/** * Marlin 3D Printer Firmware * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(SPINDLE_LASER_ENABLE) #include "../gcode.h" #include "../../module/stepper.h" uint8_t spindle_laser_power; // = 0 /** * M3: Spindle Clockwise * M4: Spindle Counter-clockwise * * S0 turns off spindle. * * If no speed PWM output is defined then M3/M4 just turns it on. * * At least 12.8KHz (50Hz * 256) is needed for spindle PWM. * Hardware PWM is required. ISRs are too slow. * * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5. * No other settings give a PWM signal that goes from 0 to 5 volts. * * The system automatically sets WGM to Mode 1, so no special * initialization is needed. * * WGM bits for timer 2 are automatically set by the system to * Mode 1. This produces an acceptable 0 to 5 volt signal. * No special initialization is needed. * * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler * factors for timers 2, 3, 4, and 5 are acceptable. * * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on * the spindle/laser during power-up or when connecting to the host * (usually goes through a reset which sets all I/O pins to tri-state) * * PWM duty cycle goes from 0 (off) to 255 (always on). */ // Wait for spindle to come up to speed inline void delay_for_power_up() { safe_delay(SPINDLE_LASER_POWERUP_DELAY); } // Wait for spindle to stop turning inline void delay_for_power_down() { safe_delay(SPINDLE_LASER_POWERDOWN_DELAY); } /** * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line * * it accepts inputs of 0-255 */ inline void set_spindle_laser_ocr(const uint8_t ocr) { WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) ANALOG_WRITE(SPINDLE_LASER_PWM_PIN, (SPINDLE_LASER_PWM_INVERT) ? 255 - ocr : ocr); } #if ENABLED(SPINDLE_LASER_PWM) void update_spindle_laser_power() { if (spindle_laser_power == 0) { WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low) ANALOG_WRITE(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // only write low byte delay_for_power_down(); } else { // Convert RPM to PWM duty cycle constexpr float inv_slope = 1.0f / (SPEED_POWER_SLOPE), min_ocr = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * inv_slope, // Minimum allowed max_ocr = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * inv_slope; // Maximum allowed int16_t ocr_val; if (spindle_laser_power <= SPEED_POWER_MIN) ocr_val = min_ocr; // Use minimum if set below else if (spindle_laser_power >= SPEED_POWER_MAX) ocr_val = max_ocr; // Use maximum if set above else ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * inv_slope; // Use calculated OCR value set_spindle_laser_ocr(ocr_val & 0xFF); // ...limited to Atmel PWM max delay_for_power_up(); } } #endif // SPINDLE_LASER_PWM bool spindle_laser_enabled() { return !!spindle_laser_power; // READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT; } void set_spindle_laser_enabled(const bool enable) { // Enabled by PWM setting elsewhere spindle_laser_power = enable ? 255 : 0; #if ENABLED(SPINDLE_LASER_PWM) update_spindle_laser_power(); #else if (enable) { WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); delay_for_power_up(); } else { WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); delay_for_power_down(); } #endif } #if SPINDLE_DIR_CHANGE void set_spindle_direction(const bool reverse_dir) { const bool dir_state = (reverse_dir == SPINDLE_INVERT_DIR); // Forward (M3) HIGH when not inverted if (SPINDLE_STOP_ON_DIR_CHANGE && spindle_laser_enabled() && READ(SPINDLE_DIR_PIN) != dir_state) set_spindle_laser_enabled(false); WRITE(SPINDLE_DIR_PIN, dir_state); } #endif void GcodeSuite::M3_M4(const bool is_M4) { planner.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle #if SPINDLE_DIR_CHANGE set_spindle_direction(is_M4); #endif /** * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest. */ #if ENABLED(SPINDLE_LASER_PWM) if (parser.seen('O')) { spindle_laser_power = parser.value_byte(); set_spindle_laser_ocr(spindle_laser_power); } else { spindle_laser_power = parser.intval('S', 255); update_spindle_laser_power(); } #else set_spindle_laser_enabled(true); #endif } /** * M5 turn off spindle */ void GcodeSuite::M5() { planner.synchronize(); set_spindle_laser_enabled(false); } #endif // SPINDLE_LASER_ENABLE