/* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see <http://www.gnu.org/licenses/>. */ #ifndef stepper_h #define stepper_h #include "planner.h" #include "stepper_indirection.h" #if EXTRUDERS > 3 #define E_STEP_WRITE(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}} #define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}} #define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}} #elif EXTRUDERS > 2 #define E_STEP_WRITE(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}} #define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}} #define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}} #elif EXTRUDERS > 1 #ifndef DUAL_X_CARRIAGE #define E_STEP_WRITE(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }} #define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }} #define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }} #else extern bool extruder_duplication_enabled; #define E_STEP_WRITE(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }} #define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }} #define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }} #endif #else #define E_STEP_WRITE(v) E0_STEP_WRITE(v) #define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR) #define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR) #endif #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED extern bool abort_on_endstop_hit; #endif // Initialize and start the stepper motor subsystem void st_init(); // Block until all buffered steps are executed void st_synchronize(); // Set current position in steps void st_set_position(const long &x, const long &y, const long &z, const long &e); void st_set_e_position(const long &e); // Get current position in steps long st_get_position(uint8_t axis); #ifdef ENABLE_AUTO_BED_LEVELING // Get current position in mm float st_get_position_mm(AxisEnum axis); #endif // The stepper subsystem goes to sleep when it runs out of things to execute. Call this // to notify the subsystem that it is time to go to work. void st_wake_up(); void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops(); void enable_endstops(bool check); // Enable/disable endstop checking void checkStepperErrors(); //Print errors detected by the stepper void finishAndDisableSteppers(); extern block_t *current_block; // A pointer to the block currently being traced void quickStop(); void digitalPotWrite(int address, int value); void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2); void microstep_mode(uint8_t driver, uint8_t stepping); void digipot_init(); void digipot_current(uint8_t driver, int current); void microstep_init(); void microstep_readings(); #ifdef Z_DUAL_ENDSTOPS void In_Homing_Process(bool state); void Lock_z_motor(bool state); void Lock_z2_motor(bool state); #endif #ifdef BABYSTEPPING void babystep(const uint8_t axis,const bool direction); // perform a short step with a single stepper motor, outside of any convention #endif #endif