/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * stepper/trinamic.cpp * Stepper driver indirection for Trinamic */ #include "../../inc/MarlinConfig.h" #if HAS_TRINAMIC_CONFIG #include "trinamic.h" #include "../stepper.h" #include #include enum StealthIndex : uint8_t { LOGICAL_AXIS_LIST(STEALTH_AXIS_E, STEALTH_AXIS_X, STEALTH_AXIS_Y, STEALTH_AXIS_Z, STEALTH_AXIS_I, STEALTH_AXIS_J, STEALTH_AXIS_K) }; #define TMC_INIT(ST, STEALTH_INDEX) tmc_init(stepper##ST, ST##_CURRENT, ST##_MICROSTEPS, ST##_HYBRID_THRESHOLD, stealthchop_by_axis[STEALTH_INDEX], chopper_timing_##ST, ST##_INTERPOLATE) // IC = TMC model number // ST = Stepper object letter // L = Label characters // AI = Axis Enum Index // SWHW = SW/SH UART selection #if ENABLED(TMC_USE_SW_SPI) #define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), TMC_SW_MOSI, TMC_SW_MISO, TMC_SW_SCK, ST##_CHAIN_POS) #else #define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), ST##_CHAIN_POS) #endif #if ENABLED(TMC_SERIAL_MULTIPLEXER) #define TMC_UART_HW_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(&ST##_HARDWARE_SERIAL, float(ST##_RSENSE), ST##_SLAVE_ADDRESS, SERIAL_MUL_PIN1, SERIAL_MUL_PIN2) #else #define TMC_UART_HW_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(&ST##_HARDWARE_SERIAL, float(ST##_RSENSE), ST##_SLAVE_ADDRESS) #endif #define TMC_UART_SW_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(ST##_SERIAL_RX_PIN, ST##_SERIAL_TX_PIN, float(ST##_RSENSE), ST##_SLAVE_ADDRESS) #define _TMC_SPI_DEFINE(IC, ST, AI) __TMC_SPI_DEFINE(IC, ST, TMC_##ST##_LABEL, AI) #define TMC_SPI_DEFINE(ST, AI) _TMC_SPI_DEFINE(ST##_DRIVER_TYPE, ST, AI##_AXIS) #define _TMC_UART_DEFINE(SWHW, IC, ST, AI) TMC_UART_##SWHW##_DEFINE(IC, ST, TMC_##ST##_LABEL, AI) #define TMC_UART_DEFINE(SWHW, ST, AI) _TMC_UART_DEFINE(SWHW, ST##_DRIVER_TYPE, ST, AI##_AXIS) #if ENABLED(DISTINCT_E_FACTORS) #define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E##AI) #define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E##AI) #else #define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E) #define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E) #endif // Stepper objects of TMC2130/TMC2160/TMC2660/TMC5130/TMC5160 steppers used #if AXIS_HAS_SPI(X) TMC_SPI_DEFINE(X, X); #endif #if AXIS_HAS_SPI(X2) TMC_SPI_DEFINE(X2, X); #endif #if AXIS_HAS_SPI(Y) TMC_SPI_DEFINE(Y, Y); #endif #if AXIS_HAS_SPI(Y2) TMC_SPI_DEFINE(Y2, Y); #endif #if AXIS_HAS_SPI(Z) TMC_SPI_DEFINE(Z, Z); #endif #if AXIS_HAS_SPI(Z2) TMC_SPI_DEFINE(Z2, Z); #endif #if AXIS_HAS_SPI(Z3) TMC_SPI_DEFINE(Z3, Z); #endif #if AXIS_HAS_SPI(Z4) TMC_SPI_DEFINE(Z4, Z); #endif #if AXIS_HAS_SPI(I) TMC_SPI_DEFINE(I, I); #endif #if AXIS_HAS_SPI(J) TMC_SPI_DEFINE(J, J); #endif #if AXIS_HAS_SPI(K) TMC_SPI_DEFINE(K, K); #endif #if AXIS_HAS_SPI(E0) TMC_SPI_DEFINE_E(0); #endif #if AXIS_HAS_SPI(E1) TMC_SPI_DEFINE_E(1); #endif #if AXIS_HAS_SPI(E2) TMC_SPI_DEFINE_E(2); #endif #if AXIS_HAS_SPI(E3) TMC_SPI_DEFINE_E(3); #endif #if AXIS_HAS_SPI(E4) TMC_SPI_DEFINE_E(4); #endif #if AXIS_HAS_SPI(E5) TMC_SPI_DEFINE_E(5); #endif #if AXIS_HAS_SPI(E6) TMC_SPI_DEFINE_E(6); #endif #if AXIS_HAS_SPI(E7) TMC_SPI_DEFINE_E(7); #endif #ifndef TMC_BAUD_RATE // Reduce baud rate for boards not already overriding TMC_BAUD_RATE for software serial. // Testing has shown that 115200 is not 100% reliable on AVR platforms, occasionally // failing to read status properly. 32-bit platforms typically define an even lower // TMC_BAUD_RATE, due to differences in how SoftwareSerial libraries work on different // platforms. #define TMC_BAUD_RATE TERN(HAS_TMC_SW_SERIAL, 57600, 115200) #endif #ifndef TMC_X_BAUD_RATE #define TMC_X_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_X2_BAUD_RATE #define TMC_X2_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_Y_BAUD_RATE #define TMC_Y_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_Y2_BAUD_RATE #define TMC_Y2_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_Z_BAUD_RATE #define TMC_Z_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_Z2_BAUD_RATE #define TMC_Z2_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_Z3_BAUD_RATE #define TMC_Z3_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_Z4_BAUD_RATE #define TMC_Z4_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_I_BAUD_RATE #define TMC_I_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_J_BAUD_RATE #define TMC_J_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_K_BAUD_RATE #define TMC_K_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_E0_BAUD_RATE #define TMC_E0_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_E1_BAUD_RATE #define TMC_E1_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_E2_BAUD_RATE #define TMC_E2_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_E3_BAUD_RATE #define TMC_E3_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_E4_BAUD_RATE #define TMC_E4_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_E5_BAUD_RATE #define TMC_E5_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_E6_BAUD_RATE #define TMC_E6_BAUD_RATE TMC_BAUD_RATE #endif #ifndef TMC_E7_BAUD_RATE #define TMC_E7_BAUD_RATE TMC_BAUD_RATE #endif #if HAS_DRIVER(TMC2130) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) { st.begin(); CHOPCONF_t chopconf{0}; chopconf.tbl = 0b01; chopconf.toff = chop_init.toff; chopconf.intpol = interpolate; chopconf.hend = chop_init.hend + 3; chopconf.hstrt = chop_init.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current st.en_pwm_mode(stealth); st.stored.stealthChop_enabled = stealth; PWMCONF_t pwmconf{0}; pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk pwmconf.pwm_autoscale = true; pwmconf.pwm_grad = 5; pwmconf.pwm_ampl = 180; st.PWMCONF(pwmconf.sr); TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs)); st.GSTAT(); // Clear GSTAT } #endif // TMC2130 #if HAS_DRIVER(TMC2160) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) { st.begin(); CHOPCONF_t chopconf{0}; chopconf.tbl = 0b01; chopconf.toff = chop_init.toff; chopconf.intpol = interpolate; chopconf.hend = chop_init.hend + 3; chopconf.hstrt = chop_init.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current st.en_pwm_mode(stealth); st.stored.stealthChop_enabled = stealth; TMC2160_n::PWMCONF_t pwmconf{0}; pwmconf.pwm_lim = 12; pwmconf.pwm_reg = 8; pwmconf.pwm_autograd = true; pwmconf.pwm_autoscale = true; pwmconf.pwm_freq = 0b01; pwmconf.pwm_grad = 14; pwmconf.pwm_ofs = 36; st.PWMCONF(pwmconf.sr); TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs)); st.GSTAT(); // Clear GSTAT } #endif // TMC2160 // // TMC2208/2209 Driver objects and inits // #if HAS_TMC220x #if AXIS_HAS_UART(X) #ifdef X_HARDWARE_SERIAL TMC_UART_DEFINE(HW, X, X); #define X_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, X, X); #define X_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(X2) #ifdef X2_HARDWARE_SERIAL TMC_UART_DEFINE(HW, X2, X); #define X2_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, X2, X); #define X2_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(Y) #ifdef Y_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Y, Y); #define Y_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, Y, Y); #define Y_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(Y2) #ifdef Y2_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Y2, Y); #define Y2_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, Y2, Y); #define Y2_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(Z) #ifdef Z_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Z, Z); #define Z_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, Z, Z); #define Z_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(Z2) #ifdef Z2_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Z2, Z); #define Z2_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, Z2, Z); #define Z2_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(Z3) #ifdef Z3_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Z3, Z); #define Z3_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, Z3, Z); #define Z3_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(Z4) #ifdef Z4_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Z4, Z); #define Z4_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, Z4, Z); #define Z4_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(I) #ifdef I_HARDWARE_SERIAL TMC_UART_DEFINE(HW, I, I); #define I_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, I, I); #define I_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(J) #ifdef J_HARDWARE_SERIAL TMC_UART_DEFINE(HW, J, J); #define J_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, J, J); #define J_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(K) #ifdef K_HARDWARE_SERIAL TMC_UART_DEFINE(HW, K, K); #define K_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE(SW, K, K); #define K_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(E0) #ifdef E0_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 0); #define E0_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE_E(SW, 0); #define E0_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(E1) #ifdef E1_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 1); #define E1_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE_E(SW, 1); #define E1_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(E2) #ifdef E2_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 2); #define E2_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE_E(SW, 2); #define E2_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(E3) #ifdef E3_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 3); #define E3_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE_E(SW, 3); #define E3_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(E4) #ifdef E4_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 4); #define E4_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE_E(SW, 4); #define E4_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(E5) #ifdef E5_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 5); #define E5_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE_E(SW, 5); #define E5_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(E6) #ifdef E6_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 6); #define E6_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE_E(SW, 6); #define E6_HAS_SW_SERIAL 1 #endif #endif #if AXIS_HAS_UART(E7) #ifdef E7_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 7); #define E7_HAS_HW_SERIAL 1 #else TMC_UART_DEFINE_E(SW, 7); #define E7_HAS_SW_SERIAL 1 #endif #endif #define _EN_ITEM(N) , E##N enum TMCAxis : uint8_t { LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(EXTRUDERS, _EN_ITEM), TOTAL }; #undef _EN_ITEM void tmc_serial_begin() { #if HAS_TMC_HW_SERIAL struct { const void *ptr[TMCAxis::TOTAL]; bool began(const TMCAxis a, const void * const p) { LOOP_L_N(i, a) if (p == ptr[i]) return true; ptr[a] = p; return false; }; } sp_helper; #define HW_SERIAL_BEGIN(A) do{ if (!sp_helper.began(TMCAxis::A, &A##_HARDWARE_SERIAL)) \ A##_HARDWARE_SERIAL.begin(TMC_##A##_BAUD_RATE); }while(0) #endif #if AXIS_HAS_UART(X) #ifdef X_HARDWARE_SERIAL HW_SERIAL_BEGIN(X); #else stepperX.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(X2) #ifdef X2_HARDWARE_SERIAL HW_SERIAL_BEGIN(X2); #else stepperX2.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Y) #ifdef Y_HARDWARE_SERIAL HW_SERIAL_BEGIN(Y); #else stepperY.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Y2) #ifdef Y2_HARDWARE_SERIAL HW_SERIAL_BEGIN(Y2); #else stepperY2.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Z) #ifdef Z_HARDWARE_SERIAL HW_SERIAL_BEGIN(Z); #else stepperZ.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Z2) #ifdef Z2_HARDWARE_SERIAL HW_SERIAL_BEGIN(Z2); #else stepperZ2.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Z3) #ifdef Z3_HARDWARE_SERIAL HW_SERIAL_BEGIN(Z3); #else stepperZ3.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Z4) #ifdef Z4_HARDWARE_SERIAL HW_SERIAL_BEGIN(Z4); #else stepperZ4.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(I) #ifdef I_HARDWARE_SERIAL HW_SERIAL_BEGIN(I); #else stepperI.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(J) #ifdef J_HARDWARE_SERIAL HW_SERIAL_BEGIN(J); #else stepperJ.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(K) #ifdef K_HARDWARE_SERIAL HW_SERIAL_BEGIN(K); #else stepperK.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E0) #ifdef E0_HARDWARE_SERIAL HW_SERIAL_BEGIN(E0); #else stepperE0.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E1) #ifdef E1_HARDWARE_SERIAL HW_SERIAL_BEGIN(E1); #else stepperE1.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E2) #ifdef E2_HARDWARE_SERIAL HW_SERIAL_BEGIN(E2); #else stepperE2.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E3) #ifdef E3_HARDWARE_SERIAL HW_SERIAL_BEGIN(E3); #else stepperE3.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E4) #ifdef E4_HARDWARE_SERIAL HW_SERIAL_BEGIN(E4); #else stepperE4.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E5) #ifdef E5_HARDWARE_SERIAL HW_SERIAL_BEGIN(E5); #else stepperE5.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E6) #ifdef E6_HARDWARE_SERIAL HW_SERIAL_BEGIN(E6); #else stepperE6.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E7) #ifdef E7_HARDWARE_SERIAL HW_SERIAL_BEGIN(E7); #else stepperE7.beginSerial(TMC_BAUD_RATE); #endif #endif } #endif #if HAS_DRIVER(TMC2208) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) { TMC2208_n::GCONF_t gconf{0}; gconf.pdn_disable = true; // Use UART gconf.mstep_reg_select = true; // Select microsteps with UART gconf.i_scale_analog = false; gconf.en_spreadcycle = !stealth; st.GCONF(gconf.sr); st.stored.stealthChop_enabled = stealth; TMC2208_n::CHOPCONF_t chopconf{0}; chopconf.tbl = 0b01; // blank_time = 24 chopconf.toff = chop_init.toff; chopconf.intpol = interpolate; chopconf.hend = chop_init.hend + 3; chopconf.hstrt = chop_init.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current TMC2208_n::PWMCONF_t pwmconf{0}; pwmconf.pwm_lim = 12; pwmconf.pwm_reg = 8; pwmconf.pwm_autograd = true; pwmconf.pwm_autoscale = true; pwmconf.pwm_freq = 0b01; pwmconf.pwm_grad = 14; pwmconf.pwm_ofs = 36; st.PWMCONF(pwmconf.sr); TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs)); st.GSTAT(0b111); // Clear delay(200); } #endif // TMC2208 #if HAS_DRIVER(TMC2209) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) { TMC2208_n::GCONF_t gconf{0}; gconf.pdn_disable = true; // Use UART gconf.mstep_reg_select = true; // Select microsteps with UART gconf.i_scale_analog = false; gconf.en_spreadcycle = !stealth; st.GCONF(gconf.sr); st.stored.stealthChop_enabled = stealth; TMC2208_n::CHOPCONF_t chopconf{0}; chopconf.tbl = 0b01; // blank_time = 24 chopconf.toff = chop_init.toff; chopconf.intpol = interpolate; chopconf.hend = chop_init.hend + 3; chopconf.hstrt = chop_init.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current TMC2208_n::PWMCONF_t pwmconf{0}; pwmconf.pwm_lim = 12; pwmconf.pwm_reg = 8; pwmconf.pwm_autograd = true; pwmconf.pwm_autoscale = true; pwmconf.pwm_freq = 0b01; pwmconf.pwm_grad = 14; pwmconf.pwm_ofs = 36; st.PWMCONF(pwmconf.sr); TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs)); st.GSTAT(0b111); // Clear delay(200); } #endif // TMC2209 #if HAS_DRIVER(TMC2660) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t, const bool, const chopper_timing_t &chop_init, const bool interpolate) { st.begin(); TMC2660_n::CHOPCONF_t chopconf{0}; chopconf.tbl = 0b01; chopconf.toff = chop_init.toff; chopconf.hend = chop_init.hend + 3; chopconf.hstrt = chop_init.hstrt - 1; st.CHOPCONF(chopconf.sr); st.sdoff(0); st.rms_current(mA); st.microsteps(microsteps); TERN_(SQUARE_WAVE_STEPPING, st.dedge(true)); st.intpol(interpolate); st.diss2g(true); // Disable short to ground protection. Too many false readings? TERN_(TMC_DEBUG, st.rdsel(0b01)); } #endif // TMC2660 #if HAS_DRIVER(TMC5130) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) { st.begin(); CHOPCONF_t chopconf{0}; chopconf.tbl = 0b01; chopconf.toff = chop_init.toff; chopconf.intpol = interpolate; chopconf.hend = chop_init.hend + 3; chopconf.hstrt = chop_init.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current st.en_pwm_mode(stealth); st.stored.stealthChop_enabled = stealth; PWMCONF_t pwmconf{0}; pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk pwmconf.pwm_autoscale = true; pwmconf.pwm_grad = 5; pwmconf.pwm_ampl = 180; st.PWMCONF(pwmconf.sr); TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs)); st.GSTAT(); // Clear GSTAT } #endif // TMC5130 #if HAS_DRIVER(TMC5160) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) { st.begin(); CHOPCONF_t chopconf{0}; chopconf.tbl = 0b01; chopconf.toff = chop_init.toff; chopconf.intpol = interpolate; chopconf.hend = chop_init.hend + 3; chopconf.hstrt = chop_init.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current st.en_pwm_mode(stealth); st.stored.stealthChop_enabled = stealth; TMC2160_n::PWMCONF_t pwmconf{0}; pwmconf.pwm_lim = 12; pwmconf.pwm_reg = 8; pwmconf.pwm_autograd = true; pwmconf.pwm_autoscale = true; pwmconf.pwm_freq = 0b01; pwmconf.pwm_grad = 14; pwmconf.pwm_ofs = 36; st.PWMCONF(pwmconf.sr); TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs)); st.GSTAT(); // Clear GSTAT } #endif // TMC5160 void restore_trinamic_drivers() { #if AXIS_IS_TMC(X) stepperX.push(); #endif #if AXIS_IS_TMC(X2) stepperX2.push(); #endif #if AXIS_IS_TMC(Y) stepperY.push(); #endif #if AXIS_IS_TMC(Y2) stepperY2.push(); #endif #if AXIS_IS_TMC(Z) stepperZ.push(); #endif #if AXIS_IS_TMC(Z2) stepperZ2.push(); #endif #if AXIS_IS_TMC(Z3) stepperZ3.push(); #endif #if AXIS_IS_TMC(Z4) stepperZ4.push(); #endif #if AXIS_IS_TMC(I) stepperI.push(); #endif #if AXIS_IS_TMC(J) stepperJ.push(); #endif #if AXIS_IS_TMC(K) stepperK.push(); #endif #if AXIS_IS_TMC(E0) stepperE0.push(); #endif #if AXIS_IS_TMC(E1) stepperE1.push(); #endif #if AXIS_IS_TMC(E2) stepperE2.push(); #endif #if AXIS_IS_TMC(E3) stepperE3.push(); #endif #if AXIS_IS_TMC(E4) stepperE4.push(); #endif #if AXIS_IS_TMC(E5) stepperE5.push(); #endif #if AXIS_IS_TMC(E6) stepperE6.push(); #endif #if AXIS_IS_TMC(E7) stepperE7.push(); #endif } void reset_trinamic_drivers() { static constexpr bool stealthchop_by_axis[] = LOGICAL_AXIS_ARRAY( ENABLED(STEALTHCHOP_E), ENABLED(STEALTHCHOP_XY), ENABLED(STEALTHCHOP_XY), ENABLED(STEALTHCHOP_Z), ENABLED(STEALTHCHOP_I), ENABLED(STEALTHCHOP_J), ENABLED(STEALTHCHOP_K) ); #if AXIS_IS_TMC(X) TMC_INIT(X, STEALTH_AXIS_X); #endif #if AXIS_IS_TMC(X2) TMC_INIT(X2, STEALTH_AXIS_X); #endif #if AXIS_IS_TMC(Y) TMC_INIT(Y, STEALTH_AXIS_Y); #endif #if AXIS_IS_TMC(Y2) TMC_INIT(Y2, STEALTH_AXIS_Y); #endif #if AXIS_IS_TMC(Z) TMC_INIT(Z, STEALTH_AXIS_Z); #endif #if AXIS_IS_TMC(Z2) TMC_INIT(Z2, STEALTH_AXIS_Z); #endif #if AXIS_IS_TMC(Z3) TMC_INIT(Z3, STEALTH_AXIS_Z); #endif #if AXIS_IS_TMC(Z4) TMC_INIT(Z4, STEALTH_AXIS_Z); #endif #if AXIS_IS_TMC(I) TMC_INIT(I, STEALTH_AXIS_I); #endif #if AXIS_IS_TMC(J) TMC_INIT(J, STEALTH_AXIS_J); #endif #if AXIS_IS_TMC(K) TMC_INIT(K, STEALTH_AXIS_K); #endif #if AXIS_IS_TMC(E0) TMC_INIT(E0, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E1) TMC_INIT(E1, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E2) TMC_INIT(E2, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E3) TMC_INIT(E3, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E4) TMC_INIT(E4, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E5) TMC_INIT(E5, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E6) TMC_INIT(E6, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E7) TMC_INIT(E7, STEALTH_AXIS_E); #endif #if USE_SENSORLESS #if X_SENSORLESS stepperX.homing_threshold(X_STALL_SENSITIVITY); #if AXIS_HAS_STALLGUARD(X2) stepperX2.homing_threshold(CAT(TERN(X2_SENSORLESS, X2, X), _STALL_SENSITIVITY)); #endif #endif #if Y_SENSORLESS stepperY.homing_threshold(Y_STALL_SENSITIVITY); #if AXIS_HAS_STALLGUARD(Y2) stepperY2.homing_threshold(CAT(TERN(Y2_SENSORLESS, Y2, Y), _STALL_SENSITIVITY)); #endif #endif #if Z_SENSORLESS stepperZ.homing_threshold(Z_STALL_SENSITIVITY); #if AXIS_HAS_STALLGUARD(Z2) stepperZ2.homing_threshold(CAT(TERN(Z2_SENSORLESS, Z2, Z), _STALL_SENSITIVITY)); #endif #if AXIS_HAS_STALLGUARD(Z3) stepperZ3.homing_threshold(CAT(TERN(Z3_SENSORLESS, Z3, Z), _STALL_SENSITIVITY)); #endif #if AXIS_HAS_STALLGUARD(Z4) stepperZ4.homing_threshold(CAT(TERN(Z4_SENSORLESS, Z4, Z), _STALL_SENSITIVITY)); #endif #endif #if I_SENSORLESS stepperI.homing_threshold(I_STALL_SENSITIVITY); #if AXIS_HAS_STALLGUARD(I) stepperI.homing_threshold(CAT(TERN(I_SENSORLESS, I, I), _STALL_SENSITIVITY)); #endif #endif #if J_SENSORLESS stepperJ.homing_threshold(J_STALL_SENSITIVITY); #if AXIS_HAS_STALLGUARD(J) stepperJ.homing_threshold(CAT(TERN(J_SENSORLESS, J, J), _STALL_SENSITIVITY)); #endif #endif #if K_SENSORLESS stepperK.homing_threshold(K_STALL_SENSITIVITY); #if AXIS_HAS_STALLGUARD(K) stepperK.homing_threshold(CAT(TERN(K_SENSORLESS, K, K), _STALL_SENSITIVITY)); #endif #endif #endif // USE SENSORLESS #ifdef TMC_ADV TMC_ADV() #endif stepper.set_directions(); } // TMC Slave Address Conflict Detection // // Conflict detection is performed in the following way. Similar methods are used for // hardware and software serial, but the implementations are independent. // // 1. Populate a data structure with UART parameters and addresses for all possible axis. // If an axis is not in use, populate it with recognizable placeholder data. // 2. For each axis in use, static_assert using a constexpr function, which counts the // number of matching/conflicting axis. If the value is not exactly 1, fail. #if ANY_AXIS_HAS(HW_SERIAL) // Hardware serial names are compared as strings, since actually resolving them cannot occur in a constexpr. // Using a fixed-length character array for the port name allows this to be constexpr compatible. struct SanityHwSerialDetails { const char port[20]; uint32_t address; }; #define TMC_HW_DETAIL_ARGS(A) TERN(A##_HAS_HW_SERIAL, STRINGIFY(A##_HARDWARE_SERIAL), ""), TERN0(A##_HAS_HW_SERIAL, A##_SLAVE_ADDRESS) #define TMC_HW_DETAIL(A) { TMC_HW_DETAIL_ARGS(A) } constexpr SanityHwSerialDetails sanity_tmc_hw_details[] = { TMC_HW_DETAIL(X), TMC_HW_DETAIL(X2), TMC_HW_DETAIL(Y), TMC_HW_DETAIL(Y2), TMC_HW_DETAIL(Z), TMC_HW_DETAIL(Z2), TMC_HW_DETAIL(Z3), TMC_HW_DETAIL(Z4), TMC_HW_DETAIL(I), TMC_HW_DETAIL(J), TMC_HW_DETAIL(K), TMC_HW_DETAIL(E0), TMC_HW_DETAIL(E1), TMC_HW_DETAIL(E2), TMC_HW_DETAIL(E3), TMC_HW_DETAIL(E4), TMC_HW_DETAIL(E5), TMC_HW_DETAIL(E6), TMC_HW_DETAIL(E7) }; // constexpr compatible string comparison constexpr bool str_eq_ce(const char * a, const char * b) { return *a == *b && (*a == '\0' || str_eq_ce(a+1,b+1)); } constexpr bool sc_hw_done(size_t start, size_t end) { return start == end; } constexpr bool sc_hw_skip(const char *port_name) { return !(*port_name); } constexpr bool sc_hw_match(const char *port_name, uint32_t address, size_t start, size_t end) { return !sc_hw_done(start, end) && !sc_hw_skip(port_name) && (address == sanity_tmc_hw_details[start].address && str_eq_ce(port_name, sanity_tmc_hw_details[start].port)); } constexpr int count_tmc_hw_serial_matches(const char *port_name, uint32_t address, size_t start, size_t end) { return sc_hw_done(start, end) ? 0 : ((sc_hw_skip(port_name) ? 0 : (sc_hw_match(port_name, address, start, end) ? 1 : 0)) + count_tmc_hw_serial_matches(port_name, address, start + 1, end)); } #define TMC_HWSERIAL_CONFLICT_MSG(A) STRINGIFY(A) "_SLAVE_ADDRESS conflicts with another driver using the same " STRINGIFY(A) "_HARDWARE_SERIAL" #define SA_NO_TMC_HW_C(A) static_assert(1 >= count_tmc_hw_serial_matches(TMC_HW_DETAIL_ARGS(A), 0, COUNT(sanity_tmc_hw_details)), TMC_HWSERIAL_CONFLICT_MSG(A)); SA_NO_TMC_HW_C(X); SA_NO_TMC_HW_C(X2); SA_NO_TMC_HW_C(Y); SA_NO_TMC_HW_C(Y2); SA_NO_TMC_HW_C(Z); SA_NO_TMC_HW_C(Z2); SA_NO_TMC_HW_C(Z3); SA_NO_TMC_HW_C(Z4); SA_NO_TMC_HW_C(I); SA_NO_TMC_HW_C(J); SA_NO_TMC_HW_C(K); SA_NO_TMC_HW_C(E0); SA_NO_TMC_HW_C(E1); SA_NO_TMC_HW_C(E2); SA_NO_TMC_HW_C(E3); SA_NO_TMC_HW_C(E4); SA_NO_TMC_HW_C(E5); SA_NO_TMC_HW_C(E6); SA_NO_TMC_HW_C(E7); #endif #if ANY_AXIS_HAS(SW_SERIAL) struct SanitySwSerialDetails { int32_t txpin; int32_t rxpin; uint32_t address; }; #define TMC_SW_DETAIL_ARGS(A) TERN(A##_HAS_SW_SERIAL, A##_SERIAL_TX_PIN, -1), TERN(A##_HAS_SW_SERIAL, A##_SERIAL_RX_PIN, -1), TERN0(A##_HAS_SW_SERIAL, A##_SLAVE_ADDRESS) #define TMC_SW_DETAIL(A) TMC_SW_DETAIL_ARGS(A) constexpr SanitySwSerialDetails sanity_tmc_sw_details[] = { TMC_SW_DETAIL(X), TMC_SW_DETAIL(X2), TMC_SW_DETAIL(Y), TMC_SW_DETAIL(Y2), TMC_SW_DETAIL(Z), TMC_SW_DETAIL(Z2), TMC_SW_DETAIL(Z3), TMC_SW_DETAIL(Z4), TMC_SW_DETAIL(I), TMC_SW_DETAIL(J), TMC_SW_DETAIL(K), TMC_SW_DETAIL(E0), TMC_SW_DETAIL(E1), TMC_SW_DETAIL(E2), TMC_SW_DETAIL(E3), TMC_SW_DETAIL(E4), TMC_SW_DETAIL(E5), TMC_SW_DETAIL(E6), TMC_SW_DETAIL(E7) }; constexpr bool sc_sw_done(size_t start, size_t end) { return start == end; } constexpr bool sc_sw_skip(int32_t txpin) { return txpin < 0; } constexpr bool sc_sw_match(int32_t txpin, int32_t rxpin, uint32_t address, size_t start, size_t end) { return !sc_sw_done(start, end) && !sc_sw_skip(txpin) && (txpin == sanity_tmc_sw_details[start].txpin || rxpin == sanity_tmc_sw_details[start].rxpin) && (address == sanity_tmc_sw_details[start].address); } constexpr int count_tmc_sw_serial_matches(int32_t txpin, int32_t rxpin, uint32_t address, size_t start, size_t end) { return sc_sw_done(start, end) ? 0 : ((sc_sw_skip(txpin) ? 0 : (sc_sw_match(txpin, rxpin, address, start, end) ? 1 : 0)) + count_tmc_sw_serial_matches(txpin, rxpin, address, start + 1, end)); } #define TMC_SWSERIAL_CONFLICT_MSG(A) STRINGIFY(A) "_SLAVE_ADDRESS conflicts with another driver using the same " STRINGIFY(A) "_SERIAL_RX_PIN or " STRINGIFY(A) "_SERIAL_TX_PIN" #define SA_NO_TMC_SW_C(A) static_assert(1 >= count_tmc_sw_serial_matches(TMC_SW_DETAIL_ARGS(A), 0, COUNT(sanity_tmc_sw_details)), TMC_SWSERIAL_CONFLICT_MSG(A)); SA_NO_TMC_SW_C(X); SA_NO_TMC_SW_C(X2); SA_NO_TMC_SW_C(Y); SA_NO_TMC_SW_C(Y2); SA_NO_TMC_SW_C(Z); SA_NO_TMC_SW_C(Z2); SA_NO_TMC_SW_C(Z3); SA_NO_TMC_SW_C(Z4); SA_NO_TMC_SW_C(I); SA_NO_TMC_SW_C(J); SA_NO_TMC_SW_C(K); SA_NO_TMC_SW_C(E0); SA_NO_TMC_SW_C(E1); SA_NO_TMC_SW_C(E2); SA_NO_TMC_SW_C(E3); SA_NO_TMC_SW_C(E4); SA_NO_TMC_SW_C(E5); SA_NO_TMC_SW_C(E6); SA_NO_TMC_SW_C(E7); #endif #endif // HAS_TRINAMIC_CONFIG