/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * motion.h * * High-level motion commands to feed the planner * Some of these methods may migrate to the planner class. */ #include "../inc/MarlinConfig.h" #if IS_SCARA #include "scara.h" #endif // Error margin to work around float imprecision constexpr float fslop = 0.0001; extern bool relative_mode; extern xyze_pos_t current_position, // High-level current tool position destination; // Destination for a move // G60/G61 Position Save and Return #if SAVED_POSITIONS extern uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3]; // TODO: Add support for LINEAR_AXES >= 4 extern xyze_pos_t stored_position[SAVED_POSITIONS]; #endif // Scratch space for a cartesian result extern xyz_pos_t cartes; // Until kinematics.cpp is created, declare this here #if IS_KINEMATIC extern abce_pos_t delta; #endif #if HAS_ABL_NOT_UBL extern feedRate_t xy_probe_feedrate_mm_s; #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s #elif defined(XY_PROBE_FEEDRATE) #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_FEEDRATE) #else #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE() #endif #if HAS_BED_PROBE constexpr feedRate_t z_probe_fast_mm_s = MMM_TO_MMS(Z_PROBE_FEEDRATE_FAST); #endif /** * Feed rates are often configured with mm/m * but the planner and stepper like mm/s units. */ constexpr xyz_feedrate_t homing_feedrate_mm_m = HOMING_FEEDRATE_MM_M; FORCE_INLINE feedRate_t homing_feedrate(const AxisEnum a) { float v = TERN0(HAS_Z_AXIS, homing_feedrate_mm_m.z); #if DISABLED(DELTA) LINEAR_AXIS_CODE( if (a == X_AXIS) v = homing_feedrate_mm_m.x, else if (a == Y_AXIS) v = homing_feedrate_mm_m.y, else if (a == Z_AXIS) v = homing_feedrate_mm_m.z, else if (a == I_AXIS) v = homing_feedrate_mm_m.i, else if (a == J_AXIS) v = homing_feedrate_mm_m.j, else if (a == K_AXIS) v = homing_feedrate_mm_m.k ); #endif return MMM_TO_MMS(v); } feedRate_t get_homing_bump_feedrate(const AxisEnum axis); /** * The default feedrate for many moves, set by the most recent move */ extern feedRate_t feedrate_mm_s; /** * Feedrate scaling is applied to all G0/G1, G2/G3, and G5 moves */ extern int16_t feedrate_percentage; #define MMS_SCALED(V) ((V) * 0.01f * feedrate_percentage) // The active extruder (tool). Set with T command. #if HAS_MULTI_EXTRUDER extern uint8_t active_extruder; #else constexpr uint8_t active_extruder = 0; #endif #if ENABLED(LCD_SHOW_E_TOTAL) extern float e_move_accumulator; #endif #ifdef __IMXRT1062__ #define DEFS_PROGMEM #else #define DEFS_PROGMEM PROGMEM #endif inline float pgm_read_any(const float *p) { return TERN(__IMXRT1062__, *p, pgm_read_float(p)); } inline int8_t pgm_read_any(const int8_t *p) { return TERN(__IMXRT1062__, *p, pgm_read_byte(p)); } #define XYZ_DEFS(T, NAME, OPT) \ inline T NAME(const AxisEnum axis) { \ static const XYZval NAME##_P DEFS_PROGMEM = LINEAR_AXIS_ARRAY(X_##OPT, Y_##OPT, Z_##OPT, I_##OPT, J_##OPT, K_##OPT); \ return pgm_read_any(&NAME##_P[axis]); \ } XYZ_DEFS(float, base_min_pos, MIN_POS); XYZ_DEFS(float, base_max_pos, MAX_POS); XYZ_DEFS(float, base_home_pos, HOME_POS); XYZ_DEFS(float, max_length, MAX_LENGTH); XYZ_DEFS(int8_t, home_dir, HOME_DIR); inline float home_bump_mm(const AxisEnum axis) { static const xyz_pos_t home_bump_mm_P DEFS_PROGMEM = HOMING_BUMP_MM; return pgm_read_any(&home_bump_mm_P[axis]); } #if HAS_WORKSPACE_OFFSET void update_workspace_offset(const AxisEnum axis); #else inline void update_workspace_offset(const AxisEnum) {} #endif #if HAS_HOTEND_OFFSET extern xyz_pos_t hotend_offset[HOTENDS]; void reset_hotend_offsets(); #elif HOTENDS constexpr xyz_pos_t hotend_offset[HOTENDS] = { { 0 } }; #else constexpr xyz_pos_t hotend_offset[1] = { { 0 } }; #endif #if HAS_SOFTWARE_ENDSTOPS typedef struct { bool _enabled, _loose; bool enabled() { return _enabled && !_loose; } xyz_pos_t min, max; void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) { amin = -100000; amax = 100000; // "No limits" #if HAS_SOFTWARE_ENDSTOPS if (enabled()) switch (axis) { case X_AXIS: TERN_(MIN_SOFTWARE_ENDSTOP_X, amin = min.x); TERN_(MAX_SOFTWARE_ENDSTOP_X, amax = max.x); break; #if HAS_Y_AXIS case Y_AXIS: TERN_(MIN_SOFTWARE_ENDSTOP_Y, amin = min.y); TERN_(MAX_SOFTWARE_ENDSTOP_Y, amax = max.y); break; #endif #if HAS_Z_AXIS case Z_AXIS: TERN_(MIN_SOFTWARE_ENDSTOP_Z, amin = min.z); TERN_(MAX_SOFTWARE_ENDSTOP_Z, amax = max.z); break; #endif #if LINEAR_AXES >= 4 case I_AXIS: TERN_(MIN_SOFTWARE_ENDSTOP_I, amin = min.i); TERN_(MIN_SOFTWARE_ENDSTOP_I, amax = max.i); break; #endif #if LINEAR_AXES >= 5 case J_AXIS: TERN_(MIN_SOFTWARE_ENDSTOP_J, amin = min.j); TERN_(MIN_SOFTWARE_ENDSTOP_J, amax = max.j); break; #endif #if LINEAR_AXES >= 6 case K_AXIS: TERN_(MIN_SOFTWARE_ENDSTOP_K, amin = min.k); TERN_(MIN_SOFTWARE_ENDSTOP_K, amax = max.k); break; #endif default: break; } #endif } } soft_endstops_t; extern soft_endstops_t soft_endstop; void apply_motion_limits(xyz_pos_t &target); void update_software_endstops(const AxisEnum axis #if HAS_HOTEND_OFFSET , const uint8_t old_tool_index=0, const uint8_t new_tool_index=0 #endif ); #define SET_SOFT_ENDSTOP_LOOSE(loose) (soft_endstop._loose = loose) #else // !HAS_SOFTWARE_ENDSTOPS typedef struct { bool enabled() { return false; } void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) { // No limits amin = current_position[axis] - 1000; amax = current_position[axis] + 1000; } } soft_endstops_t; extern soft_endstops_t soft_endstop; #define apply_motion_limits(V) NOOP #define update_software_endstops(...) NOOP #define SET_SOFT_ENDSTOP_LOOSE(V) NOOP #endif // !HAS_SOFTWARE_ENDSTOPS void report_real_position(); void report_current_position(); void report_current_position_projected(); #if ENABLED(AUTO_REPORT_POSITION) #include "../libs/autoreport.h" struct PositionReport { static void report() { report_current_position_projected(); } }; extern AutoReporter position_auto_reporter; #endif #if EITHER(FULL_REPORT_TO_HOST_FEATURE, REALTIME_REPORTING_COMMANDS) #define HAS_GRBL_STATE 1 /** * Machine states for GRBL or TinyG */ enum M_StateEnum : uint8_t { M_INIT = 0, // 0 machine is initializing M_RESET, // 1 machine is ready for use M_ALARM, // 2 machine is in alarm state (soft shut down) M_IDLE, // 3 program stop or no more blocks (M0, M1, M60) M_END, // 4 program end via M2, M30 M_RUNNING, // 5 motion is running M_HOLD, // 6 motion is holding M_PROBE, // 7 probe cycle active M_CYCLING, // 8 machine is running (cycling) M_HOMING, // 9 machine is homing M_JOGGING, // 10 machine is jogging M_ERROR // 11 machine is in hard alarm state (shut down) }; extern M_StateEnum M_State_grbl; M_StateEnum grbl_state_for_marlin_state(); void report_current_grblstate_moving(); void report_current_position_moving(); #if ENABLED(FULL_REPORT_TO_HOST_FEATURE) inline void set_and_report_grblstate(const M_StateEnum state) { M_State_grbl = state; report_current_grblstate_moving(); } #endif #if ENABLED(REALTIME_REPORTING_COMMANDS) void quickpause_stepper(); void quickresume_stepper(); #endif #endif void get_cartesian_from_steppers(); void set_current_from_steppers_for_axis(const AxisEnum axis); void quickstop_stepper(); /** * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position(); #if HAS_EXTRUDERS void sync_plan_position_e(); #endif /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ void line_to_current_position(const_feedRate_t fr_mm_s=feedrate_mm_s); #if HAS_EXTRUDERS void unscaled_e_move(const_float_t length, const_feedRate_t fr_mm_s); #endif void prepare_line_to_destination(); void _internal_move_to_destination(const_feedRate_t fr_mm_s=0.0f OPTARG(IS_KINEMATIC, const bool is_fast=false)); inline void prepare_internal_move_to_destination(const_feedRate_t fr_mm_s=0.0f) { _internal_move_to_destination(fr_mm_s); } #if IS_KINEMATIC void prepare_fast_move_to_destination(const_feedRate_t scaled_fr_mm_s=MMS_SCALED(feedrate_mm_s)); inline void prepare_internal_fast_move_to_destination(const_feedRate_t fr_mm_s=0.0f) { _internal_move_to_destination(fr_mm_s, true); } #endif /** * Blocking movement and shorthand functions */ void do_blocking_move_to(LINEAR_AXIS_ARGS(const float), const_feedRate_t fr_mm_s=0.0f); void do_blocking_move_to(const xy_pos_t &raw, const_feedRate_t fr_mm_s=0.0f); void do_blocking_move_to(const xyz_pos_t &raw, const_feedRate_t fr_mm_s=0.0f); void do_blocking_move_to(const xyze_pos_t &raw, const_feedRate_t fr_mm_s=0.0f); void do_blocking_move_to_x(const_float_t rx, const_feedRate_t fr_mm_s=0.0f); #if HAS_Y_AXIS void do_blocking_move_to_y(const_float_t ry, const_feedRate_t fr_mm_s=0.0f); #endif #if HAS_Z_AXIS void do_blocking_move_to_z(const_float_t rz, const_feedRate_t fr_mm_s=0.0f); #endif #if LINEAR_AXES >= 4 void do_blocking_move_to_i(const_float_t ri, const_feedRate_t fr_mm_s=0.0f); void do_blocking_move_to_xyz_i(const xyze_pos_t &raw, const_float_t i, const_feedRate_t fr_mm_s=0.0f); #endif #if LINEAR_AXES >= 5 void do_blocking_move_to_j(const_float_t rj, const_feedRate_t fr_mm_s=0.0f); void do_blocking_move_to_xyzi_j(const xyze_pos_t &raw, const_float_t j, const_feedRate_t fr_mm_s=0.0f); #endif #if LINEAR_AXES >= 6 void do_blocking_move_to_k(const_float_t rk, const_feedRate_t fr_mm_s=0.0f); void do_blocking_move_to_xyzij_k(const xyze_pos_t &raw, const_float_t k, const_feedRate_t fr_mm_s=0.0f); #endif #if HAS_Y_AXIS void do_blocking_move_to_xy(const_float_t rx, const_float_t ry, const_feedRate_t fr_mm_s=0.0f); void do_blocking_move_to_xy(const xy_pos_t &raw, const_feedRate_t fr_mm_s=0.0f); FORCE_INLINE void do_blocking_move_to_xy(const xyz_pos_t &raw, const_feedRate_t fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); } FORCE_INLINE void do_blocking_move_to_xy(const xyze_pos_t &raw, const_feedRate_t fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); } #endif #if HAS_Z_AXIS void do_blocking_move_to_xy_z(const xy_pos_t &raw, const_float_t z, const_feedRate_t fr_mm_s=0.0f); FORCE_INLINE void do_blocking_move_to_xy_z(const xyz_pos_t &raw, const_float_t z, const_feedRate_t fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); } FORCE_INLINE void do_blocking_move_to_xy_z(const xyze_pos_t &raw, const_float_t z, const_feedRate_t fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); } #endif void remember_feedrate_and_scaling(); void remember_feedrate_scaling_off(); void restore_feedrate_and_scaling(); #if HAS_Z_AXIS void do_z_clearance(const_float_t zclear, const bool lower_allowed=false); #else inline void do_z_clearance(float, bool=false) {} #endif /** * Homing and Trusted Axes */ typedef IF<(LINEAR_AXES > 8), uint16_t, uint8_t>::type linear_axis_bits_t; constexpr linear_axis_bits_t linear_bits = _BV(LINEAR_AXES) - 1; void set_axis_is_at_home(const AxisEnum axis); #if HAS_ENDSTOPS /** * axis_homed * Flags that each linear axis was homed. * XYZ on cartesian, ABC on delta, ABZ on SCARA. * * axis_trusted * Flags that the position is trusted in each linear axis. Set when homed. * Cleared whenever a stepper powers off, potentially losing its position. */ extern linear_axis_bits_t axis_homed, axis_trusted; void homeaxis(const AxisEnum axis); void set_axis_never_homed(const AxisEnum axis); linear_axis_bits_t axes_should_home(linear_axis_bits_t axis_bits=linear_bits); bool homing_needed_error(linear_axis_bits_t axis_bits=linear_bits); inline void set_axis_unhomed(const AxisEnum axis) { CBI(axis_homed, axis); } inline void set_axis_untrusted(const AxisEnum axis) { CBI(axis_trusted, axis); } inline void set_all_unhomed() { axis_homed = axis_trusted = 0; } inline void set_axis_homed(const AxisEnum axis) { SBI(axis_homed, axis); } inline void set_axis_trusted(const AxisEnum axis) { SBI(axis_trusted, axis); } inline void set_all_homed() { axis_homed = axis_trusted = linear_bits; } #else constexpr linear_axis_bits_t axis_homed = linear_bits, axis_trusted = linear_bits; // Zero-endstop machines are always homed and trusted inline void homeaxis(const AxisEnum axis) {} inline void set_axis_never_homed(const AxisEnum) {} inline linear_axis_bits_t axes_should_home(linear_axis_bits_t=linear_bits) { return false; } inline bool homing_needed_error(linear_axis_bits_t=linear_bits) { return false; } inline void set_axis_unhomed(const AxisEnum axis) {} inline void set_axis_untrusted(const AxisEnum axis) {} inline void set_all_unhomed() {} inline void set_axis_homed(const AxisEnum axis) {} inline void set_axis_trusted(const AxisEnum axis) {} inline void set_all_homed() {} #endif inline bool axis_was_homed(const AxisEnum axis) { return TEST(axis_homed, axis); } inline bool axis_is_trusted(const AxisEnum axis) { return TEST(axis_trusted, axis); } inline bool axis_should_home(const AxisEnum axis) { return (axes_should_home() & _BV(axis)) != 0; } inline bool no_axes_homed() { return !axis_homed; } inline bool all_axes_homed() { return linear_bits == (axis_homed & linear_bits); } inline bool homing_needed() { return !all_axes_homed(); } inline bool all_axes_trusted() { return linear_bits == (axis_trusted & linear_bits); } void home_if_needed(const bool keeplev=false); #if ENABLED(NO_MOTION_BEFORE_HOMING) #define MOTION_CONDITIONS (IsRunning() && !homing_needed_error()) #else #define MOTION_CONDITIONS IsRunning() #endif #define BABYSTEP_ALLOWED() ((ENABLED(BABYSTEP_WITHOUT_HOMING) || all_axes_trusted()) && (ENABLED(BABYSTEP_ALWAYS_AVAILABLE) || printer_busy())) /** * Workspace offsets */ #if HAS_HOME_OFFSET || HAS_POSITION_SHIFT #if HAS_HOME_OFFSET extern xyz_pos_t home_offset; #endif #if HAS_POSITION_SHIFT extern xyz_pos_t position_shift; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT extern xyz_pos_t workspace_offset; #define _WS workspace_offset #elif HAS_HOME_OFFSET #define _WS home_offset #else #define _WS position_shift #endif #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + _WS[AXIS]) #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - _WS[AXIS]) FORCE_INLINE void toLogical(xy_pos_t &raw) { raw += _WS; } FORCE_INLINE void toLogical(xyz_pos_t &raw) { raw += _WS; } FORCE_INLINE void toLogical(xyze_pos_t &raw) { raw += _WS; } FORCE_INLINE void toNative(xy_pos_t &raw) { raw -= _WS; } FORCE_INLINE void toNative(xyz_pos_t &raw) { raw -= _WS; } FORCE_INLINE void toNative(xyze_pos_t &raw) { raw -= _WS; } #else #define NATIVE_TO_LOGICAL(POS, AXIS) (POS) #define LOGICAL_TO_NATIVE(POS, AXIS) (POS) FORCE_INLINE void toLogical(xy_pos_t&) {} FORCE_INLINE void toLogical(xyz_pos_t&) {} FORCE_INLINE void toLogical(xyze_pos_t&) {} FORCE_INLINE void toNative(xy_pos_t&) {} FORCE_INLINE void toNative(xyz_pos_t&) {} FORCE_INLINE void toNative(xyze_pos_t&) {} #endif #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS) #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS) #if HAS_Y_AXIS #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS) #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS) #endif #if HAS_Z_AXIS #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS) #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS) #endif #if LINEAR_AXES >= 4 #define LOGICAL_I_POSITION(POS) NATIVE_TO_LOGICAL(POS, I_AXIS) #define RAW_I_POSITION(POS) LOGICAL_TO_NATIVE(POS, I_AXIS) #endif #if LINEAR_AXES >= 5 #define LOGICAL_J_POSITION(POS) NATIVE_TO_LOGICAL(POS, J_AXIS) #define RAW_J_POSITION(POS) LOGICAL_TO_NATIVE(POS, J_AXIS) #endif #if LINEAR_AXES >= 6 #define LOGICAL_K_POSITION(POS) NATIVE_TO_LOGICAL(POS, K_AXIS) #define RAW_K_POSITION(POS) LOGICAL_TO_NATIVE(POS, K_AXIS) #endif /** * position_is_reachable family of functions */ #if IS_KINEMATIC // (DELTA or SCARA) #if HAS_SCARA_OFFSET extern abc_pos_t scara_home_offset; // A and B angular offsets, Z mm offset #endif // Return true if the given point is within the printable area inline bool position_is_reachable(const_float_t rx, const_float_t ry, const float inset=0) { #if ENABLED(DELTA) return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + fslop); #elif ENABLED(POLARGRAPH) const float x1 = rx - (X_MIN_POS), x2 = (X_MAX_POS) - rx, y = ry - (Y_MAX_POS), a = HYPOT(x1, y), b = HYPOT(x2, y); return a < (POLARGRAPH_MAX_BELT_LEN) + 1 && b < (POLARGRAPH_MAX_BELT_LEN) + 1 && (a + b) > _MIN(X_BED_SIZE, Y_BED_SIZE); #elif ENABLED(AXEL_TPARA) const float R2 = HYPOT2(rx - TPARA_OFFSET_X, ry - TPARA_OFFSET_Y); return ( R2 <= sq(L1 + L2) - inset #if MIDDLE_DEAD_ZONE_R > 0 && R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) #endif ); #elif IS_SCARA const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y); return ( R2 <= sq(L1 + L2) - inset #if MIDDLE_DEAD_ZONE_R > 0 && R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) #endif ); #endif } inline bool position_is_reachable(const xy_pos_t &pos, const float inset=0) { return position_is_reachable(pos.x, pos.y, inset); } #else // CARTESIAN // Return true if the given position is within the machine bounds. inline bool position_is_reachable(const_float_t rx, const_float_t ry) { if (!COORDINATE_OKAY(ry, Y_MIN_POS - fslop, Y_MAX_POS + fslop)) return false; #if ENABLED(DUAL_X_CARRIAGE) if (active_extruder) return COORDINATE_OKAY(rx, X2_MIN_POS - fslop, X2_MAX_POS + fslop); else return COORDINATE_OKAY(rx, X1_MIN_POS - fslop, X1_MAX_POS + fslop); #else return COORDINATE_OKAY(rx, X_MIN_POS - fslop, X_MAX_POS + fslop); #endif } inline bool position_is_reachable(const xy_pos_t &pos) { return position_is_reachable(pos.x, pos.y); } #endif // CARTESIAN /** * Duplication mode */ #if HAS_DUPLICATION_MODE extern bool extruder_duplication_enabled; // Used in Dual X mode 2 #endif /** * Dual X Carriage */ #if ENABLED(DUAL_X_CARRIAGE) enum DualXMode : char { DXC_FULL_CONTROL_MODE, DXC_AUTO_PARK_MODE, DXC_DUPLICATION_MODE, DXC_MIRRORED_MODE }; extern DualXMode dual_x_carriage_mode; extern float inactive_extruder_x, // Used in mode 0 & 1 duplicate_extruder_x_offset; // Used in mode 2 & 3 extern xyz_pos_t raised_parked_position; // Used in mode 1 extern bool active_extruder_parked; // Used in mode 1, 2 & 3 extern millis_t delayed_move_time; // Used in mode 1 extern celsius_t duplicate_extruder_temp_offset; // Used in mode 2 & 3 extern bool idex_mirrored_mode; // Used in mode 3 FORCE_INLINE bool idex_is_duplicating() { return dual_x_carriage_mode >= DXC_DUPLICATION_MODE; } float x_home_pos(const uint8_t extruder); #define TOOL_X_HOME_DIR(T) ((T) ? X2_HOME_DIR : X_HOME_DIR) void set_duplication_enabled(const bool dupe, const int8_t tool_index=-1); void idex_set_mirrored_mode(const bool mirr); void idex_set_parked(const bool park=true); #else #if ENABLED(MULTI_NOZZLE_DUPLICATION) extern uint8_t duplication_e_mask; enum DualXMode : char { DXC_DUPLICATION_MODE = 2 }; FORCE_INLINE void set_duplication_enabled(const bool dupe) { extruder_duplication_enabled = dupe; } #endif #define TOOL_X_HOME_DIR(T) X_HOME_DIR #endif #if HAS_M206_COMMAND void set_home_offset(const AxisEnum axis, const float v); #endif #if USE_SENSORLESS struct sensorless_t; sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis); void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth); #endif