/* temperature.c - temperature control Part of Marlin Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This firmware is a mashup between Sprinter and grbl. (https://github.com/kliment/Sprinter) (https://github.com/simen/grbl/tree) It has preliminary support for Matthew Roberts advance algorithm http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */ #include "Marlin.h" #include "ultralcd.h" #include "temperature.h" #include "watchdog.h" #include "language.h" #include "Sd2PinMap.h" //=========================================================================== //================================== macros ================================= //=========================================================================== #if EXTRUDERS > 4 #error Unsupported number of extruders #elif EXTRUDERS > 3 #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 } #elif EXTRUDERS > 2 #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 } #elif EXTRUDERS > 1 #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 } #else #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 } #endif #define HAS_TEMP_0 (defined(TEMP_0_PIN) && TEMP_0_PIN >= 0) #define HAS_TEMP_1 (defined(TEMP_1_PIN) && TEMP_1_PIN >= 0) #define HAS_TEMP_2 (defined(TEMP_2_PIN) && TEMP_2_PIN >= 0) #define HAS_TEMP_3 (defined(TEMP_3_PIN) && TEMP_3_PIN >= 0) #define HAS_TEMP_BED (defined(TEMP_BED_PIN) && TEMP_BED_PIN >= 0) #define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && defined(FILWIDTH_PIN) && FILWIDTH_PIN >= 0) #define HAS_HEATER_0 (defined(HEATER_0_PIN) && HEATER_0_PIN >= 0) #define HAS_HEATER_1 (defined(HEATER_1_PIN) && HEATER_1_PIN >= 0) #define HAS_HEATER_2 (defined(HEATER_2_PIN) && HEATER_2_PIN >= 0) #define HAS_HEATER_3 (defined(HEATER_3_PIN) && HEATER_3_PIN >= 0) #define HAS_HEATER_BED (defined(HEATER_BED_PIN) && HEATER_BED_PIN >= 0) #define HAS_AUTO_FAN_0 (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN >= 0) #define HAS_AUTO_FAN_1 (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN >= 0) #define HAS_AUTO_FAN_2 (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN >= 0) #define HAS_AUTO_FAN_3 (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN >= 0) #define HAS_AUTO_FAN HAS_AUTO_FAN_0 || HAS_AUTO_FAN_1 || HAS_AUTO_FAN_2 || HAS_AUTO_FAN_3 #define HAS_FAN (defined(FAN_PIN) && FAN_PIN >= 0) //=========================================================================== //============================= public variables ============================ //=========================================================================== #ifdef K1 // Defined in Configuration.h in the PID settings #define K2 (1.0-K1) #endif // Sampling period of the temperature routine #ifdef PID_dT #undef PID_dT #endif #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0)) int target_temperature[EXTRUDERS] = { 0 }; int target_temperature_bed = 0; int current_temperature_raw[EXTRUDERS] = { 0 }; float current_temperature[EXTRUDERS] = { 0.0 }; int current_temperature_bed_raw = 0; float current_temperature_bed = 0.0; #ifdef TEMP_SENSOR_1_AS_REDUNDANT int redundant_temperature_raw = 0; float redundant_temperature = 0.0; #endif #ifdef PIDTEMPBED float bedKp=DEFAULT_bedKp; float bedKi=(DEFAULT_bedKi*PID_dT); float bedKd=(DEFAULT_bedKd/PID_dT); #endif //PIDTEMPBED #ifdef FAN_SOFT_PWM unsigned char fanSpeedSoftPwm; #endif unsigned char soft_pwm_bed; #ifdef BABYSTEPPING volatile int babystepsTodo[3] = { 0 }; #endif #ifdef FILAMENT_SENSOR int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only #endif //=========================================================================== //=============================private variables============================ //=========================================================================== static volatile bool temp_meas_ready = false; #ifdef PIDTEMP //static cannot be external: static float temp_iState[EXTRUDERS] = { 0 }; static float temp_dState[EXTRUDERS] = { 0 }; static float pTerm[EXTRUDERS]; static float iTerm[EXTRUDERS]; static float dTerm[EXTRUDERS]; //int output; static float pid_error[EXTRUDERS]; static float temp_iState_min[EXTRUDERS]; static float temp_iState_max[EXTRUDERS]; static bool pid_reset[EXTRUDERS]; #endif //PIDTEMP #ifdef PIDTEMPBED //static cannot be external: static float temp_iState_bed = { 0 }; static float temp_dState_bed = { 0 }; static float pTerm_bed; static float iTerm_bed; static float dTerm_bed; //int output; static float pid_error_bed; static float temp_iState_min_bed; static float temp_iState_max_bed; #else //PIDTEMPBED static unsigned long previous_millis_bed_heater; #endif //PIDTEMPBED static unsigned char soft_pwm[EXTRUDERS]; #ifdef FAN_SOFT_PWM static unsigned char soft_pwm_fan; #endif #if HAS_AUTO_FAN static unsigned long extruder_autofan_last_check; #endif #ifdef PIDTEMP #ifdef PID_PARAMS_PER_EXTRUDER float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp); float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT); float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT); #ifdef PID_ADD_EXTRUSION_RATE float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc); #endif // PID_ADD_EXTRUSION_RATE #else //PID_PARAMS_PER_EXTRUDER float Kp = DEFAULT_Kp; float Ki = DEFAULT_Ki * PID_dT; float Kd = DEFAULT_Kd / PID_dT; #ifdef PID_ADD_EXTRUSION_RATE float Kc = DEFAULT_Kc; #endif // PID_ADD_EXTRUSION_RATE #endif // PID_PARAMS_PER_EXTRUDER #endif //PIDTEMP // Init min and max temp with extreme values to prevent false errors during startup static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP); static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP); static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0, 0 ); static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 ); //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */ #ifdef BED_MAXTEMP static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP; #endif #ifdef TEMP_SENSOR_1_AS_REDUNDANT static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE }; static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN }; #else static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE ); static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN ); #endif static float analog2temp(int raw, uint8_t e); static float analog2tempBed(int raw); static void updateTemperaturesFromRawValues(); #ifdef WATCH_TEMP_PERIOD int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0); unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0); #endif //WATCH_TEMP_PERIOD #ifndef SOFT_PWM_SCALE #define SOFT_PWM_SCALE 0 #endif #ifdef FILAMENT_SENSOR static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor #endif #ifdef HEATER_0_USES_MAX6675 static int read_max6675(); #endif //=========================================================================== //============================= functions ============================ //=========================================================================== void PID_autotune(float temp, int extruder, int ncycles) { float input = 0.0; int cycles = 0; bool heating = true; unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis; long t_high = 0, t_low = 0; long bias, d; float Ku, Tu; float Kp, Ki, Kd; float max = 0, min = 10000; #if HAS_AUTO_FAN unsigned long extruder_autofan_last_check = temp_millis; #endif if (extruder >= EXTRUDERS #if !HAS_TEMP_BED || extruder < 0 #endif ) { SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM); return; } SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START); disable_heater(); // switch off all heaters. if (extruder < 0) soft_pwm_bed = bias = d = MAX_BED_POWER / 2; else soft_pwm[extruder] = bias = d = PID_MAX / 2; // PID Tuning loop for(;;) { unsigned long ms = millis(); if (temp_meas_ready == true) { // temp sample ready updateTemperaturesFromRawValues(); input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; max = max(max, input); min = min(min, input); #if HAS_AUTO_FAN if (ms > extruder_autofan_last_check + 2500) { checkExtruderAutoFans(); extruder_autofan_last_check = ms; } #endif if (heating == true && input > temp) { if (ms - t2 > 5000) { heating = false; if (extruder < 0) soft_pwm_bed = (bias - d) >> 1; else soft_pwm[extruder] = (bias - d) >> 1; t1 = ms; t_high = t1 - t2; max = temp; } } if (heating == false && input < temp) { if (ms - t1 > 5000) { heating = true; t2 = ms; t_low = t2 - t1; if (cycles > 0) { long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX; bias += (d*(t_high - t_low))/(t_low + t_high); bias = constrain(bias, 20, max_pow - 20); d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias; SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias); SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d); SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min); SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max); if (cycles > 2) { Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0); Tu = ((float)(t_low + t_high) / 1000.0); SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku); SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu); Kp = 0.6 * Ku; Ki = 2 * Kp / Tu; Kd = Kp * Tu / 8; SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID); SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd); /* Kp = 0.33*Ku; Ki = Kp/Tu; Kd = Kp*Tu/3; SERIAL_PROTOCOLLNPGM(" Some overshoot "); SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); Kp = 0.2*Ku; Ki = 2*Kp/Tu; Kd = Kp*Tu/3; SERIAL_PROTOCOLLNPGM(" No overshoot "); SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); */ } } if (extruder < 0) soft_pwm_bed = (bias + d) >> 1; else soft_pwm[extruder] = (bias + d) >> 1; cycles++; min = temp; } } } if (input > temp + 20) { SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH); return; } // Every 2 seconds... if (ms > temp_millis + 2000) { int p; if (extruder < 0) { p = soft_pwm_bed; SERIAL_PROTOCOLPGM(MSG_OK_B); } else { p = soft_pwm[extruder]; SERIAL_PROTOCOLPGM(MSG_OK_T); } SERIAL_PROTOCOL(input); SERIAL_PROTOCOLPGM(MSG_AT); SERIAL_PROTOCOLLN(p); temp_millis = ms; } // every 2 seconds // Over 2 minutes? if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) { SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT); return; } if (cycles > ncycles) { SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED); return; } lcd_update(); } } void updatePID() { #ifdef PIDTEMP for (int e = 0; e < EXTRUDERS; e++) { temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e); } #endif #ifdef PIDTEMPBED temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi; #endif } int getHeaterPower(int heater) { return heater < 0 ? soft_pwm_bed : soft_pwm[heater]; } #if HAS_AUTO_FAN #if HAS_FAN #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN" #endif #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN" #endif #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN" #endif #if EXTRUDER_3_AUTO_FAN_PIN == FAN_PIN #error "You cannot set EXTRUDER_3_AUTO_FAN_PIN equal to FAN_PIN" #endif #endif void setExtruderAutoFanState(int pin, bool state) { unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0; // this idiom allows both digital and PWM fan outputs (see M42 handling). pinMode(pin, OUTPUT); digitalWrite(pin, newFanSpeed); analogWrite(pin, newFanSpeed); } void checkExtruderAutoFans() { uint8_t fanState = 0; // which fan pins need to be turned on? #if HAS_AUTO_FAN_0 if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE) fanState |= 1; #endif #if HAS_AUTO_FAN_1 if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE) { if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) fanState |= 1; else fanState |= 2; } #endif #if HAS_AUTO_FAN_2 if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE) { if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) fanState |= 1; else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN) fanState |= 2; else fanState |= 4; } #endif #if HAS_AUTO_FAN_3 if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE) { if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) fanState |= 1; else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN) fanState |= 2; else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN) fanState |= 4; else fanState |= 8; } #endif // update extruder auto fan states #if HAS_AUTO_FAN_0 setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0); #endif #if HAS_AUTO_FAN_1 if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0); #endif #if HAS_AUTO_FAN_2 if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN) setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0); #endif #if HAS_AUTO_FAN_3 if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN) setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0); #endif } #endif // any extruder auto fan pins set // // Error checking and Write Routines // #if !HAS_HEATER_0 #error HEATER_0_PIN not defined for this board #endif #define WRITE_HEATER_0P(v) WRITE(HEATER_0_PIN, v) #if EXTRUDERS > 1 || defined(HEATERS_PARALLEL) #if !HAS_HEATER_1 #error HEATER_1_PIN not defined for this board #endif #define WRITE_HEATER_1(v) WRITE(HEATER_1_PIN, v) #if EXTRUDERS > 2 #if !HAS_HEATER_2 #error HEATER_2_PIN not defined for this board #endif #define WRITE_HEATER_2(v) WRITE(HEATER_2_PIN, v) #if EXTRUDERS > 3 #if !HAS_HEATER_3 #error HEATER_3_PIN not defined for this board #endif #define WRITE_HEATER_3(v) WRITE(HEATER_3_PIN, v) #endif #endif #endif #ifdef HEATERS_PARALLEL #define WRITE_HEATER_0(v) { WRITE_HEATER_0P(v); WRITE_HEATER_1(v); } #else #define WRITE_HEATER_0(v) WRITE_HEATER_0P(v) #endif #if HAS_HEATER_BED #define WRITE_HEATER_BED(v) WRITE(HEATER_BED_PIN, v) #endif #if HAS_FAN #define WRITE_FAN(v) WRITE(FAN_PIN, v) #endif inline void _temp_error(int e, const char *msg1, const char *msg2) { if (!IsStopped()) { SERIAL_ERROR_START; if (e >= 0) SERIAL_ERRORLN((int)e); serialprintPGM(msg1); MYSERIAL.write('\n'); #ifdef ULTRA_LCD lcd_setalertstatuspgm(msg2); #endif } #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE Stop(); #endif } void max_temp_error(uint8_t e) { disable_heater(); _temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP)); } void min_temp_error(uint8_t e) { disable_heater(); _temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP)); } void bed_max_temp_error(void) { #if HAS_HEATER_BED WRITE_HEATER_BED(0); #endif _temp_error(-1, PSTR(MSG_MAXTEMP_BED_OFF), PSTR(MSG_ERR_MAXTEMP_BED)); } float get_pid_output(int e) { float pid_output; #ifdef PIDTEMP #ifndef PID_OPENLOOP pid_error[e] = target_temperature[e] - current_temperature[e]; if (pid_error[e] > PID_FUNCTIONAL_RANGE) { pid_output = BANG_MAX; pid_reset[e] = true; } else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) { pid_output = 0; pid_reset[e] = true; } else { if (pid_reset[e]) { temp_iState[e] = 0.0; pid_reset[e] = false; } pTerm[e] = PID_PARAM(Kp,e) * pid_error[e]; temp_iState[e] += pid_error[e]; temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e]; dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e]; pid_output = pTerm[e] + iTerm[e] - dTerm[e]; if (pid_output > PID_MAX) { if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration pid_output = PID_MAX; } else if (pid_output < 0) { if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration pid_output = 0; } } temp_dState[e] = current_temperature[e]; #else pid_output = constrain(target_temperature[e], 0, PID_MAX); #endif //PID_OPENLOOP #ifdef PID_DEBUG SERIAL_ECHO_START; SERIAL_ECHO(MSG_PID_DEBUG); SERIAL_ECHO(e); SERIAL_ECHO(MSG_PID_DEBUG_INPUT); SERIAL_ECHO(current_temperature[e]); SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT); SERIAL_ECHO(pid_output); SERIAL_ECHO(MSG_PID_DEBUG_PTERM); SERIAL_ECHO(pTerm[e]); SERIAL_ECHO(MSG_PID_DEBUG_ITERM); SERIAL_ECHO(iTerm[e]); SERIAL_ECHO(MSG_PID_DEBUG_DTERM); SERIAL_ECHOLN(dTerm[e]); #endif //PID_DEBUG #else /* PID off */ pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0; #endif return pid_output; } #ifdef PIDTEMPBED float get_pid_output_bed() { float pid_output; #ifndef PID_OPENLOOP pid_error_bed = target_temperature_bed - current_temperature_bed; pTerm_bed = bedKp * pid_error_bed; temp_iState_bed += pid_error_bed; temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed); iTerm_bed = bedKi * temp_iState_bed; dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed; temp_dState_bed = current_temperature_bed; pid_output = pTerm_bed + iTerm_bed - dTerm_bed; if (pid_output > MAX_BED_POWER) { if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration pid_output = MAX_BED_POWER; } else if (pid_output < 0) { if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration pid_output = 0; } #else pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER); #endif // PID_OPENLOOP return pid_output; } #endif void manage_heater() { if (!temp_meas_ready) return; updateTemperaturesFromRawValues(); #ifdef HEATER_0_USES_MAX6675 float ct = current_temperature[0]; if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0); if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0); #endif //HEATER_0_USES_MAX6675 unsigned long ms = millis(); // Loop through all extruders for (int e = 0; e < EXTRUDERS; e++) { #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0 thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS); #endif float pid_output = get_pid_output(e); // Check if temperature is within the correct range soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0; #ifdef WATCH_TEMP_PERIOD if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) { if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) { setTargetHotend(0, e); LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_HEATING_FAILED); } else { watchmillis[e] = 0; } } #endif //WATCH_TEMP_PERIOD #ifdef TEMP_SENSOR_1_AS_REDUNDANT if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) { disable_heater(); _temp_error(-1, MSG_EXTRUDER_SWITCHED_OFF, MSG_ERR_REDUNDANT_TEMP); } #endif //TEMP_SENSOR_1_AS_REDUNDANT } // Extruders Loop #if HAS_AUTO_FAN if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently checkExtruderAutoFans(); extruder_autofan_last_check = ms; } #endif #ifndef PIDTEMPBED if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return; previous_millis_bed_heater = ms; #endif //PIDTEMPBED #if TEMP_SENSOR_BED != 0 #if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0 thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS); #endif #ifdef PIDTEMPBED float pid_output = get_pid_output_bed(); soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0; #elif !defined(BED_LIMIT_SWITCHING) // Check if temperature is within the correct range if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) { soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0; } else { soft_pwm_bed = 0; WRITE_HEATER_BED(LOW); } #else //#ifdef BED_LIMIT_SWITCHING // Check if temperature is within the correct band if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) { if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS) soft_pwm_bed = 0; else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS) soft_pwm_bed = MAX_BED_POWER >> 1; } else { soft_pwm_bed = 0; WRITE_HEATER_BED(LOW); } #endif #endif //TEMP_SENSOR_BED != 0 // Control the extruder rate based on the width sensor #ifdef FILAMENT_SENSOR if (filament_sensor) { meas_shift_index = delay_index1 - meas_delay_cm; if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed // Get the delayed info and add 100 to reconstitute to a percent of // the nominal filament diameter then square it to get an area meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY); float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2); if (vm < 0.01) vm = 0.01; volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm; } #endif //FILAMENT_SENSOR } #define PGM_RD_W(x) (short)pgm_read_word(&x) // Derived from RepRap FiveD extruder::getTemperature() // For hot end temperature measurement. static float analog2temp(int raw, uint8_t e) { #ifdef TEMP_SENSOR_1_AS_REDUNDANT if (e > EXTRUDERS) #else if (e >= EXTRUDERS) #endif { SERIAL_ERROR_START; SERIAL_ERROR((int)e); SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM); kill(); return 0.0; } #ifdef HEATER_0_USES_MAX6675 if (e == 0) { return 0.25 * raw; } #endif if(heater_ttbl_map[e] != NULL) { float celsius = 0; uint8_t i; short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); for (i=1; i<heater_ttbllen_map[e]; i++) { if (PGM_RD_W((*tt)[i][0]) > raw) { celsius = PGM_RD_W((*tt)[i-1][1]) + (raw - PGM_RD_W((*tt)[i-1][0])) * (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) / (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0])); break; } } // Overflow: Set to last value in the table if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]); return celsius; } return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; } // Derived from RepRap FiveD extruder::getTemperature() // For bed temperature measurement. static float analog2tempBed(int raw) { #ifdef BED_USES_THERMISTOR float celsius = 0; byte i; for (i=1; i<BEDTEMPTABLE_LEN; i++) { if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) { celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) + (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) * (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) / (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0])); break; } } // Overflow: Set to last value in the table if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]); return celsius; #elif defined BED_USES_AD595 return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; #else return 0; #endif } /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context, and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */ static void updateTemperaturesFromRawValues() { #ifdef HEATER_0_USES_MAX6675 current_temperature_raw[0] = read_max6675(); #endif for(uint8_t e = 0; e < EXTRUDERS; e++) { current_temperature[e] = analog2temp(current_temperature_raw[e], e); } current_temperature_bed = analog2tempBed(current_temperature_bed_raw); #ifdef TEMP_SENSOR_1_AS_REDUNDANT redundant_temperature = analog2temp(redundant_temperature_raw, 1); #endif #if HAS_FILAMENT_SENSOR filament_width_meas = analog2widthFil(); #endif //Reset the watchdog after we know we have a temperature measurement. watchdog_reset(); CRITICAL_SECTION_START; temp_meas_ready = false; CRITICAL_SECTION_END; } #ifdef FILAMENT_SENSOR // Convert raw Filament Width to millimeters float analog2widthFil() { return current_raw_filwidth / 16383.0 * 5.0; //return current_raw_filwidth; } // Convert raw Filament Width to a ratio int widthFil_to_size_ratio() { float temp = filament_width_meas; if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT; return filament_width_nominal / temp * 100; } #endif void tp_init() { #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1)) //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector MCUCR=BIT(JTD); MCUCR=BIT(JTD); #endif // Finish init of mult extruder arrays for (int e = 0; e < EXTRUDERS; e++) { // populate with the first value maxttemp[e] = maxttemp[0]; #ifdef PIDTEMP temp_iState_min[e] = 0.0; temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e); #endif //PIDTEMP #ifdef PIDTEMPBED temp_iState_min_bed = 0.0; temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi; #endif //PIDTEMPBED } #if HAS_HEATER_0 SET_OUTPUT(HEATER_0_PIN); #endif #if HAS_HEATER_1 SET_OUTPUT(HEATER_1_PIN); #endif #if HAS_HEATER_2 SET_OUTPUT(HEATER_2_PIN); #endif #if HAS_HEATER_3 SET_OUTPUT(HEATER_3_PIN); #endif #if HAS_HEATER_BED SET_OUTPUT(HEATER_BED_PIN); #endif #if HAS_FAN SET_OUTPUT(FAN_PIN); #ifdef FAST_PWM_FAN setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #ifdef FAN_SOFT_PWM soft_pwm_fan = fanSpeedSoftPwm / 2; #endif #endif #ifdef HEATER_0_USES_MAX6675 #ifndef SDSUPPORT OUT_WRITE(SCK_PIN, LOW); OUT_WRITE(MOSI_PIN, HIGH); OUT_WRITE(MISO_PIN, HIGH); #else pinMode(SS_PIN, OUTPUT); digitalWrite(SS_PIN, HIGH); #endif OUT_WRITE(MAX6675_SS,HIGH); #endif //HEATER_0_USES_MAX6675 #ifdef DIDR2 #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0) #else #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0) #endif // Set analog inputs ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07; DIDR0 = 0; #ifdef DIDR2 DIDR2 = 0; #endif #if HAS_TEMP_0 ANALOG_SELECT(TEMP_0_PIN); #endif #if HAS_TEMP_1 ANALOG_SELECT(TEMP_1_PIN); #endif #if HAS_TEMP_2 ANALOG_SELECT(TEMP_2_PIN); #endif #if HAS_TEMP_3 ANALOG_SELECT(TEMP_3_PIN); #endif #if HAS_TEMP_BED ANALOG_SELECT(TEMP_BED_PIN); #endif #if HAS_FILAMENT_SENSOR ANALOG_SELECT(FILWIDTH_PIN); #endif // Use timer0 for temperature measurement // Interleave temperature interrupt with millies interrupt OCR0B = 128; TIMSK0 |= BIT(OCIE0B); // Wait for temperature measurement to settle delay(250); #define TEMP_MIN_ROUTINE(NR) \ minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \ while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \ if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \ minttemp_raw[NR] += OVERSAMPLENR; \ else \ minttemp_raw[NR] -= OVERSAMPLENR; \ } #define TEMP_MAX_ROUTINE(NR) \ maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \ while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \ if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \ maxttemp_raw[NR] -= OVERSAMPLENR; \ else \ maxttemp_raw[NR] += OVERSAMPLENR; \ } #ifdef HEATER_0_MINTEMP TEMP_MIN_ROUTINE(0); #endif #ifdef HEATER_0_MAXTEMP TEMP_MAX_ROUTINE(0); #endif #if EXTRUDERS > 1 #ifdef HEATER_1_MINTEMP TEMP_MIN_ROUTINE(1); #endif #ifdef HEATER_1_MAXTEMP TEMP_MAX_ROUTINE(1); #endif #if EXTRUDERS > 2 #ifdef HEATER_2_MINTEMP TEMP_MIN_ROUTINE(2); #endif #ifdef HEATER_2_MAXTEMP TEMP_MAX_ROUTINE(2); #endif #if EXTRUDERS > 3 #ifdef HEATER_3_MINTEMP TEMP_MIN_ROUTINE(3); #endif #ifdef HEATER_3_MAXTEMP TEMP_MAX_ROUTINE(3); #endif #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 #ifdef BED_MINTEMP /* No bed MINTEMP error implemented?!? */ /* while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) { #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP bed_minttemp_raw += OVERSAMPLENR; #else bed_minttemp_raw -= OVERSAMPLENR; #endif } */ #endif //BED_MINTEMP #ifdef BED_MAXTEMP while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) { #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP bed_maxttemp_raw -= OVERSAMPLENR; #else bed_maxttemp_raw += OVERSAMPLENR; #endif } #endif //BED_MAXTEMP } void setWatch() { #ifdef WATCH_TEMP_PERIOD unsigned long ms = millis(); for (int e = 0; e < EXTRUDERS; e++) { if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) { watch_start_temp[e] = degHotend(e); watchmillis[e] = ms; } } #endif } #if defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0 void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) { /* SERIAL_ECHO_START; SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:"); SERIAL_ECHO(heater_id); SERIAL_ECHO(" ; State:"); SERIAL_ECHO(*state); SERIAL_ECHO(" ; Timer:"); SERIAL_ECHO(*timer); SERIAL_ECHO(" ; Temperature:"); SERIAL_ECHO(temperature); SERIAL_ECHO(" ; Target Temp:"); SERIAL_ECHO(target_temperature); SERIAL_ECHOLN(""); */ if ((target_temperature == 0) || thermal_runaway) { *state = 0; *timer = 0; return; } switch (*state) { case 0: // "Heater Inactive" state if (target_temperature > 0) *state = 1; break; case 1: // "First Heating" state if (temperature >= target_temperature) *state = 2; break; case 2: // "Temperature Stable" state { unsigned long ms = millis(); if (temperature >= (target_temperature - hysteresis_degc)) { *timer = ms; } else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP); SERIAL_ERRORLN((int)heater_id); LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable thermal_runaway = true; while(1) { disable_heater(); disable_x(); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); disable_e3(); manage_heater(); lcd_update(); } } } break; } } #endif //THERMAL_RUNAWAY_PROTECTION_PERIOD void disable_heater() { for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i); setTargetBed(0); #if HAS_TEMP_0 target_temperature[0] = 0; soft_pwm[0] = 0; WRITE_HEATER_0P(LOW); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0 #endif #if EXTRUDERS > 1 && HAS_TEMP_1 target_temperature[1] = 0; soft_pwm[1] = 0; WRITE_HEATER_1(LOW); #endif #if EXTRUDERS > 2 && HAS_TEMP_2 target_temperature[2] = 0; soft_pwm[2] = 0; WRITE_HEATER_2(LOW); #endif #if EXTRUDERS > 3 && HAS_TEMP_3 target_temperature[3] = 0; soft_pwm[3] = 0; WRITE_HEATER_3(LOW); #endif #if HAS_TEMP_BED target_temperature_bed = 0; soft_pwm_bed = 0; #if HAS_HEATER_BED WRITE_HEATER_BED(LOW); #endif #endif } #ifdef HEATER_0_USES_MAX6675 #define MAX6675_HEAT_INTERVAL 250 long max6675_previous_millis = MAX6675_HEAT_INTERVAL; int max6675_temp = 2000; static int read_max6675() { unsigned long ms = millis(); if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL) return max6675_temp; max6675_previous_millis = ms; max6675_temp = 0; #ifdef PRR PRR &= ~BIT(PRSPI); #elif defined(PRR0) PRR0 &= ~BIT(PRSPI); #endif SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0); // enable TT_MAX6675 WRITE(MAX6675_SS, 0); // ensure 100ns delay - a bit extra is fine asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz // read MSB SPDR = 0; for (;(SPSR & BIT(SPIF)) == 0;); max6675_temp = SPDR; max6675_temp <<= 8; // read LSB SPDR = 0; for (;(SPSR & BIT(SPIF)) == 0;); max6675_temp |= SPDR; // disable TT_MAX6675 WRITE(MAX6675_SS, 1); if (max6675_temp & 4) { // thermocouple open max6675_temp = 4000; } else { max6675_temp = max6675_temp >> 3; } return max6675_temp; } #endif //HEATER_0_USES_MAX6675 /** * Stages in the ISR loop */ enum TempState { PrepareTemp_0, MeasureTemp_0, PrepareTemp_BED, MeasureTemp_BED, PrepareTemp_1, MeasureTemp_1, PrepareTemp_2, MeasureTemp_2, PrepareTemp_3, MeasureTemp_3, Prepare_FILWIDTH, Measure_FILWIDTH, StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle }; // // Timer 0 is shared with millies // ISR(TIMER0_COMPB_vect) { //these variables are only accesible from the ISR, but static, so they don't lose their value static unsigned char temp_count = 0; static unsigned long raw_temp_0_value = 0; static unsigned long raw_temp_1_value = 0; static unsigned long raw_temp_2_value = 0; static unsigned long raw_temp_3_value = 0; static unsigned long raw_temp_bed_value = 0; static TempState temp_state = StartupDelay; static unsigned char pwm_count = BIT(SOFT_PWM_SCALE); // Static members for each heater #ifdef SLOW_PWM_HEATERS static unsigned char slow_pwm_count = 0; #define ISR_STATICS(n) \ static unsigned char soft_pwm_ ## n; \ static unsigned char state_heater_ ## n = 0; \ static unsigned char state_timer_heater_ ## n = 0 #else #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n #endif // Statics per heater ISR_STATICS(0); #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL) ISR_STATICS(1); #if EXTRUDERS > 2 ISR_STATICS(2); #if EXTRUDERS > 3 ISR_STATICS(3); #endif #endif #endif #if HAS_HEATER_BED ISR_STATICS(BED); #endif #if HAS_FILAMENT_SENSOR static unsigned long raw_filwidth_value = 0; #endif #ifndef SLOW_PWM_HEATERS /** * standard PWM modulation */ if (pwm_count == 0) { soft_pwm_0 = soft_pwm[0]; if (soft_pwm_0 > 0) { WRITE_HEATER_0(1); } else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0 #if EXTRUDERS > 1 soft_pwm_1 = soft_pwm[1]; WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0); #if EXTRUDERS > 2 soft_pwm_2 = soft_pwm[2]; WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0); #if EXTRUDERS > 3 soft_pwm_3 = soft_pwm[3]; WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0); #endif #endif #endif #if HAS_HEATER_BED soft_pwm_BED = soft_pwm_bed; WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0); #endif #ifdef FAN_SOFT_PWM soft_pwm_fan = fanSpeedSoftPwm / 2; WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0); #endif } if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); } #if EXTRUDERS > 1 if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0); #if EXTRUDERS > 2 if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0); #if EXTRUDERS > 3 if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0); #endif #endif #endif #if HAS_HEATER_BED if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0); #endif #ifdef FAN_SOFT_PWM if (soft_pwm_fan < pwm_count) WRITE_FAN(0); #endif pwm_count += BIT(SOFT_PWM_SCALE); pwm_count &= 0x7f; #else // SLOW_PWM_HEATERS /* * SLOW PWM HEATERS * * for heaters drived by relay */ #ifndef MIN_STATE_TIME #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds #endif // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies #define _SLOW_PWM_ROUTINE(NR, src) \ soft_pwm_ ## NR = src; \ if (soft_pwm_ ## NR > 0) { \ if (state_timer_heater_ ## NR == 0) { \ if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \ state_heater_ ## NR = 1; \ WRITE_HEATER_ ## NR(1); \ } \ } \ else { \ if (state_timer_heater_ ## NR == 0) { \ if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \ state_heater_ ## NR = 0; \ WRITE_HEATER_ ## NR(0); \ } \ } #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n]) #define PWM_OFF_ROUTINE(NR) \ if (soft_pwm_ ## NR < slow_pwm_count) { \ if (state_timer_heater_ ## NR == 0) { \ if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \ state_heater_ ## NR = 0; \ WRITE_HEATER_ ## NR (0); \ } \ } if (slow_pwm_count == 0) { SLOW_PWM_ROUTINE(0); // EXTRUDER 0 #if EXTRUDERS > 1 SLOW_PWM_ROUTINE(1); // EXTRUDER 1 #if EXTRUDERS > 2 SLOW_PWM_ROUTINE(2); // EXTRUDER 2 #if EXTRUDERS > 3 SLOW_PWM_ROUTINE(3); // EXTRUDER 3 #endif #endif #endif #if HAS_HEATER_BED _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED #endif } // slow_pwm_count == 0 PWM_OFF_ROUTINE(0); // EXTRUDER 0 #if EXTRUDERS > 1 PWM_OFF_ROUTINE(1); // EXTRUDER 1 #if EXTRUDERS > 2 PWM_OFF_ROUTINE(2); // EXTRUDER 2 #if EXTRUDERS > 3 PWM_OFF_ROUTINE(3); // EXTRUDER 3 #endif #endif #endif #if HAS_HEATER_BED PWM_OFF_ROUTINE(BED); // BED #endif #ifdef FAN_SOFT_PWM if (pwm_count == 0) { soft_pwm_fan = fanSpeedSoftPwm / 2; WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0); } if (soft_pwm_fan < pwm_count) WRITE_FAN(0); #endif //FAN_SOFT_PWM pwm_count += BIT(SOFT_PWM_SCALE); pwm_count &= 0x7f; // increment slow_pwm_count only every 64 pwm_count circa 65.5ms if ((pwm_count % 64) == 0) { slow_pwm_count++; slow_pwm_count &= 0x7f; // EXTRUDER 0 if (state_timer_heater_0 > 0) state_timer_heater_0--; #if EXTRUDERS > 1 // EXTRUDER 1 if (state_timer_heater_1 > 0) state_timer_heater_1--; #if EXTRUDERS > 2 // EXTRUDER 2 if (state_timer_heater_2 > 0) state_timer_heater_2--; #if EXTRUDERS > 3 // EXTRUDER 3 if (state_timer_heater_3 > 0) state_timer_heater_3--; #endif #endif #endif #if HAS_HEATER_BED if (state_timer_heater_BED > 0) state_timer_heater_BED--; #endif } // (pwm_count % 64) == 0 #endif // SLOW_PWM_HEATERS #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC) #ifdef MUX5 #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #else #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #endif switch(temp_state) { case PrepareTemp_0: #if HAS_TEMP_0 START_ADC(TEMP_0_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_0; break; case MeasureTemp_0: #if HAS_TEMP_0 raw_temp_0_value += ADC; #endif temp_state = PrepareTemp_BED; break; case PrepareTemp_BED: #if HAS_TEMP_BED START_ADC(TEMP_BED_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_BED; break; case MeasureTemp_BED: #if HAS_TEMP_BED raw_temp_bed_value += ADC; #endif temp_state = PrepareTemp_1; break; case PrepareTemp_1: #if HAS_TEMP_1 START_ADC(TEMP_1_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_1; break; case MeasureTemp_1: #if HAS_TEMP_1 raw_temp_1_value += ADC; #endif temp_state = PrepareTemp_2; break; case PrepareTemp_2: #if HAS_TEMP_2 START_ADC(TEMP_2_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_2; break; case MeasureTemp_2: #if HAS_TEMP_2 raw_temp_2_value += ADC; #endif temp_state = PrepareTemp_3; break; case PrepareTemp_3: #if HAS_TEMP_3 START_ADC(TEMP_3_PIN); #endif lcd_buttons_update(); temp_state = MeasureTemp_3; break; case MeasureTemp_3: #if HAS_TEMP_3 raw_temp_3_value += ADC; #endif temp_state = Prepare_FILWIDTH; break; case Prepare_FILWIDTH: #if HAS_FILAMENT_SENSOR START_ADC(FILWIDTH_PIN); #endif lcd_buttons_update(); temp_state = Measure_FILWIDTH; break; case Measure_FILWIDTH: #if HAS_FILAMENT_SENSOR // raw_filwidth_value += ADC; //remove to use an IIR filter approach if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128 raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading } #endif temp_state = PrepareTemp_0; temp_count++; break; case StartupDelay: temp_state = PrepareTemp_0; break; // default: // SERIAL_ERROR_START; // SERIAL_ERRORLNPGM("Temp measurement error!"); // break; } // switch(temp_state) if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms. if (!temp_meas_ready) { //Only update the raw values if they have been read. Else we could be updating them during reading. #ifndef HEATER_0_USES_MAX6675 current_temperature_raw[0] = raw_temp_0_value; #endif #if EXTRUDERS > 1 current_temperature_raw[1] = raw_temp_1_value; #if EXTRUDERS > 2 current_temperature_raw[2] = raw_temp_2_value; #if EXTRUDERS > 3 current_temperature_raw[3] = raw_temp_3_value; #endif #endif #endif #ifdef TEMP_SENSOR_1_AS_REDUNDANT redundant_temperature_raw = raw_temp_1_value; #endif current_temperature_bed_raw = raw_temp_bed_value; } //!temp_meas_ready // Filament Sensor - can be read any time since IIR filtering is used #if HAS_FILAMENT_SENSOR current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach #endif temp_meas_ready = true; temp_count = 0; raw_temp_0_value = 0; raw_temp_1_value = 0; raw_temp_2_value = 0; raw_temp_3_value = 0; raw_temp_bed_value = 0; #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP #define MAXTEST <= #define MINTEST >= #else #define MAXTEST >= #define MINTEST <= #endif for (int i=0; i<EXTRUDERS; i++) { if (current_temperature_raw[i] MAXTEST maxttemp_raw[i]) max_temp_error(i); else if (current_temperature_raw[i] MINTEST minttemp_raw[i]) min_temp_error(i); } /* No bed MINTEMP error? */ #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0) if (current_temperature_bed_raw MAXTEST bed_maxttemp_raw) { target_temperature_bed = 0; bed_max_temp_error(); } #endif } // temp_count >= OVERSAMPLENR #ifdef BABYSTEPPING for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) { int curTodo=babystepsTodo[axis]; //get rid of volatile for performance if (curTodo > 0) { babystep(axis,/*fwd*/true); babystepsTodo[axis]--; //less to do next time } else if(curTodo < 0) { babystep(axis,/*fwd*/false); babystepsTodo[axis]++; //less to do next time } } #endif //BABYSTEPPING } #ifdef PIDTEMP // Apply the scale factors to the PID values float scalePID_i(float i) { return i * PID_dT; } float unscalePID_i(float i) { return i / PID_dT; } float scalePID_d(float d) { return d / PID_dT; } float unscalePID_d(float d) { return d * PID_dT; } #endif //PIDTEMP