/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
/**
* MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved.
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#include "MarlinSerial.h"
#include "InterruptVectors.h"
#include "../../MarlinCore.h"
template typename MarlinSerial::ring_buffer_r MarlinSerial::rx_buffer = { 0, 0, { 0 } };
template typename MarlinSerial::ring_buffer_t MarlinSerial::tx_buffer = { 0 };
template bool MarlinSerial::_written = false;
template uint8_t MarlinSerial::xon_xoff_state = MarlinSerial::XON_XOFF_CHAR_SENT | MarlinSerial::XON_CHAR;
template uint8_t MarlinSerial::rx_dropped_bytes = 0;
template uint8_t MarlinSerial::rx_buffer_overruns = 0;
template uint8_t MarlinSerial::rx_framing_errors = 0;
template typename MarlinSerial::ring_buffer_pos_t MarlinSerial::rx_max_enqueued = 0;
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory");
#include "../../feature/e_parser.h"
// (called with RX interrupts disabled)
template
FORCE_INLINE void MarlinSerial::store_rxd_char() {
static EmergencyParser::State emergency_state; // = EP_RESET
// Get the tail - Nothing can alter its value while we are at this ISR
const ring_buffer_pos_t t = rx_buffer.tail;
// Get the head pointer
ring_buffer_pos_t h = rx_buffer.head;
// Get the next element
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
uint8_t c = HWUART->UART_RHR;
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the RX FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Calculate count of bytes stored into the RX buffer
// Keep track of the maximum count of enqueued bytes
if (Cfg::MAX_RX_QUEUED) NOLESS(rx_max_enqueued, rx_count);
if (Cfg::XONOFF) {
// If the last char that was sent was an XON
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// Bytes stored into the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// If over 12.5% of RX buffer capacity, send XOFF before running out of
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
// and stop sending bytes. This translates to 13mS propagation time.
if (rx_count >= (Cfg::RX_SIZE) / 8) {
// At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted.
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
// to be in the middle of trying to disable the RX interrupt in the main program, eventually the
// enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure
// the sending of the XOFF char is to send it HERE AND NOW.
// About to send the XOFF char
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
// Wait until the TX register becomes empty and send it - Here there could be a problem
// - While waiting for the TX register to empty, the RX register could receive a new
// character. This must also handle that situation!
uint32_t status;
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {
if (status & UART_SR_RXRDY) {
// We received a char while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
c = HWUART->UART_RHR;
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
}
sw_barrier();
}
HWUART->UART_THR = XOFF_CHAR;
// At this point there could be a race condition between the write() function
// and this sending of the XOFF char. This interrupt could happen between the
// wait to be empty TX buffer loop and the actual write of the character. Since
// the TX buffer is full because it's sending the XOFF char, the only way to be
// sure the write() function will succeed is to wait for the XOFF char to be
// completely sent. Since an extra character could be received during the wait
// it must also be handled!
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {
if (status & UART_SR_RXRDY) {
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
c = HWUART->UART_RHR;
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
}
sw_barrier();
}
// At this point everything is ready. The write() function won't
// have any issues writing to the UART TX register if it needs to!
}
}
}
// Store the new head value
rx_buffer.head = h;
}
template
FORCE_INLINE void MarlinSerial::_tx_thr_empty_irq() {
if (Cfg::TX_SIZE > 0) {
// Read positions
uint8_t t = tx_buffer.tail;
const uint8_t h = tx_buffer.head;
if (Cfg::XONOFF) {
// If an XON char is pending to be sent, do it now
if (xon_xoff_state == XON_CHAR) {
// Send the character
HWUART->UART_THR = XON_CHAR;
// Remember we sent it.
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
// If nothing else to transmit, just disable TX interrupts.
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
return;
}
}
// If nothing to transmit, just disable TX interrupts. This could
// happen as the result of the non atomicity of the disabling of RX
// interrupts that could end reenabling TX interrupts as a side effect.
if (h == t) {
HWUART->UART_IDR = UART_IDR_TXRDY;
return;
}
// There is something to TX, Send the next byte
const uint8_t c = tx_buffer.buffer[t];
t = (t + 1) & (Cfg::TX_SIZE - 1);
HWUART->UART_THR = c;
tx_buffer.tail = t;
// Disable interrupts if there is nothing to transmit following this byte
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
}
}
template
void MarlinSerial::UART_ISR() {
const uint32_t status = HWUART->UART_SR;
// Data received?
if (status & UART_SR_RXRDY) store_rxd_char();
if (Cfg::TX_SIZE > 0) {
// Something to send, and TX interrupts are enabled (meaning something to send)?
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq();
}
// Acknowledge errors
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) {
if (Cfg::DROPPED_RX && (status & UART_SR_OVRE) && !++rx_dropped_bytes) --rx_dropped_bytes;
if (Cfg::RX_OVERRUNS && (status & UART_SR_OVRE) && !++rx_buffer_overruns) --rx_buffer_overruns;
if (Cfg::RX_FRAMING_ERRORS && (status & UART_SR_FRAME) && !++rx_framing_errors) --rx_framing_errors;
// TODO: error reporting outside ISR
HWUART->UART_CR = UART_CR_RSTSTA;
}
}
// Public Methods
template
void MarlinSerial::begin(const long baud_setting) {
// Disable UART interrupt in NVIC
NVIC_DisableIRQ( HWUART_IRQ );
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
// Disable clock
pmc_disable_periph_clk( HWUART_IRQ_ID );
// Configure PMC
pmc_enable_periph_clk( HWUART_IRQ_ID );
// Disable PDC channel
HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS;
// Reset and disable receiver and transmitter
HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS;
// Configure mode: 8bit, No parity, 1 bit stop
HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO;
// Configure baudrate (asynchronous, no oversampling)
HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4));
// Configure interrupts
HWUART->UART_IDR = 0xFFFFFFFF;
HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME;
// Install interrupt handler
install_isr(HWUART_IRQ, UART_ISR);
// Configure priority. We need a very high priority to avoid losing characters
// and we need to be able to preempt the Stepper ISR and everything else!
// (this could probably be fixed by using DMA with the Serial port)
NVIC_SetPriority(HWUART_IRQ, 1);
// Enable UART interrupt in NVIC
NVIC_EnableIRQ(HWUART_IRQ);
// Enable receiver and transmitter
HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
if (Cfg::TX_SIZE > 0) _written = false;
}
template
void MarlinSerial::end() {
// Disable UART interrupt in NVIC
NVIC_DisableIRQ( HWUART_IRQ );
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
pmc_disable_periph_clk( HWUART_IRQ_ID );
}
template
int MarlinSerial::peek() {
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
return v;
}
template
int MarlinSerial::read() {
const ring_buffer_pos_t h = rx_buffer.head;
ring_buffer_pos_t t = rx_buffer.tail;
if (h == t) return -1;
int v = rx_buffer.buffer[t];
t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
// Advance tail
rx_buffer.tail = t;
if (Cfg::XONOFF) {
// If the XOFF char was sent, or about to be sent...
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes
if (rx_count < (Cfg::RX_SIZE) / 10) {
if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR;
// Enable TX isr.
HWUART->UART_IER = UART_IER_TXRDY;
}
else {
// If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = XON_CHAR;
}
}
}
}
return v;
}
template
typename MarlinSerial::ring_buffer_pos_t MarlinSerial::available() {
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
}
template
void MarlinSerial::flush() {
rx_buffer.tail = rx_buffer.head;
if (Cfg::XONOFF) {
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR;
// Enable TX isr.
HWUART->UART_IER = UART_IER_TXRDY;
}
else {
// If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = XON_CHAR;
}
}
}
}
template
size_t MarlinSerial::write(const uint8_t c) {
_written = true;
if (Cfg::TX_SIZE == 0) {
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = c;
}
else {
// If the TX interrupts are disabled and the data register
// is empty, just write the byte to the data register and
// be done. This shortcut helps significantly improve the
// effective datarate at high (>500kbit/s) bitrates, where
// interrupt overhead becomes a slowdown.
// Yes, there is a race condition between the sending of the
// XOFF char at the RX isr, but it is properly handled there
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
HWUART->UART_THR = c;
return 1;
}
const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
// If global interrupts are disabled (as the result of being called from an ISR)...
if (!ISRS_ENABLED()) {
// Make room by polling if it is possible to transmit, and do so!
while (i == tx_buffer.tail) {
// If we can transmit another byte, do it.
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
// Make sure compiler rereads tx_buffer.tail
sw_barrier();
}
}
else {
// Interrupts are enabled, just wait until there is space
while (i == tx_buffer.tail) sw_barrier();
}
// Store new char. head is always safe to move
tx_buffer.buffer[tx_buffer.head] = c;
tx_buffer.head = i;
// Enable TX isr - Non atomic, but it will eventually enable TX isr
HWUART->UART_IER = UART_IER_TXRDY;
}
return 1;
}
template
void MarlinSerial::flushTX() {
// TX
if (Cfg::TX_SIZE == 0) {
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// Wait until everything was transmitted
while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
else {
// If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization
if (!_written) return;
// If global interrupts are disabled (as the result of being called from an ISR)...
if (!ISRS_ENABLED()) {
// Wait until everything was transmitted - We must do polling, as interrupts are disabled
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) {
// If there is more space, send an extra character
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
sw_barrier();
}
}
else {
// Wait until everything was transmitted
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
}
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
}
// If not using the USB port as serial port
#if defined(SERIAL_PORT) && SERIAL_PORT >= 0
template class MarlinSerial< MarlinSerialCfg >;
MSerialT1 customizedSerial1(MarlinSerialCfg::EMERGENCYPARSER);
#endif
#if defined(SERIAL_PORT_2) && SERIAL_PORT_2 >= 0
template class MarlinSerial< MarlinSerialCfg >;
MSerialT2 customizedSerial2(MarlinSerialCfg::EMERGENCYPARSER);
#endif
#if defined(SERIAL_PORT_3) && SERIAL_PORT_3 >= 0
template class MarlinSerial< MarlinSerialCfg >;
MSerialT3 customizedSerial3(MarlinSerialCfg::EMERGENCYPARSER);
#endif
#endif // ARDUINO_ARCH_SAM