/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * stepper/indirection.h * * Stepper motor driver indirection to allow some stepper functions to * be done via SPI/I2c instead of direct pin manipulation. * * Copyright (c) 2015 Dominik Wenger */ #include "../../inc/MarlinConfig.h" #if HAS_L64XX #include "L64xx.h" #endif #if HAS_TMC26X #include "TMC26X.h" #endif #if HAS_TRINAMIC_CONFIG #include "trinamic.h" #endif void restore_stepper_drivers(); // Called by powerManager.power_on() void reset_stepper_drivers(); // Called by settings.load / settings.reset // X Stepper #ifndef X_ENABLE_INIT #define X_ENABLE_INIT() SET_OUTPUT(X_ENABLE_PIN) #define X_ENABLE_WRITE(STATE) WRITE(X_ENABLE_PIN,STATE) #define X_ENABLE_READ() bool(READ(X_ENABLE_PIN)) #endif #ifndef X_DIR_INIT #define X_DIR_INIT() SET_OUTPUT(X_DIR_PIN) #define X_DIR_WRITE(STATE) WRITE(X_DIR_PIN,STATE) #define X_DIR_READ() bool(READ(X_DIR_PIN)) #endif #define X_STEP_INIT() SET_OUTPUT(X_STEP_PIN) #ifndef X_STEP_WRITE #define X_STEP_WRITE(STATE) WRITE(X_STEP_PIN,STATE) #endif #define X_STEP_READ() bool(READ(X_STEP_PIN)) // Y Stepper #if HAS_Y_AXIS #ifndef Y_ENABLE_INIT #define Y_ENABLE_INIT() SET_OUTPUT(Y_ENABLE_PIN) #define Y_ENABLE_WRITE(STATE) WRITE(Y_ENABLE_PIN,STATE) #define Y_ENABLE_READ() bool(READ(Y_ENABLE_PIN)) #endif #ifndef Y_DIR_INIT #define Y_DIR_INIT() SET_OUTPUT(Y_DIR_PIN) #define Y_DIR_WRITE(STATE) WRITE(Y_DIR_PIN,STATE) #define Y_DIR_READ() bool(READ(Y_DIR_PIN)) #endif #define Y_STEP_INIT() SET_OUTPUT(Y_STEP_PIN) #ifndef Y_STEP_WRITE #define Y_STEP_WRITE(STATE) WRITE(Y_STEP_PIN,STATE) #endif #define Y_STEP_READ() bool(READ(Y_STEP_PIN)) #endif // Z Stepper #if HAS_Z_AXIS #ifndef Z_ENABLE_INIT #define Z_ENABLE_INIT() SET_OUTPUT(Z_ENABLE_PIN) #define Z_ENABLE_WRITE(STATE) WRITE(Z_ENABLE_PIN,STATE) #define Z_ENABLE_READ() bool(READ(Z_ENABLE_PIN)) #endif #ifndef Z_DIR_INIT #define Z_DIR_INIT() SET_OUTPUT(Z_DIR_PIN) #define Z_DIR_WRITE(STATE) WRITE(Z_DIR_PIN,STATE) #define Z_DIR_READ() bool(READ(Z_DIR_PIN)) #endif #define Z_STEP_INIT() SET_OUTPUT(Z_STEP_PIN) #ifndef Z_STEP_WRITE #define Z_STEP_WRITE(STATE) WRITE(Z_STEP_PIN,STATE) #endif #define Z_STEP_READ() bool(READ(Z_STEP_PIN)) #endif // X2 Stepper #if HAS_X2_ENABLE #ifndef X2_ENABLE_INIT #define X2_ENABLE_INIT() SET_OUTPUT(X2_ENABLE_PIN) #define X2_ENABLE_WRITE(STATE) WRITE(X2_ENABLE_PIN,STATE) #define X2_ENABLE_READ() bool(READ(X2_ENABLE_PIN)) #endif #ifndef X2_DIR_INIT #define X2_DIR_INIT() SET_OUTPUT(X2_DIR_PIN) #define X2_DIR_WRITE(STATE) WRITE(X2_DIR_PIN,STATE) #define X2_DIR_READ() bool(READ(X2_DIR_PIN)) #endif #define X2_STEP_INIT() SET_OUTPUT(X2_STEP_PIN) #ifndef X2_STEP_WRITE #define X2_STEP_WRITE(STATE) WRITE(X2_STEP_PIN,STATE) #endif #define X2_STEP_READ() bool(READ(X2_STEP_PIN)) #endif // Y2 Stepper #if HAS_Y2_ENABLE #ifndef Y2_ENABLE_INIT #define Y2_ENABLE_INIT() SET_OUTPUT(Y2_ENABLE_PIN) #define Y2_ENABLE_WRITE(STATE) WRITE(Y2_ENABLE_PIN,STATE) #define Y2_ENABLE_READ() bool(READ(Y2_ENABLE_PIN)) #endif #ifndef Y2_DIR_INIT #define Y2_DIR_INIT() SET_OUTPUT(Y2_DIR_PIN) #define Y2_DIR_WRITE(STATE) WRITE(Y2_DIR_PIN,STATE) #define Y2_DIR_READ() bool(READ(Y2_DIR_PIN)) #endif #define Y2_STEP_INIT() SET_OUTPUT(Y2_STEP_PIN) #ifndef Y2_STEP_WRITE #define Y2_STEP_WRITE(STATE) WRITE(Y2_STEP_PIN,STATE) #endif #define Y2_STEP_READ() bool(READ(Y2_STEP_PIN)) #else #define Y2_DIR_WRITE(STATE) NOOP #endif // Z2 Stepper #if HAS_Z2_ENABLE #ifndef Z2_ENABLE_INIT #define Z2_ENABLE_INIT() SET_OUTPUT(Z2_ENABLE_PIN) #define Z2_ENABLE_WRITE(STATE) WRITE(Z2_ENABLE_PIN,STATE) #define Z2_ENABLE_READ() bool(READ(Z2_ENABLE_PIN)) #endif #ifndef Z2_DIR_INIT #define Z2_DIR_INIT() SET_OUTPUT(Z2_DIR_PIN) #define Z2_DIR_WRITE(STATE) WRITE(Z2_DIR_PIN,STATE) #define Z2_DIR_READ() bool(READ(Z2_DIR_PIN)) #endif #define Z2_STEP_INIT() SET_OUTPUT(Z2_STEP_PIN) #ifndef Z2_STEP_WRITE #define Z2_STEP_WRITE(STATE) WRITE(Z2_STEP_PIN,STATE) #endif #define Z2_STEP_READ() bool(READ(Z2_STEP_PIN)) #else #define Z2_DIR_WRITE(STATE) NOOP #endif // Z3 Stepper #if HAS_Z3_ENABLE #ifndef Z3_ENABLE_INIT #define Z3_ENABLE_INIT() SET_OUTPUT(Z3_ENABLE_PIN) #define Z3_ENABLE_WRITE(STATE) WRITE(Z3_ENABLE_PIN,STATE) #define Z3_ENABLE_READ() bool(READ(Z3_ENABLE_PIN)) #endif #ifndef Z3_DIR_INIT #define Z3_DIR_INIT() SET_OUTPUT(Z3_DIR_PIN) #define Z3_DIR_WRITE(STATE) WRITE(Z3_DIR_PIN,STATE) #define Z3_DIR_READ() bool(READ(Z3_DIR_PIN)) #endif #define Z3_STEP_INIT() SET_OUTPUT(Z3_STEP_PIN) #ifndef Z3_STEP_WRITE #define Z3_STEP_WRITE(STATE) WRITE(Z3_STEP_PIN,STATE) #endif #define Z3_STEP_READ() bool(READ(Z3_STEP_PIN)) #else #define Z3_DIR_WRITE(STATE) NOOP #endif // Z4 Stepper #if HAS_Z4_ENABLE #ifndef Z4_ENABLE_INIT #define Z4_ENABLE_INIT() SET_OUTPUT(Z4_ENABLE_PIN) #define Z4_ENABLE_WRITE(STATE) WRITE(Z4_ENABLE_PIN,STATE) #define Z4_ENABLE_READ() bool(READ(Z4_ENABLE_PIN)) #endif #ifndef Z4_DIR_INIT #define Z4_DIR_INIT() SET_OUTPUT(Z4_DIR_PIN) #define Z4_DIR_WRITE(STATE) WRITE(Z4_DIR_PIN,STATE) #define Z4_DIR_READ() bool(READ(Z4_DIR_PIN)) #endif #define Z4_STEP_INIT() SET_OUTPUT(Z4_STEP_PIN) #ifndef Z4_STEP_WRITE #define Z4_STEP_WRITE(STATE) WRITE(Z4_STEP_PIN,STATE) #endif #define Z4_STEP_READ() bool(READ(Z4_STEP_PIN)) #else #define Z4_DIR_WRITE(STATE) NOOP #endif // I Stepper #if LINEAR_AXES >= 4 #ifndef I_ENABLE_INIT #define I_ENABLE_INIT() SET_OUTPUT(I_ENABLE_PIN) #define I_ENABLE_WRITE(STATE) WRITE(I_ENABLE_PIN,STATE) #define I_ENABLE_READ() bool(READ(I_ENABLE_PIN)) #endif #ifndef I_DIR_INIT #define I_DIR_INIT() SET_OUTPUT(I_DIR_PIN) #define I_DIR_WRITE(STATE) WRITE(I_DIR_PIN,STATE) #define I_DIR_READ() bool(READ(I_DIR_PIN)) #endif #define I_STEP_INIT() SET_OUTPUT(I_STEP_PIN) #ifndef I_STEP_WRITE #define I_STEP_WRITE(STATE) WRITE(I_STEP_PIN,STATE) #endif #define I_STEP_READ() bool(READ(I_STEP_PIN)) #endif // J Stepper #if LINEAR_AXES >= 5 #ifndef J_ENABLE_INIT #define J_ENABLE_INIT() SET_OUTPUT(J_ENABLE_PIN) #define J_ENABLE_WRITE(STATE) WRITE(J_ENABLE_PIN,STATE) #define J_ENABLE_READ() bool(READ(J_ENABLE_PIN)) #endif #ifndef J_DIR_INIT #define J_DIR_INIT() SET_OUTPUT(J_DIR_PIN) #define J_DIR_WRITE(STATE) WRITE(J_DIR_PIN,STATE) #define J_DIR_READ() bool(READ(J_DIR_PIN)) #endif #define J_STEP_INIT() SET_OUTPUT(J_STEP_PIN) #ifndef J_STEP_WRITE #define J_STEP_WRITE(STATE) WRITE(J_STEP_PIN,STATE) #endif #define J_STEP_READ() bool(READ(J_STEP_PIN)) #endif // K Stepper #if LINEAR_AXES >= 6 #ifndef K_ENABLE_INIT #define K_ENABLE_INIT() SET_OUTPUT(K_ENABLE_PIN) #define K_ENABLE_WRITE(STATE) WRITE(K_ENABLE_PIN,STATE) #define K_ENABLE_READ() bool(READ(K_ENABLE_PIN)) #endif #ifndef K_DIR_INIT #define K_DIR_INIT() SET_OUTPUT(K_DIR_PIN) #define K_DIR_WRITE(STATE) WRITE(K_DIR_PIN,STATE) #define K_DIR_READ() bool(READ(K_DIR_PIN)) #endif #define K_STEP_INIT() SET_OUTPUT(K_STEP_PIN) #ifndef K_STEP_WRITE #define K_STEP_WRITE(STATE) WRITE(K_STEP_PIN,STATE) #endif #define K_STEP_READ() bool(READ(K_STEP_PIN)) #endif // E0 Stepper #ifndef E0_ENABLE_INIT #define E0_ENABLE_INIT() SET_OUTPUT(E0_ENABLE_PIN) #define E0_ENABLE_WRITE(STATE) WRITE(E0_ENABLE_PIN,STATE) #define E0_ENABLE_READ() bool(READ(E0_ENABLE_PIN)) #endif #ifndef E0_DIR_INIT #define E0_DIR_INIT() SET_OUTPUT(E0_DIR_PIN) #define E0_DIR_WRITE(STATE) WRITE(E0_DIR_PIN,STATE) #define E0_DIR_READ() bool(READ(E0_DIR_PIN)) #endif #define E0_STEP_INIT() SET_OUTPUT(E0_STEP_PIN) #ifndef E0_STEP_WRITE #define E0_STEP_WRITE(STATE) WRITE(E0_STEP_PIN,STATE) #endif #define E0_STEP_READ() bool(READ(E0_STEP_PIN)) // E1 Stepper #ifndef E1_ENABLE_INIT #define E1_ENABLE_INIT() SET_OUTPUT(E1_ENABLE_PIN) #define E1_ENABLE_WRITE(STATE) WRITE(E1_ENABLE_PIN,STATE) #define E1_ENABLE_READ() bool(READ(E1_ENABLE_PIN)) #endif #ifndef E1_DIR_INIT #define E1_DIR_INIT() SET_OUTPUT(E1_DIR_PIN) #define E1_DIR_WRITE(STATE) WRITE(E1_DIR_PIN,STATE) #define E1_DIR_READ() bool(READ(E1_DIR_PIN)) #endif #define E1_STEP_INIT() SET_OUTPUT(E1_STEP_PIN) #ifndef E1_STEP_WRITE #define E1_STEP_WRITE(STATE) WRITE(E1_STEP_PIN,STATE) #endif #define E1_STEP_READ() bool(READ(E1_STEP_PIN)) // E2 Stepper #ifndef E2_ENABLE_INIT #define E2_ENABLE_INIT() SET_OUTPUT(E2_ENABLE_PIN) #define E2_ENABLE_WRITE(STATE) WRITE(E2_ENABLE_PIN,STATE) #define E2_ENABLE_READ() bool(READ(E2_ENABLE_PIN)) #endif #ifndef E2_DIR_INIT #define E2_DIR_INIT() SET_OUTPUT(E2_DIR_PIN) #define E2_DIR_WRITE(STATE) WRITE(E2_DIR_PIN,STATE) #define E2_DIR_READ() bool(READ(E2_DIR_PIN)) #endif #define E2_STEP_INIT() SET_OUTPUT(E2_STEP_PIN) #ifndef E2_STEP_WRITE #define E2_STEP_WRITE(STATE) WRITE(E2_STEP_PIN,STATE) #endif #define E2_STEP_READ() bool(READ(E2_STEP_PIN)) // E3 Stepper #ifndef E3_ENABLE_INIT #define E3_ENABLE_INIT() SET_OUTPUT(E3_ENABLE_PIN) #define E3_ENABLE_WRITE(STATE) WRITE(E3_ENABLE_PIN,STATE) #define E3_ENABLE_READ() bool(READ(E3_ENABLE_PIN)) #endif #ifndef E3_DIR_INIT #define E3_DIR_INIT() SET_OUTPUT(E3_DIR_PIN) #define E3_DIR_WRITE(STATE) WRITE(E3_DIR_PIN,STATE) #define E3_DIR_READ() bool(READ(E3_DIR_PIN)) #endif #define E3_STEP_INIT() SET_OUTPUT(E3_STEP_PIN) #ifndef E3_STEP_WRITE #define E3_STEP_WRITE(STATE) WRITE(E3_STEP_PIN,STATE) #endif #define E3_STEP_READ() bool(READ(E3_STEP_PIN)) // E4 Stepper #ifndef E4_ENABLE_INIT #define E4_ENABLE_INIT() SET_OUTPUT(E4_ENABLE_PIN) #define E4_ENABLE_WRITE(STATE) WRITE(E4_ENABLE_PIN,STATE) #define E4_ENABLE_READ() bool(READ(E4_ENABLE_PIN)) #endif #ifndef E4_DIR_INIT #define E4_DIR_INIT() SET_OUTPUT(E4_DIR_PIN) #define E4_DIR_WRITE(STATE) WRITE(E4_DIR_PIN,STATE) #define E4_DIR_READ() bool(READ(E4_DIR_PIN)) #endif #define E4_STEP_INIT() SET_OUTPUT(E4_STEP_PIN) #ifndef E4_STEP_WRITE #define E4_STEP_WRITE(STATE) WRITE(E4_STEP_PIN,STATE) #endif #define E4_STEP_READ() bool(READ(E4_STEP_PIN)) // E5 Stepper #ifndef E5_ENABLE_INIT #define E5_ENABLE_INIT() SET_OUTPUT(E5_ENABLE_PIN) #define E5_ENABLE_WRITE(STATE) WRITE(E5_ENABLE_PIN,STATE) #define E5_ENABLE_READ() bool(READ(E5_ENABLE_PIN)) #endif #ifndef E5_DIR_INIT #define E5_DIR_INIT() SET_OUTPUT(E5_DIR_PIN) #define E5_DIR_WRITE(STATE) WRITE(E5_DIR_PIN,STATE) #define E5_DIR_READ() bool(READ(E5_DIR_PIN)) #endif #define E5_STEP_INIT() SET_OUTPUT(E5_STEP_PIN) #ifndef E5_STEP_WRITE #define E5_STEP_WRITE(STATE) WRITE(E5_STEP_PIN,STATE) #endif #define E5_STEP_READ() bool(READ(E5_STEP_PIN)) // E6 Stepper #ifndef E6_ENABLE_INIT #define E6_ENABLE_INIT() SET_OUTPUT(E6_ENABLE_PIN) #define E6_ENABLE_WRITE(STATE) WRITE(E6_ENABLE_PIN,STATE) #define E6_ENABLE_READ() bool(READ(E6_ENABLE_PIN)) #endif #ifndef E6_DIR_INIT #define E6_DIR_INIT() SET_OUTPUT(E6_DIR_PIN) #define E6_DIR_WRITE(STATE) WRITE(E6_DIR_PIN,STATE) #define E6_DIR_READ() bool(READ(E6_DIR_PIN)) #endif #define E6_STEP_INIT() SET_OUTPUT(E6_STEP_PIN) #ifndef E6_STEP_WRITE #define E6_STEP_WRITE(STATE) WRITE(E6_STEP_PIN,STATE) #endif #define E6_STEP_READ() bool(READ(E6_STEP_PIN)) // E7 Stepper #ifndef E7_ENABLE_INIT #define E7_ENABLE_INIT() SET_OUTPUT(E7_ENABLE_PIN) #define E7_ENABLE_WRITE(STATE) WRITE(E7_ENABLE_PIN,STATE) #define E7_ENABLE_READ() bool(READ(E7_ENABLE_PIN)) #endif #ifndef E7_DIR_INIT #define E7_DIR_INIT() SET_OUTPUT(E7_DIR_PIN) #define E7_DIR_WRITE(STATE) WRITE(E7_DIR_PIN,STATE) #define E7_DIR_READ() bool(READ(E7_DIR_PIN)) #endif #define E7_STEP_INIT() SET_OUTPUT(E7_STEP_PIN) #ifndef E7_STEP_WRITE #define E7_STEP_WRITE(STATE) WRITE(E7_STEP_PIN,STATE) #endif #define E7_STEP_READ() bool(READ(E7_STEP_PIN)) /** * Extruder indirection for the single E axis */ #if ENABLED(SWITCHING_EXTRUDER) // One stepper driver per two extruders, reversed on odd index #if EXTRUDERS > 7 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else if (E < 6) { E2_STEP_WRITE(V); } else { E3_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; \ case 4: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 5: E2_DIR_WRITE( INVERT_E2_DIR); break; \ case 6: E3_DIR_WRITE( INVERT_E3_DIR); break; case 7: E3_DIR_WRITE( INVERT_E3_DIR); break; \ } }while(0) #define REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ case 4: E2_DIR_WRITE( INVERT_E2_DIR); break; case 5: E2_DIR_WRITE(!INVERT_E2_DIR); break; \ case 6: E3_DIR_WRITE(!INVERT_E3_DIR); break; case 7: E3_DIR_WRITE(!INVERT_E3_DIR); break; \ } }while(0) #elif EXTRUDERS > 6 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else if (E < 6) { E2_STEP_WRITE(V); } else { E3_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; \ case 4: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 5: E2_DIR_WRITE( INVERT_E2_DIR); break; \ case 6: E3_DIR_WRITE( INVERT_E3_DIR); break; \ } }while(0) #define REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ case 4: E2_DIR_WRITE( INVERT_E2_DIR); break; case 5: E2_DIR_WRITE(!INVERT_E2_DIR); break; \ case 6: E3_DIR_WRITE(!INVERT_E3_DIR); } }while(0) #elif EXTRUDERS > 5 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; \ case 4: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 5: E2_DIR_WRITE( INVERT_E2_DIR); break; \ } }while(0) #define REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ case 4: E2_DIR_WRITE( INVERT_E2_DIR); break; case 5: E2_DIR_WRITE(!INVERT_E2_DIR); break; \ } }while(0) #elif EXTRUDERS > 4 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; \ case 4: E2_DIR_WRITE(!INVERT_E2_DIR); break; \ } }while(0) #define REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ case 4: E2_DIR_WRITE( INVERT_E2_DIR); break; \ } }while(0) #elif EXTRUDERS > 3 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; \ } }while(0) #define REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ } }while(0) #elif EXTRUDERS > 2 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ } }while(0) #define REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; \ case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; \ } }while(0) #else #define E_STEP_WRITE(E,V) E0_STEP_WRITE(V) #define NORM_E_DIR(E) do{ E0_DIR_WRITE(E ? INVERT_E0_DIR : !INVERT_E0_DIR); }while(0) #define REV_E_DIR(E) do{ E0_DIR_WRITE(E ? !INVERT_E0_DIR : INVERT_E0_DIR); }while(0) #endif #elif HAS_PRUSA_MMU2 // One multiplexed stepper driver #define E_STEP_WRITE(E,V) E0_STEP_WRITE(V) #define NORM_E_DIR(E) E0_DIR_WRITE(!INVERT_E0_DIR) #define REV_E_DIR(E) E0_DIR_WRITE( INVERT_E0_DIR) #elif HAS_PRUSA_MMU1 // One multiplexed stepper driver, reversed on odd index #define E_STEP_WRITE(E,V) E0_STEP_WRITE(V) #define NORM_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? !INVERT_E0_DIR: INVERT_E0_DIR); }while(0) #define REV_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? INVERT_E0_DIR: !INVERT_E0_DIR); }while(0) #elif E_STEPPERS > 1 #if E_STEPPERS > 7 #define _E_STEP_WRITE(E,V) do{ switch (E) { \ case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; \ case 4: E4_STEP_WRITE(V); break; case 5: E5_STEP_WRITE(V); break; case 6: E6_STEP_WRITE(V); break; case 7: E7_STEP_WRITE(V); break; \ } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; \ case 4: E4_DIR_WRITE(!INVERT_E4_DIR); break; case 5: E5_DIR_WRITE(!INVERT_E5_DIR); break; \ case 6: E6_DIR_WRITE(!INVERT_E6_DIR); break; case 7: E7_DIR_WRITE(!INVERT_E7_DIR); break; \ } }while(0) #define _REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; \ case 4: E4_DIR_WRITE( INVERT_E4_DIR); break; case 5: E5_DIR_WRITE( INVERT_E5_DIR); break; \ case 6: E6_DIR_WRITE( INVERT_E6_DIR); break; case 7: E7_DIR_WRITE( INVERT_E7_DIR); break; \ } }while(0) #elif E_STEPPERS > 6 #define _E_STEP_WRITE(E,V) do{ switch (E) { \ case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; \ case 4: E4_STEP_WRITE(V); break; case 5: E5_STEP_WRITE(V); break; case 6: E6_STEP_WRITE(V); break; \ } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; \ case 4: E4_DIR_WRITE(!INVERT_E4_DIR); break; case 5: E5_DIR_WRITE(!INVERT_E5_DIR); break; \ case 6: E6_DIR_WRITE(!INVERT_E6_DIR); break; \ } }while(0) #define _REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; \ case 4: E4_DIR_WRITE( INVERT_E4_DIR); break; case 5: E5_DIR_WRITE( INVERT_E5_DIR); break; \ case 6: E6_DIR_WRITE( INVERT_E6_DIR); break; \ } }while(0) #elif E_STEPPERS > 5 #define _E_STEP_WRITE(E,V) do{ switch (E) { \ case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; \ case 4: E4_STEP_WRITE(V); break; case 5: E5_STEP_WRITE(V); break; \ } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; \ case 4: E4_DIR_WRITE(!INVERT_E4_DIR); break; case 5: E5_DIR_WRITE(!INVERT_E5_DIR); break; \ } }while(0) #define _REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; \ case 4: E4_DIR_WRITE( INVERT_E4_DIR); break; case 5: E5_DIR_WRITE( INVERT_E5_DIR); break; \ } }while(0) #elif E_STEPPERS > 4 #define _E_STEP_WRITE(E,V) do{ switch (E) { \ case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; \ case 4: E4_STEP_WRITE(V); break; \ } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; \ case 4: E4_DIR_WRITE(!INVERT_E4_DIR); break; \ } }while(0) #define _REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; \ case 4: E4_DIR_WRITE( INVERT_E4_DIR); break; \ } }while(0) #elif E_STEPPERS > 3 #define _E_STEP_WRITE(E,V) do{ switch (E) { \ case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; \ } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; \ } }while(0) #define _REV_E_DIR(E) do{ switch (E) { \ case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; \ case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; \ } }while(0) #elif E_STEPPERS > 2 #define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0) #define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0) #else #define _E_STEP_WRITE(E,V) do{ if (E == 0) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0) #define _NORM_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE(!INVERT_E0_DIR); } else { E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0) #define _REV_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE( INVERT_E0_DIR); } else { E1_DIR_WRITE( INVERT_E1_DIR); } }while(0) #endif #if HAS_DUPLICATION_MODE #if ENABLED(MULTI_NOZZLE_DUPLICATION) #define _DUPE(N,T,V) do{ if (TEST(duplication_e_mask, N)) E##N##_##T##_WRITE(V); }while(0) #else #define _DUPE(N,T,V) E##N##_##T##_WRITE(V) #endif #define NDIR(N) _DUPE(N,DIR,!INVERT_E##N##_DIR) #define RDIR(N) _DUPE(N,DIR, INVERT_E##N##_DIR) #define E_STEP_WRITE(E,V) do{ if (extruder_duplication_enabled) { DUPE(STEP,V); } else _E_STEP_WRITE(E,V); }while(0) #if E_STEPPERS > 2 #if E_STEPPERS > 7 #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); _DUPE(5,T,V); _DUPE(6,T,V); _DUPE(7,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); NDIR(5); NDIR(6); NDIR(7); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); RDIR(5); RDIR(6); RDIR(7); } else _REV_E_DIR(E); }while(0) #elif E_STEPPERS > 6 #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); _DUPE(5,T,V); _DUPE(6,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); NDIR(5); NDIR(6); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); RDIR(5); RDIR(6); } else _REV_E_DIR(E); }while(0) #elif E_STEPPERS > 5 #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); _DUPE(5,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); NDIR(5); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); RDIR(5); } else _REV_E_DIR(E); }while(0) #elif E_STEPPERS > 4 #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); } else _REV_E_DIR(E); }while(0) #elif E_STEPPERS > 3 #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); } else _REV_E_DIR(E); }while(0) #else #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); } else _REV_E_DIR(E); }while(0) #endif #else #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); } else _REV_E_DIR(E); }while(0) #endif #else #define E_STEP_WRITE(E,V) _E_STEP_WRITE(E,V) #define NORM_E_DIR(E) _NORM_E_DIR(E) #define REV_E_DIR(E) _REV_E_DIR(E) #endif #elif ENABLED(E_DUAL_STEPPER_DRIVERS) #define E_STEP_WRITE(E,V) do{ E0_STEP_WRITE(V); E1_STEP_WRITE(V); }while(0) #define NORM_E_DIR(E) do{ E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E0_DIR ^ ENABLED(INVERT_E1_VS_E0_DIR)); }while(0) #define REV_E_DIR(E) do{ E0_DIR_WRITE( INVERT_E0_DIR); E1_DIR_WRITE( INVERT_E0_DIR ^ ENABLED(INVERT_E1_VS_E0_DIR)); }while(0) #elif E_STEPPERS #define E_STEP_WRITE(E,V) E0_STEP_WRITE(V) #define NORM_E_DIR(E) E0_DIR_WRITE(!INVERT_E0_DIR) #define REV_E_DIR(E) E0_DIR_WRITE( INVERT_E0_DIR) #else #define E_STEP_WRITE(E,V) NOOP #define NORM_E_DIR(E) NOOP #define REV_E_DIR(E) NOOP #endif // // Individual stepper enable / disable macros // #ifndef ENABLE_STEPPER_X #define ENABLE_STEPPER_X() TERN(HAS_X_ENABLE, X_ENABLE_WRITE( X_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_X #define DISABLE_STEPPER_X() TERN(HAS_X_ENABLE, X_ENABLE_WRITE(!X_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_X2 #define ENABLE_STEPPER_X2() TERN(HAS_X2_ENABLE, X2_ENABLE_WRITE( X_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_X2 #define DISABLE_STEPPER_X2() TERN(HAS_X2_ENABLE, X2_ENABLE_WRITE(!X_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_Y #define ENABLE_STEPPER_Y() TERN(HAS_Y_ENABLE, Y_ENABLE_WRITE( Y_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_Y #define DISABLE_STEPPER_Y() TERN(HAS_Y_ENABLE, Y_ENABLE_WRITE(!Y_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_Y2 #define ENABLE_STEPPER_Y2() TERN(HAS_Y2_ENABLE, Y2_ENABLE_WRITE( Y_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_Y2 #define DISABLE_STEPPER_Y2() TERN(HAS_Y2_ENABLE, Y2_ENABLE_WRITE(!Y_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_Z #define ENABLE_STEPPER_Z() TERN(HAS_Z_ENABLE, Z_ENABLE_WRITE( Z_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_Z #define DISABLE_STEPPER_Z() TERN(HAS_Z_ENABLE, Z_ENABLE_WRITE(!Z_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_Z2 #define ENABLE_STEPPER_Z2() TERN(HAS_Z2_ENABLE, Z2_ENABLE_WRITE( Z_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_Z2 #define DISABLE_STEPPER_Z2() TERN(HAS_Z2_ENABLE, Z2_ENABLE_WRITE(!Z_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_Z3 #define ENABLE_STEPPER_Z3() TERN(HAS_Z3_ENABLE, Z3_ENABLE_WRITE( Z_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_Z3 #define DISABLE_STEPPER_Z3() TERN(HAS_Z3_ENABLE, Z3_ENABLE_WRITE(!Z_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_Z4 #define ENABLE_STEPPER_Z4() TERN(HAS_Z4_ENABLE, Z4_ENABLE_WRITE( Z_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_Z4 #define DISABLE_STEPPER_Z4() TERN(HAS_Z4_ENABLE, Z4_ENABLE_WRITE(!Z_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_I #define ENABLE_STEPPER_I() TERN(HAS_I_ENABLE, I_ENABLE_WRITE( I_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_I #define DISABLE_STEPPER_I() TERN(HAS_I_ENABLE, I_ENABLE_WRITE(!I_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_J #define ENABLE_STEPPER_J() TERN(HAS_J_ENABLE, J_ENABLE_WRITE( J_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_J #define DISABLE_STEPPER_J() TERN(HAS_J_ENABLE, J_ENABLE_WRITE(!J_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_K #define ENABLE_STEPPER_K() TERN(HAS_K_ENABLE, K_ENABLE_WRITE( K_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_K #define DISABLE_STEPPER_K() TERN(HAS_K_ENABLE, K_ENABLE_WRITE(!K_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_E0 #define ENABLE_STEPPER_E0() TERN(HAS_E0_ENABLE, E0_ENABLE_WRITE( E_ENABLE_ON), NOOP) #endif #ifndef DISABLE_STEPPER_E0 #define DISABLE_STEPPER_E0() TERN(HAS_E0_ENABLE, E0_ENABLE_WRITE(!E_ENABLE_ON), NOOP) #endif #ifndef ENABLE_STEPPER_E1 #if (E_STEPPERS > 1 || ENABLED(E_DUAL_STEPPER_DRIVERS)) && HAS_E1_ENABLE #define ENABLE_STEPPER_E1() E1_ENABLE_WRITE( E_ENABLE_ON) #else #define ENABLE_STEPPER_E1() NOOP #endif #endif #ifndef DISABLE_STEPPER_E1 #if (E_STEPPERS > 1 || ENABLED(E_DUAL_STEPPER_DRIVERS)) && HAS_E1_ENABLE #define DISABLE_STEPPER_E1() E1_ENABLE_WRITE(!E_ENABLE_ON) #else #define DISABLE_STEPPER_E1() NOOP #endif #endif #ifndef ENABLE_STEPPER_E2 #if E_STEPPERS > 2 && HAS_E2_ENABLE #define ENABLE_STEPPER_E2() E2_ENABLE_WRITE( E_ENABLE_ON) #else #define ENABLE_STEPPER_E2() NOOP #endif #endif #ifndef DISABLE_STEPPER_E2 #if E_STEPPERS > 2 && HAS_E2_ENABLE #define DISABLE_STEPPER_E2() E2_ENABLE_WRITE(!E_ENABLE_ON) #else #define DISABLE_STEPPER_E2() NOOP #endif #endif #ifndef ENABLE_STEPPER_E3 #if E_STEPPERS > 3 && HAS_E3_ENABLE #define ENABLE_STEPPER_E3() E3_ENABLE_WRITE( E_ENABLE_ON) #else #define ENABLE_STEPPER_E3() NOOP #endif #endif #ifndef DISABLE_STEPPER_E3 #if E_STEPPERS > 3 && HAS_E3_ENABLE #define DISABLE_STEPPER_E3() E3_ENABLE_WRITE(!E_ENABLE_ON) #else #define DISABLE_STEPPER_E3() NOOP #endif #endif #ifndef ENABLE_STEPPER_E4 #if E_STEPPERS > 4 && HAS_E4_ENABLE #define ENABLE_STEPPER_E4() E4_ENABLE_WRITE( E_ENABLE_ON) #else #define ENABLE_STEPPER_E4() NOOP #endif #endif #ifndef DISABLE_STEPPER_E4 #if E_STEPPERS > 4 && HAS_E4_ENABLE #define DISABLE_STEPPER_E4() E4_ENABLE_WRITE(!E_ENABLE_ON) #else #define DISABLE_STEPPER_E4() NOOP #endif #endif #ifndef ENABLE_STEPPER_E5 #if E_STEPPERS > 5 && HAS_E5_ENABLE #define ENABLE_STEPPER_E5() E5_ENABLE_WRITE( E_ENABLE_ON) #else #define ENABLE_STEPPER_E5() NOOP #endif #endif #ifndef DISABLE_STEPPER_E5 #if E_STEPPERS > 5 && HAS_E5_ENABLE #define DISABLE_STEPPER_E5() E5_ENABLE_WRITE(!E_ENABLE_ON) #else #define DISABLE_STEPPER_E5() NOOP #endif #endif #ifndef ENABLE_STEPPER_E6 #if E_STEPPERS > 6 && HAS_E6_ENABLE #define ENABLE_STEPPER_E6() E6_ENABLE_WRITE( E_ENABLE_ON) #else #define ENABLE_STEPPER_E6() NOOP #endif #endif #ifndef DISABLE_STEPPER_E6 #if E_STEPPERS > 6 && HAS_E6_ENABLE #define DISABLE_STEPPER_E6() E6_ENABLE_WRITE(!E_ENABLE_ON) #else #define DISABLE_STEPPER_E6() NOOP #endif #endif #ifndef ENABLE_STEPPER_E7 #if E_STEPPERS > 7 && HAS_E7_ENABLE #define ENABLE_STEPPER_E7() E7_ENABLE_WRITE( E_ENABLE_ON) #else #define ENABLE_STEPPER_E7() NOOP #endif #endif #ifndef DISABLE_STEPPER_E7 #if E_STEPPERS > 7 && HAS_E7_ENABLE #define DISABLE_STEPPER_E7() E7_ENABLE_WRITE(!E_ENABLE_ON) #else #define DISABLE_STEPPER_E7() NOOP #endif #endif // // Axis steppers enable / disable macros // #if ENABLED(SOFTWARE_DRIVER_ENABLE) // Avoid expensive calls to enable / disable steppers extern xyz_bool_t axis_sw_enabled; #define SHOULD_ENABLE(N) !axis_sw_enabled.N #define SHOULD_DISABLE(N) axis_sw_enabled.N #define AFTER_CHANGE(N,TF) axis_sw_enabled.N = TF #else #define SHOULD_ENABLE(N) true #define SHOULD_DISABLE(N) true #define AFTER_CHANGE(N,TF) NOOP #endif #define ENABLE_AXIS_X() if (SHOULD_ENABLE(x)) { ENABLE_STEPPER_X(); ENABLE_STEPPER_X2(); AFTER_CHANGE(x, true); } #define DISABLE_AXIS_X() if (SHOULD_DISABLE(x)) { DISABLE_STEPPER_X(); DISABLE_STEPPER_X2(); AFTER_CHANGE(x, false); set_axis_untrusted(X_AXIS); } #if HAS_Y_AXIS #define ENABLE_AXIS_Y() if (SHOULD_ENABLE(y)) { ENABLE_STEPPER_Y(); ENABLE_STEPPER_Y2(); AFTER_CHANGE(y, true); } #define DISABLE_AXIS_Y() if (SHOULD_DISABLE(y)) { DISABLE_STEPPER_Y(); DISABLE_STEPPER_Y2(); AFTER_CHANGE(y, false); set_axis_untrusted(Y_AXIS); } #else #define ENABLE_AXIS_Y() NOOP #define DISABLE_AXIS_Y() NOOP #endif #if HAS_Z_AXIS #define ENABLE_AXIS_Z() if (SHOULD_ENABLE(z)) { ENABLE_STEPPER_Z(); ENABLE_STEPPER_Z2(); ENABLE_STEPPER_Z3(); ENABLE_STEPPER_Z4(); AFTER_CHANGE(z, true); } #define DISABLE_AXIS_Z() if (SHOULD_DISABLE(z)) { DISABLE_STEPPER_Z(); DISABLE_STEPPER_Z2(); DISABLE_STEPPER_Z3(); DISABLE_STEPPER_Z4(); AFTER_CHANGE(z, false); set_axis_untrusted(Z_AXIS); Z_RESET(); } #else #define ENABLE_AXIS_Z() NOOP #define DISABLE_AXIS_Z() NOOP #endif #ifdef Z_IDLE_HEIGHT #define Z_RESET() do{ current_position.z = Z_IDLE_HEIGHT; sync_plan_position(); }while(0) #else #define Z_RESET() #endif #if LINEAR_AXES >= 4 #define ENABLE_AXIS_I() if (SHOULD_ENABLE(i)) { ENABLE_STEPPER_I(); AFTER_CHANGE(i, true); } #define DISABLE_AXIS_I() if (SHOULD_DISABLE(i)) { DISABLE_STEPPER_I(); AFTER_CHANGE(i, false); set_axis_untrusted(I_AXIS); } #else #define ENABLE_AXIS_I() NOOP #define DISABLE_AXIS_I() NOOP #endif #if LINEAR_AXES >= 5 #define ENABLE_AXIS_J() if (SHOULD_ENABLE(j)) { ENABLE_STEPPER_J(); AFTER_CHANGE(j, true); } #define DISABLE_AXIS_J() if (SHOULD_DISABLE(j)) { DISABLE_STEPPER_J(); AFTER_CHANGE(j, false); set_axis_untrusted(J_AXIS); } #else #define ENABLE_AXIS_J() NOOP #define DISABLE_AXIS_J() NOOP #endif #if LINEAR_AXES >= 6 #define ENABLE_AXIS_K() if (SHOULD_ENABLE(k)) { ENABLE_STEPPER_K(); AFTER_CHANGE(k, true); } #define DISABLE_AXIS_K() if (SHOULD_DISABLE(k)) { DISABLE_STEPPER_K(); AFTER_CHANGE(k, false); set_axis_untrusted(K_AXIS); } #else #define ENABLE_AXIS_K() NOOP #define DISABLE_AXIS_K() NOOP #endif // // Extruder steppers enable / disable macros // #if ENABLED(MIXING_EXTRUDER) /** * Mixing steppers keep all their enable (and direction) states synchronized */ #define _CALL_ENA_E(N) ENABLE_STEPPER_E##N () ; #define _CALL_DIS_E(N) DISABLE_STEPPER_E##N () ; #define ENABLE_AXIS_E0() { RREPEAT(MIXING_STEPPERS, _CALL_ENA_E) } #define DISABLE_AXIS_E0() { RREPEAT(MIXING_STEPPERS, _CALL_DIS_E) } #elif ENABLED(E_DUAL_STEPPER_DRIVERS) #define ENABLE_AXIS_E0() do{ ENABLE_STEPPER_E0(); ENABLE_STEPPER_E1(); }while(0) #define DISABLE_AXIS_E0() do{ DISABLE_STEPPER_E0(); DISABLE_STEPPER_E1(); }while(0) #endif #ifndef ENABLE_AXIS_E0 #if E_STEPPERS && HAS_E0_ENABLE #define ENABLE_AXIS_E0() ENABLE_STEPPER_E0() #else #define ENABLE_AXIS_E0() NOOP #endif #endif #ifndef DISABLE_AXIS_E0 #if E_STEPPERS && HAS_E0_ENABLE #define DISABLE_AXIS_E0() DISABLE_STEPPER_E0() #else #define DISABLE_AXIS_E0() NOOP #endif #endif #ifndef ENABLE_AXIS_E1 #if E_STEPPERS > 1 && HAS_E1_ENABLE #define ENABLE_AXIS_E1() ENABLE_STEPPER_E1() #else #define ENABLE_AXIS_E1() NOOP #endif #endif #ifndef DISABLE_AXIS_E1 #if E_STEPPERS > 1 && HAS_E1_ENABLE #define DISABLE_AXIS_E1() DISABLE_STEPPER_E1() #else #define DISABLE_AXIS_E1() NOOP #endif #endif #ifndef ENABLE_AXIS_E2 #if E_STEPPERS > 2 && HAS_E2_ENABLE #define ENABLE_AXIS_E2() ENABLE_STEPPER_E2() #else #define ENABLE_AXIS_E2() NOOP #endif #endif #ifndef DISABLE_AXIS_E2 #if E_STEPPERS > 2 && HAS_E2_ENABLE #define DISABLE_AXIS_E2() DISABLE_STEPPER_E2() #else #define DISABLE_AXIS_E2() NOOP #endif #endif #ifndef ENABLE_AXIS_E3 #if E_STEPPERS > 3 && HAS_E3_ENABLE #define ENABLE_AXIS_E3() ENABLE_STEPPER_E3() #else #define ENABLE_AXIS_E3() NOOP #endif #endif #ifndef DISABLE_AXIS_E3 #if E_STEPPERS > 3 && HAS_E3_ENABLE #define DISABLE_AXIS_E3() DISABLE_STEPPER_E3() #else #define DISABLE_AXIS_E3() NOOP #endif #endif #ifndef ENABLE_AXIS_E4 #if E_STEPPERS > 4 && HAS_E4_ENABLE #define ENABLE_AXIS_E4() ENABLE_STEPPER_E4() #else #define ENABLE_AXIS_E4() NOOP #endif #endif #ifndef DISABLE_AXIS_E4 #if E_STEPPERS > 4 && HAS_E4_ENABLE #define DISABLE_AXIS_E4() DISABLE_STEPPER_E4() #else #define DISABLE_AXIS_E4() NOOP #endif #endif #ifndef ENABLE_AXIS_E5 #if E_STEPPERS > 5 && HAS_E5_ENABLE #define ENABLE_AXIS_E5() ENABLE_STEPPER_E5() #else #define ENABLE_AXIS_E5() NOOP #endif #endif #ifndef DISABLE_AXIS_E5 #if E_STEPPERS > 5 && HAS_E5_ENABLE #define DISABLE_AXIS_E5() DISABLE_STEPPER_E5() #else #define DISABLE_AXIS_E5() NOOP #endif #endif #ifndef ENABLE_AXIS_E6 #if E_STEPPERS > 6 && HAS_E6_ENABLE #define ENABLE_AXIS_E6() ENABLE_STEPPER_E6() #else #define ENABLE_AXIS_E6() NOOP #endif #endif #ifndef DISABLE_AXIS_E6 #if E_STEPPERS > 6 && HAS_E6_ENABLE #define DISABLE_AXIS_E6() DISABLE_STEPPER_E6() #else #define DISABLE_AXIS_E6() NOOP #endif #endif #ifndef ENABLE_AXIS_E7 #if E_STEPPERS > 7 && HAS_E7_ENABLE #define ENABLE_AXIS_E7() ENABLE_STEPPER_E7() #else #define ENABLE_AXIS_E7() NOOP #endif #endif #ifndef DISABLE_AXIS_E7 #if E_STEPPERS > 7 && HAS_E7_ENABLE #define DISABLE_AXIS_E7() DISABLE_STEPPER_E7() #else #define DISABLE_AXIS_E7() NOOP #endif #endif