/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../../inc/MarlinConfig.h" #if HAS_TRINAMIC_CONFIG #include "../../gcode.h" #include "../../../feature/tmc_util.h" #include "../../../module/stepper/indirection.h" #include "../../../module/planner.h" #include "../../queue.h" #if ENABLED(MONITOR_DRIVER_STATUS) #define M91x_USE(ST) (AXIS_DRIVER_TYPE(ST, TMC2130) || AXIS_DRIVER_TYPE(ST, TMC2160) || AXIS_DRIVER_TYPE(ST, TMC2208) || AXIS_DRIVER_TYPE(ST, TMC2209) || AXIS_DRIVER_TYPE(ST, TMC2660) || AXIS_DRIVER_TYPE(ST, TMC5130) || AXIS_DRIVER_TYPE(ST, TMC5160)) #define M91x_USE_E(N) (E_STEPPERS > N && M91x_USE(E##N)) #if M91x_USE(X) || M91x_USE(X2) #define M91x_SOME_X 1 #endif #if LINEAR_AXES >= 2 && (M91x_USE(Y) || M91x_USE(Y2)) #define M91x_SOME_Y 1 #endif #if HAS_Z_AXIS && (M91x_USE(Z) || M91x_USE(Z2) || M91x_USE(Z3) || M91x_USE(Z4)) #define M91x_SOME_Z 1 #endif #if LINEAR_AXES >= 4 && M91x_USE(I) #define M91x_USE_I 1 #endif #if LINEAR_AXES >= 5 && M91x_USE(J) #define M91x_USE_J 1 #endif #if LINEAR_AXES >= 6 && M91x_USE(K) #define M91x_USE_K 1 #endif #if M91x_USE_E(0) || M91x_USE_E(1) || M91x_USE_E(2) || M91x_USE_E(3) || M91x_USE_E(4) || M91x_USE_E(5) || M91x_USE_E(6) || M91x_USE_E(7) #define M91x_SOME_E 1 #endif #if !M91x_SOME_X && !M91x_SOME_Y && !M91x_SOME_Z && !M91x_USE_I && !M91x_USE_J && !M91x_USE_K && !M91x_SOME_E #error "MONITOR_DRIVER_STATUS requires at least one TMC2130, 2160, 2208, 2209, 2660, 5130, or 5160." #endif /** * M911: Report TMC stepper driver overtemperature pre-warn flag * This flag is held by the library, persisting until cleared by M912 */ void GcodeSuite::M911() { #if M91x_USE(X) tmc_report_otpw(stepperX); #endif #if M91x_USE(X2) tmc_report_otpw(stepperX2); #endif #if M91x_USE(Y) tmc_report_otpw(stepperY); #endif #if M91x_USE(Y2) tmc_report_otpw(stepperY2); #endif #if M91x_USE(Z) tmc_report_otpw(stepperZ); #endif #if M91x_USE(Z2) tmc_report_otpw(stepperZ2); #endif #if M91x_USE(Z3) tmc_report_otpw(stepperZ3); #endif #if M91x_USE(Z4) tmc_report_otpw(stepperZ4); #endif TERN_(M91x_USE_I, tmc_report_otpw(stepperI)); TERN_(M91x_USE_J, tmc_report_otpw(stepperJ)); TERN_(M91x_USE_K, tmc_report_otpw(stepperK)); #if M91x_USE_E(0) tmc_report_otpw(stepperE0); #endif #if M91x_USE_E(1) tmc_report_otpw(stepperE1); #endif #if M91x_USE_E(2) tmc_report_otpw(stepperE2); #endif #if M91x_USE_E(3) tmc_report_otpw(stepperE3); #endif #if M91x_USE_E(4) tmc_report_otpw(stepperE4); #endif #if M91x_USE_E(5) tmc_report_otpw(stepperE5); #endif #if M91x_USE_E(6) tmc_report_otpw(stepperE6); #endif #if M91x_USE_E(7) tmc_report_otpw(stepperE7); #endif } /** * M912: Clear TMC stepper driver overtemperature pre-warn flag held by the library * Specify one or more axes with X, Y, Z, X1, Y1, Z1, X2, Y2, Z2, Z3, Z4 and E[index]. * If no axes are given, clear all. * * Examples: * M912 X ; clear X and X2 * M912 X1 ; clear X1 only * M912 X2 ; clear X2 only * M912 X E ; clear X, X2, and all E * M912 E1 ; clear E1 only */ void GcodeSuite::M912() { const bool hasX = TERN0(M91x_SOME_X, parser.seen(axis_codes.x)), hasY = TERN0(M91x_SOME_Y, parser.seen(axis_codes.y)), hasZ = TERN0(M91x_SOME_Z, parser.seen(axis_codes.z)), hasI = TERN0(M91x_USE_I, parser.seen(axis_codes.i)), hasJ = TERN0(M91x_USE_J, parser.seen(axis_codes.j)), hasK = TERN0(M91x_USE_K, parser.seen(axis_codes.k)), hasE = TERN0(M91x_SOME_E, parser.seen(axis_codes.e)); const bool hasNone = !hasE && !hasX && !hasY && !hasZ && !hasI && !hasJ && !hasK; #if M91x_SOME_X const int8_t xval = int8_t(parser.byteval(axis_codes.x, 0xFF)); #if M91x_USE(X) if (hasNone || xval == 1 || (hasX && xval < 0)) tmc_clear_otpw(stepperX); #endif #if M91x_USE(X2) if (hasNone || xval == 2 || (hasX && xval < 0)) tmc_clear_otpw(stepperX2); #endif #endif #if M91x_SOME_Y const int8_t yval = int8_t(parser.byteval(axis_codes.y, 0xFF)); #if M91x_USE(Y) if (hasNone || yval == 1 || (hasY && yval < 0)) tmc_clear_otpw(stepperY); #endif #if M91x_USE(Y2) if (hasNone || yval == 2 || (hasY && yval < 0)) tmc_clear_otpw(stepperY2); #endif #endif #if M91x_SOME_Z const int8_t zval = int8_t(parser.byteval(axis_codes.z, 0xFF)); #if M91x_USE(Z) if (hasNone || zval == 1 || (hasZ && zval < 0)) tmc_clear_otpw(stepperZ); #endif #if M91x_USE(Z2) if (hasNone || zval == 2 || (hasZ && zval < 0)) tmc_clear_otpw(stepperZ2); #endif #if M91x_USE(Z3) if (hasNone || zval == 3 || (hasZ && zval < 0)) tmc_clear_otpw(stepperZ3); #endif #if M91x_USE(Z4) if (hasNone || zval == 4 || (hasZ && zval < 0)) tmc_clear_otpw(stepperZ4); #endif #endif #if M91x_USE_I const int8_t ival = int8_t(parser.byteval(axis_codes.i, 0xFF)); if (hasNone || ival == 1 || (hasI && ival < 0)) tmc_clear_otpw(stepperI); #endif #if M91x_USE_J const int8_t jval = int8_t(parser.byteval(axis_codes.j, 0xFF)); if (hasNone || jval == 1 || (hasJ && jval < 0)) tmc_clear_otpw(stepperJ); #endif #if M91x_USE_K const int8_t kval = int8_t(parser.byteval(axis_codes.k, 0xFF)); if (hasNone || kval == 1 || (hasK && kval < 0)) tmc_clear_otpw(stepperK); #endif #if M91x_SOME_E const int8_t eval = int8_t(parser.byteval(axis_codes.e, 0xFF)); #if M91x_USE_E(0) if (hasNone || eval == 0 || (hasE && eval < 0)) tmc_clear_otpw(stepperE0); #endif #if M91x_USE_E(1) if (hasNone || eval == 1 || (hasE && eval < 0)) tmc_clear_otpw(stepperE1); #endif #if M91x_USE_E(2) if (hasNone || eval == 2 || (hasE && eval < 0)) tmc_clear_otpw(stepperE2); #endif #if M91x_USE_E(3) if (hasNone || eval == 3 || (hasE && eval < 0)) tmc_clear_otpw(stepperE3); #endif #if M91x_USE_E(4) if (hasNone || eval == 4 || (hasE && eval < 0)) tmc_clear_otpw(stepperE4); #endif #if M91x_USE_E(5) if (hasNone || eval == 5 || (hasE && eval < 0)) tmc_clear_otpw(stepperE5); #endif #if M91x_USE_E(6) if (hasNone || eval == 6 || (hasE && eval < 0)) tmc_clear_otpw(stepperE6); #endif #if M91x_USE_E(7) if (hasNone || eval == 7 || (hasE && eval < 0)) tmc_clear_otpw(stepperE7); #endif #endif } #endif // MONITOR_DRIVER_STATUS /** * M913: Set HYBRID_THRESHOLD speed. */ #if ENABLED(HYBRID_THRESHOLD) void GcodeSuite::M913() { #define TMC_SAY_PWMTHRS(A,Q) tmc_print_pwmthrs(stepper##Q) #define TMC_SET_PWMTHRS(A,Q) stepper##Q.set_pwm_thrs(value) #define TMC_SAY_PWMTHRS_E(E) tmc_print_pwmthrs(stepperE##E) #define TMC_SET_PWMTHRS_E(E) stepperE##E.set_pwm_thrs(value) bool report = true; #if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4) || AXIS_IS_TMC(I) || AXIS_IS_TMC(J) || AXIS_IS_TMC(K) const uint8_t index = parser.byteval('I'); #endif LOOP_LOGICAL_AXES(i) if (int32_t value = parser.longval(axis_codes[i])) { report = false; switch (i) { case X_AXIS: TERN_(X_HAS_STEALTHCHOP, if (index < 2) TMC_SET_PWMTHRS(X,X)); TERN_(X2_HAS_STEALTHCHOP, if (!(index & 1)) TMC_SET_PWMTHRS(X,X2)); break; case Y_AXIS: TERN_(Y_HAS_STEALTHCHOP, if (index < 2) TMC_SET_PWMTHRS(Y,Y)); TERN_(Y2_HAS_STEALTHCHOP, if (!(index & 1)) TMC_SET_PWMTHRS(Y,Y2)); break; #if I_HAS_STEALTHCHOP case I_AXIS: TMC_SET_PWMTHRS(I,I); break; #endif #if J_HAS_STEALTHCHOP case J_AXIS: TMC_SET_PWMTHRS(J,J); break; #endif #if K_HAS_STEALTHCHOP case K_AXIS: TMC_SET_PWMTHRS(K,K); break; #endif case Z_AXIS: TERN_(Z_HAS_STEALTCHOP, if (index < 2) TMC_SET_PWMTHRS(Z,Z)); TERN_(Z2_HAS_STEALTCHOP, if (index == 0 || index == 2) TMC_SET_PWMTHRS(Z,Z2)); TERN_(Z3_HAS_STEALTCHOP, if (index == 0 || index == 3) TMC_SET_PWMTHRS(Z,Z3)); TERN_(Z4_HAS_STEALTCHOP, if (index == 0 || index == 4) TMC_SET_PWMTHRS(Z,Z4)); break; #if E_STEPPERS case E_AXIS: { const int8_t target_e_stepper = get_target_e_stepper_from_command(); if (target_e_stepper < 0) return; switch (target_e_stepper) { TERN_(E0_HAS_STEALTHCHOP, case 0: TMC_SET_PWMTHRS_E(0); break;) TERN_(E1_HAS_STEALTHCHOP, case 1: TMC_SET_PWMTHRS_E(1); break;) TERN_(E2_HAS_STEALTHCHOP, case 2: TMC_SET_PWMTHRS_E(2); break;) TERN_(E3_HAS_STEALTHCHOP, case 3: TMC_SET_PWMTHRS_E(3); break;) TERN_(E4_HAS_STEALTHCHOP, case 4: TMC_SET_PWMTHRS_E(4); break;) TERN_(E5_HAS_STEALTHCHOP, case 5: TMC_SET_PWMTHRS_E(5); break;) TERN_(E6_HAS_STEALTHCHOP, case 6: TMC_SET_PWMTHRS_E(6); break;) TERN_(E7_HAS_STEALTHCHOP, case 7: TMC_SET_PWMTHRS_E(7); break;) } } break; #endif // E_STEPPERS } } if (report) { TERN_( X_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(X,X)); TERN_(X2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(X,X2)); TERN_( Y_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Y,Y)); TERN_(Y2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Y,Y2)); TERN_( Z_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z)); TERN_(Z2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z2)); TERN_(Z3_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z3)); TERN_(Z4_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z4)); TERN_( I_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(I,I)); TERN_( J_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(J,J)); TERN_( K_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(K,K)); TERN_(E0_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(0)); TERN_(E1_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(1)); TERN_(E2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(2)); TERN_(E3_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(3)); TERN_(E4_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(4)); TERN_(E5_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(5)); TERN_(E6_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(6)); TERN_(E7_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(7)); } } #endif // HYBRID_THRESHOLD /** * M914: Set StallGuard sensitivity. */ #if USE_SENSORLESS void GcodeSuite::M914() { bool report = true; const uint8_t index = parser.byteval('I'); LOOP_LINEAR_AXES(i) if (parser.seen(AXIS_CHAR(i))) { const int16_t value = parser.value_int(); report = false; switch (i) { #if X_SENSORLESS case X_AXIS: #if AXIS_HAS_STALLGUARD(X) if (index < 2) stepperX.homing_threshold(value); #endif #if AXIS_HAS_STALLGUARD(X2) if (!(index & 1)) stepperX2.homing_threshold(value); #endif break; #endif #if Y_SENSORLESS case Y_AXIS: #if AXIS_HAS_STALLGUARD(Y) if (index < 2) stepperY.homing_threshold(value); #endif #if AXIS_HAS_STALLGUARD(Y2) if (!(index & 1)) stepperY2.homing_threshold(value); #endif break; #endif #if Z_SENSORLESS case Z_AXIS: #if AXIS_HAS_STALLGUARD(Z) if (index < 2) stepperZ.homing_threshold(value); #endif #if AXIS_HAS_STALLGUARD(Z2) if (index == 0 || index == 2) stepperZ2.homing_threshold(value); #endif #if AXIS_HAS_STALLGUARD(Z3) if (index == 0 || index == 3) stepperZ3.homing_threshold(value); #endif #if AXIS_HAS_STALLGUARD(Z4) if (index == 0 || index == 4) stepperZ4.homing_threshold(value); #endif break; #endif #if I_SENSORLESS && AXIS_HAS_STALLGUARD(I) case I_AXIS: stepperI.homing_threshold(value); break; #endif #if J_SENSORLESS && AXIS_HAS_STALLGUARD(J) case J_AXIS: stepperJ.homing_threshold(value); break; #endif #if K_SENSORLESS && AXIS_HAS_STALLGUARD(K) case K_AXIS: stepperK.homing_threshold(value); break; #endif } } if (report) { #if X_SENSORLESS #if AXIS_HAS_STALLGUARD(X) tmc_print_sgt(stepperX); #endif #if AXIS_HAS_STALLGUARD(X2) tmc_print_sgt(stepperX2); #endif #endif #if Y_SENSORLESS #if AXIS_HAS_STALLGUARD(Y) tmc_print_sgt(stepperY); #endif #if AXIS_HAS_STALLGUARD(Y2) tmc_print_sgt(stepperY2); #endif #endif #if Z_SENSORLESS #if AXIS_HAS_STALLGUARD(Z) tmc_print_sgt(stepperZ); #endif #if AXIS_HAS_STALLGUARD(Z2) tmc_print_sgt(stepperZ2); #endif #if AXIS_HAS_STALLGUARD(Z3) tmc_print_sgt(stepperZ3); #endif #if AXIS_HAS_STALLGUARD(Z4) tmc_print_sgt(stepperZ4); #endif #endif #if I_SENSORLESS && AXIS_HAS_STALLGUARD(I) tmc_print_sgt(stepperI); #endif #if J_SENSORLESS && AXIS_HAS_STALLGUARD(J) tmc_print_sgt(stepperJ); #endif #if K_SENSORLESS && AXIS_HAS_STALLGUARD(K) tmc_print_sgt(stepperK); #endif } } #endif // USE_SENSORLESS #endif // HAS_TRINAMIC_CONFIG