/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * module/probe.h - Move, deploy, enable, etc. */ #include "../inc/MarlinConfig.h" #include "motion.h" #if HAS_BED_PROBE enum ProbePtRaise : uint8_t { PROBE_PT_NONE, // No raise or stow after run_z_probe PROBE_PT_STOW, // Do a complete stow after run_z_probe PROBE_PT_LAST_STOW, // Stow for sure, even in BLTouch HS mode PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe }; #endif #if USES_Z_MIN_PROBE_PIN #define PROBE_TRIGGERED() (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING) #else #define PROBE_TRIGGERED() (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) #endif #if ENABLED(PREHEAT_BEFORE_LEVELING) #ifndef LEVELING_NOZZLE_TEMP #define LEVELING_NOZZLE_TEMP 0 #endif #ifndef LEVELING_BED_TEMP #define LEVELING_BED_TEMP 0 #endif #endif class Probe { public: #if ENABLED(SENSORLESS_PROBING) typedef struct { bool x:1, y:1, z:1; } sense_bool_t; static sense_bool_t test_sensitivity; #endif #if HAS_BED_PROBE static xyz_pos_t offset; #if EITHER(PREHEAT_BEFORE_PROBING, PREHEAT_BEFORE_LEVELING) static void preheat_for_probing(const celsius_t hotend_temp, const celsius_t bed_temp); #endif static bool set_deployed(const bool deploy); #if IS_KINEMATIC #if HAS_PROBE_XY_OFFSET // Return true if the both nozzle and the probe can reach the given point. // Note: This won't work on SCARA since the probe offset rotates with the arm. static bool can_reach(const_float_t rx, const_float_t ry) { return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y) // The nozzle can go where it needs to go? && position_is_reachable(rx, ry, ABS(PROBING_MARGIN)); // Can the nozzle also go near there? } #else static bool can_reach(const_float_t rx, const_float_t ry) { return position_is_reachable(rx, ry, PROBING_MARGIN); } #endif #else /** * Return whether the given position is within the bed, and whether the nozzle * can reach the position required to put the probe at the given position. * * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the * nozzle must be be able to reach +10,-10. */ static bool can_reach(const_float_t rx, const_float_t ry) { return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y) && COORDINATE_OKAY(rx, min_x() - fslop, max_x() + fslop) && COORDINATE_OKAY(ry, min_y() - fslop, max_y() + fslop); } #endif static void move_z_after_probing() { #ifdef Z_AFTER_PROBING do_z_clearance(Z_AFTER_PROBING, true); // Move down still permitted #endif } static float probe_at_point(const_float_t rx, const_float_t ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true, const bool sanity_check=true); static float probe_at_point(const xy_pos_t &pos, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true, const bool sanity_check=true) { return probe_at_point(pos.x, pos.y, raise_after, verbose_level, probe_relative, sanity_check); } #else static constexpr xyz_pos_t offset = xyz_pos_t(LINEAR_AXIS_ARRAY(0, 0, 0, 0, 0, 0)); // See #16767 static bool set_deployed(const bool) { return false; } static bool can_reach(const_float_t rx, const_float_t ry) { return position_is_reachable(rx, ry); } #endif static void move_z_after_homing() { #ifdef Z_AFTER_HOMING do_z_clearance(Z_AFTER_HOMING, true); #elif BOTH(Z_AFTER_PROBING, HAS_BED_PROBE) move_z_after_probing(); #endif } static bool can_reach(const xy_pos_t &pos) { return can_reach(pos.x, pos.y); } static bool good_bounds(const xy_pos_t &lf, const xy_pos_t &rb) { return ( #if IS_KINEMATIC can_reach(lf.x, 0) && can_reach(rb.x, 0) && can_reach(0, lf.y) && can_reach(0, rb.y) #else can_reach(lf) && can_reach(rb) #endif ); } // Use offset_xy for read only access // More optimal the XY offset is known to always be zero. #if HAS_PROBE_XY_OFFSET static const xy_pos_t &offset_xy; #else static constexpr xy_pos_t offset_xy = xy_pos_t({ 0, 0 }); // See #16767 #endif static bool deploy() { return set_deployed(true); } static bool stow() { return set_deployed(false); } #if HAS_BED_PROBE || HAS_LEVELING #if IS_KINEMATIC static constexpr float printable_radius = ( TERN_(DELTA, DELTA_PRINTABLE_RADIUS) TERN_(IS_SCARA, SCARA_PRINTABLE_RADIUS) ); static constexpr float probe_radius(const xy_pos_t &probe_offset_xy = offset_xy) { return printable_radius - _MAX(PROBING_MARGIN, HYPOT(probe_offset_xy.x, probe_offset_xy.y)); } #endif static constexpr float _min_x(const xy_pos_t &probe_offset_xy = offset_xy) { return TERN(IS_KINEMATIC, (X_CENTER) - probe_radius(probe_offset_xy), _MAX((X_MIN_BED) + (PROBING_MARGIN_LEFT), (X_MIN_POS) + probe_offset_xy.x) ); } static constexpr float _max_x(const xy_pos_t &probe_offset_xy = offset_xy) { return TERN(IS_KINEMATIC, (X_CENTER) + probe_radius(probe_offset_xy), _MIN((X_MAX_BED) - (PROBING_MARGIN_RIGHT), (X_MAX_POS) + probe_offset_xy.x) ); } static constexpr float _min_y(const xy_pos_t &probe_offset_xy = offset_xy) { return TERN(IS_KINEMATIC, (Y_CENTER) - probe_radius(probe_offset_xy), _MAX((Y_MIN_BED) + (PROBING_MARGIN_FRONT), (Y_MIN_POS) + probe_offset_xy.y) ); } static constexpr float _max_y(const xy_pos_t &probe_offset_xy = offset_xy) { return TERN(IS_KINEMATIC, (Y_CENTER) + probe_radius(probe_offset_xy), _MIN((Y_MAX_BED) - (PROBING_MARGIN_BACK), (Y_MAX_POS) + probe_offset_xy.y) ); } static float min_x() { return _min_x() TERN_(NOZZLE_AS_PROBE, TERN_(HAS_HOME_OFFSET, - home_offset.x)); } static float max_x() { return _max_x() TERN_(NOZZLE_AS_PROBE, TERN_(HAS_HOME_OFFSET, - home_offset.x)); } static float min_y() { return _min_y() TERN_(NOZZLE_AS_PROBE, TERN_(HAS_HOME_OFFSET, - home_offset.y)); } static float max_y() { return _max_y() TERN_(NOZZLE_AS_PROBE, TERN_(HAS_HOME_OFFSET, - home_offset.y)); } // constexpr helpers used in build-time static_asserts, relying on default probe offsets. class build_time { static constexpr xyz_pos_t default_probe_xyz_offset = #if HAS_BED_PROBE NOZZLE_TO_PROBE_OFFSET #else { 0 } #endif ; static constexpr xy_pos_t default_probe_xy_offset = { default_probe_xyz_offset.x, default_probe_xyz_offset.y }; public: static constexpr bool can_reach(float x, float y) { #if IS_KINEMATIC return HYPOT2(x, y) <= sq(probe_radius(default_probe_xy_offset)); #else return COORDINATE_OKAY(x, _min_x(default_probe_xy_offset) - fslop, _max_x(default_probe_xy_offset) + fslop) && COORDINATE_OKAY(y, _min_y(default_probe_xy_offset) - fslop, _max_y(default_probe_xy_offset) + fslop); #endif } static constexpr bool can_reach(const xy_pos_t &point) { return can_reach(point.x, point.y); } }; #if NEEDS_THREE_PROBE_POINTS // Retrieve three points to probe the bed. Any type exposing set(X,Y) may be used. template static void get_three_points(T points[3]) { #if HAS_FIXED_3POINT #define VALIDATE_PROBE_PT(N) static_assert(Probe::build_time::can_reach(xy_pos_t{PROBE_PT_##N##_X, PROBE_PT_##N##_Y}), \ "PROBE_PT_" STRINGIFY(N) "_(X|Y) is unreachable using default NOZZLE_TO_PROBE_OFFSET and PROBING_MARGIN"); VALIDATE_PROBE_PT(1); VALIDATE_PROBE_PT(2); VALIDATE_PROBE_PT(3); points[0] = xy_float_t({ PROBE_PT_1_X, PROBE_PT_1_Y }); points[1] = xy_float_t({ PROBE_PT_2_X, PROBE_PT_2_Y }); points[2] = xy_float_t({ PROBE_PT_3_X, PROBE_PT_3_Y }); #else #if IS_KINEMATIC constexpr float SIN0 = 0.0, SIN120 = 0.866025, SIN240 = -0.866025, COS0 = 1.0, COS120 = -0.5 , COS240 = -0.5; points[0] = xy_float_t({ (X_CENTER) + probe_radius() * COS0, (Y_CENTER) + probe_radius() * SIN0 }); points[1] = xy_float_t({ (X_CENTER) + probe_radius() * COS120, (Y_CENTER) + probe_radius() * SIN120 }); points[2] = xy_float_t({ (X_CENTER) + probe_radius() * COS240, (Y_CENTER) + probe_radius() * SIN240 }); #else points[0] = xy_float_t({ min_x(), min_y() }); points[1] = xy_float_t({ max_x(), min_y() }); points[2] = xy_float_t({ (min_x() + max_x()) / 2, max_y() }); #endif #endif } #endif #endif // HAS_BED_PROBE #if HAS_Z_SERVO_PROBE static void servo_probe_init(); #endif #if HAS_QUIET_PROBING static void set_probing_paused(const bool p); #endif #if ENABLED(PROBE_TARE) static void tare_init(); static bool tare(); #endif // Basic functions for Sensorless Homing and Probing #if USE_SENSORLESS static void enable_stallguard_diag1(); static void disable_stallguard_diag1(); static void set_homing_current(const bool onoff); #endif private: static bool probe_down_to_z(const_float_t z, const_feedRate_t fr_mm_s); static void do_z_raise(const float z_raise); static float run_z_probe(const bool sanity_check=true); }; extern Probe probe;