
case 7: /* RSC: Rd:= Op2 - Op1 + C */
case 8: /* TST: set condition codes on Op1 AND Op2 */
case 9: /* TEQ: set condition codes on Op1 EOR Op2 */
case 10: /* CMP: set condition codes on Op1 - Op2 */
case 11: /* CMN: set condition codes on Op1 + Op2 */
UnwPrintd1("\t; ????");
break;
case 12: /* ORR: Rd:= Op1 OR Op2 */
state->regData[rd].v = state->regData[rn].v | op2val;
break;
case 13: /* MOV: Rd:= Op2 */
state->regData[rd].v = op2val;
break;
case 14: /* BIC: Rd:= Op1 AND NOT Op2 */
state->regData[rd].v = state->regData[rn].v & (~op2val);
break;
case 15: /* MVN: Rd:= NOT Op2 */
state->regData[rd].v = ~op2val;
break;
}
/* Remove the prefetch offset from the PC */
if(rd != 15 && rn == 15) {
if(!I && (operand2 & 0x0010))
state->regData[rn].v -= 12;
else
state->regData[rn].v -= 8;
}
}
/* Block Data Transfer
* LDM, STM
*/
else if((instr & 0xfe000000) == 0xe8000000) {
bool P = (instr & 0x01000000) ? true : false;
bool U = (instr & 0x00800000) ? true : false;
bool S = (instr & 0x00400000) ? true : false;
bool W = (instr & 0x00200000) ? true : false;
bool L = (instr & 0x00100000) ? true : false;
uint16_t baseReg = (instr & 0x000f0000) >> 16;
uint16_t regList = (instr & 0x0000ffff);
uint32_t addr = state->regData[baseReg].v;
bool addrValid = M_IsOriginValid(state->regData[baseReg].o);
int8_t r;
#if defined(UNW_DEBUG)
/* Display the instruction */
if(L) {
UnwPrintd6("LDM%c%c r%d%s, {reglist}%s\n", P ? 'E' : 'F', U ? 'D' : 'A', baseReg, W ? "!" : "", S ? "^" : "");
}
else {
UnwPrintd6("STM%c%c r%d%s, {reglist}%s\n", !P ? 'E' : 'F', !U ? 'D' : 'A', baseReg, W ? "!" : "", S ? "^" : "");
}
#endif
/* S indicates that banked registers (untracked) are used, unless
* this is a load including the PC when the S-bit indicates that
* that CPSR is loaded from SPSR (also untracked, but ignored).
*/
if(S && (!L || (regList & (0x01 << 15)) == 0)) {
UnwPrintd1("\nError:S-bit set requiring banked registers\n");
return UNWIND_FAILURE;
}
else if(baseReg == 15) {
UnwPrintd1("\nError: r15 used as base register\n");
return UNWIND_FAILURE;
}
else if(regList == 0) {
UnwPrintd1("\nError: Register list empty\n");
return UNWIND_FAILURE;
}
/* Check if ascending or descending.
* Registers are loaded/stored in order of address.
* i.e. r0 is at the lowest address, r15 at the highest.
*/
r = U ? 0 : 15;
do {
/* Check if the register is to be transferred */
if(regList & (0x01 << r)) {
if(P)
addr += U ? 4 : -4;
if(L) {
if(addrValid) {
if(!UnwMemReadRegister(state, addr, &state->regData[r])) {
return UNWIND_DREAD_W_FAIL;
}
/* Update the origin if read via the stack pointer */
if(M_IsOriginValid(state->regData[r].o) && baseReg == 13) {
state->regData[r].o = REG_VAL_FROM_STACK;
}
UnwPrintd5(" R%d = 0x%08x\t; r%d %s\n",r,state->regData[r].v,r, M_Origin2Str(state->regData[r].o));
}
else {
/* Invalidate the register as the base reg was invalid */
state->regData[r].o = REG_VAL_INVALID;
UnwPrintd2(" R%d = ???\n", r);
}
}
else {
if(addrValid) {
if(!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r])) {
return UNWIND_DWRITE_W_FAIL;
}
}
UnwPrintd2(" R%d = 0x%08x\n", r);
}
if(!P)
addr += U ? 4 : -4;
}
/* Check the next register */
r += U ? 1 : -1;
} while(r >= 0 && r <= 15);
/* Check the writeback bit */
if(W)
state->regData[baseReg].v = addr;
/* Check if the PC was loaded */
if(L && (regList & (0x01 << 15))) {
if(!M_IsOriginValid(state->regData[15].o)) {
/* Return address is not valid */
UnwPrintd1("PC popped with invalid address\n");
return UNWIND_FAILURE;
}
else {
/* Store the return address */
if(!UnwReportRetAddr(state, state->regData[15].v)) {
return UNWIND_TRUNCATED;
}
UnwPrintd2(" Return PC=0x%x", state->regData[15].v);
/* Determine the return mode */
if(state->regData[15].v & 0x1) {
/* Branching to THUMB */
return UnwStartThumb(state);
}
else {
/* Branch to ARM */
/* Account for the auto-increment which isn't needed */
state->regData[15].v -= 4;
}
}
}
}
else {
UnwPrintd1("????");
/* Unknown/undecoded. May alter some register, so invalidate file */
UnwInvalidateRegisterFile(state->regData);
}
UnwPrintd1("\n");
/* Should never hit the reset vector */
if(state->regData[15].v == 0) return UNWIND_RESET;
/* Check next address */
state->regData[15].v += 4;
/* Garbage collect the memory hash (used only for the stack) */
UnwMemHashGC(state);
t--;
if(t == 0)
return UNWIND_EXHAUSTED;
} while(!found);
return UNWIND_UNSUPPORTED;
}
#endif