#ifndef CONFIGURATION_ADV_H #define CONFIGURATION_ADV_H #include "Conditionals.h" // @section temperature //=========================================================================== //=============================Thermal Settings ============================ //=========================================================================== #ifdef BED_LIMIT_SWITCHING #define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS #endif #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control /** * Thermal Protection parameters */ #ifdef THERMAL_PROTECTION_HOTENDS #define THERMAL_PROTECTION_PERIOD 40 // Seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius /** * Whenever an M104 or M109 increases the target temperature the firmware will wait for the * WATCH_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE * degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109, * but only if the current temperature is far enough below the target for a reliable test. */ #define WATCH_TEMP_PERIOD 16 // Seconds #define WATCH_TEMP_INCREASE 4 // Degrees Celsius #endif #ifdef THERMAL_PROTECTION_BED #define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds #define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius #endif #ifdef PIDTEMP // this adds an experimental additional term to the heating power, proportional to the extrusion speed. // if Kc is chosen well, the additional required power due to increased melting should be compensated. #define PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE #define DEFAULT_Kc (1) //heating power=Kc*(e_speed) #endif #endif /** * Automatic Temperature: * The hotend target temperature is calculated by all the buffered lines of gcode. * The maximum buffered steps/sec of the extruder motor is called "se". * Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor> * The target temperature is set to mintemp+factor*se[steps/sec] and is limited by * mintemp and maxtemp. Turn this off by excuting M109 without F* * Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp. * On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode */ #define AUTOTEMP #ifdef AUTOTEMP #define AUTOTEMP_OLDWEIGHT 0.98 #endif //Show Temperature ADC value //The M105 command return, besides traditional information, the ADC value read from temperature sensors. //#define SHOW_TEMP_ADC_VALUES // @section extruder // extruder run-out prevention. //if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded //#define EXTRUDER_RUNOUT_PREVENT #define EXTRUDER_RUNOUT_MINTEMP 190 #define EXTRUDER_RUNOUT_SECONDS 30. #define EXTRUDER_RUNOUT_ESTEPS 14. //mm filament #define EXTRUDER_RUNOUT_SPEED 1500. //extrusion speed #define EXTRUDER_RUNOUT_EXTRUDE 100 // @section temperature //These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements. //The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET" #define TEMP_SENSOR_AD595_OFFSET 0.0 #define TEMP_SENSOR_AD595_GAIN 1.0 //This is for controlling a fan to cool down the stepper drivers //it will turn on when any driver is enabled //and turn off after the set amount of seconds from last driver being disabled again #define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable) #define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run #define CONTROLLERFAN_SPEED 255 // == full speed // When first starting the main fan, run it at full speed for the // given number of milliseconds. This gets the fan spinning reliably // before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu) //#define FAN_KICKSTART_TIME 100 // This defines the minimal speed for the main fan, run in PWM mode // to enable uncomment and set minimal PWM speed for reliable running (1-255) // if fan speed is [1 - (FAN_MIN_PWM-1)] it is set to FAN_MIN_PWM //#define FAN_MIN_PWM 50 // @section extruder // Extruder cooling fans // Configure fan pin outputs to automatically turn on/off when the associated // extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE. // Multiple extruders can be assigned to the same pin in which case // the fan will turn on when any selected extruder is above the threshold. #define EXTRUDER_0_AUTO_FAN_PIN -1 #define EXTRUDER_1_AUTO_FAN_PIN -1 #define EXTRUDER_2_AUTO_FAN_PIN -1 #define EXTRUDER_3_AUTO_FAN_PIN -1 #define EXTRUDER_AUTO_FAN_TEMPERATURE 50 #define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed //=========================================================================== //=============================Mechanical Settings=========================== //=========================================================================== // @section homing #define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing // @section extras //#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats. // A single Z stepper driver is usually used to drive 2 stepper motors. // Uncomment this define to utilize a separate stepper driver for each Z axis motor. // Only a few motherboards support this, like RAMPS, which have dual extruder support (the 2nd, often unused, extruder driver is used // to control the 2nd Z axis stepper motor). The pins are currently only defined for a RAMPS motherboards. // On a RAMPS (or other 5 driver) motherboard, using this feature will limit you to using 1 extruder. //#define Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS // Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper. // That way the machine is capable to align the bed during home, since both Z steppers are homed. // There is also an implementation of M666 (software endstops adjustment) to this feature. // After Z homing, this adjustment is applied to just one of the steppers in order to align the bed. // One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2. // If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive. // Play a little bit with small adjustments (0.5mm) and check the behaviour. // The M119 (endstops report) will start reporting the Z2 Endstop as well. #define Z2_STEP_PIN E2_STEP_PIN // Stepper to be used to Z2 axis. #define Z2_DIR_PIN E2_DIR_PIN #define Z2_ENABLE_PIN E2_ENABLE_PIN // #define Z_DUAL_ENDSTOPS #ifdef Z_DUAL_ENDSTOPS #define Z2_MAX_PIN 36 //Endstop used for Z2 axis. In this case I'm using XMAX in a Rumba Board (pin 36) const bool Z2_MAX_ENDSTOP_INVERTING = false; #define DISABLE_XMAX_ENDSTOP //Better to disable the XMAX to avoid conflict. Just rename "XMAX_ENDSTOP" by the endstop you are using for Z2 axis. #endif #endif // Z_DUAL_STEPPER_DRIVERS // Same again but for Y Axis. //#define Y_DUAL_STEPPER_DRIVERS // Define if the two Y drives need to rotate in opposite directions #define INVERT_Y2_VS_Y_DIR true // Enable this for dual x-carriage printers. // A dual x-carriage design has the advantage that the inactive extruder can be parked which // prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage // allowing faster printing speeds. //#define DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE // Configuration for second X-carriage // Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop; // the second x-carriage always homes to the maximum endstop. #define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage #define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed #define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position #define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position // However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software // override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops // without modifying the firmware (through the "M218 T1 X???" command). // Remember: you should set the second extruder x-offset to 0 in your slicer. // Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h) #define X2_ENABLE_PIN 29 #define X2_STEP_PIN 25 #define X2_DIR_PIN 23 // There are a few selectable movement modes for dual x-carriages using M605 S<mode> // Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results // as long as it supports dual x-carriages. (M605 S0) // Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so // that additional slicer support is not required. (M605 S1) // Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all // actions of the first x-carriage. This allows the printer to print 2 arbitrary items at // once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm]) // This is the default power-up mode which can be later using M605. #define DEFAULT_DUAL_X_CARRIAGE_MODE 0 // Default settings in "Auto-park Mode" #define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder #define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder // Default x offset in duplication mode (typically set to half print bed width) #define DEFAULT_DUPLICATION_X_OFFSET 100 #endif //DUAL_X_CARRIAGE // @section homing //homing hits the endstop, then retracts by this distance, before it tries to slowly bump again: #define X_HOME_BUMP_MM 5 #define Y_HOME_BUMP_MM 5 #define Z_HOME_BUMP_MM 2 #define HOMING_BUMP_DIVISOR {2, 2, 4} // Re-Bump Speed Divisor (Divides the Homing Feedrate) //#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially. // When G28 is called, this option will make Y home before X // #define HOME_Y_BEFORE_X // @section machine #define AXIS_RELATIVE_MODES {false, false, false, false} // @section machine //By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step. #define INVERT_X_STEP_PIN false #define INVERT_Y_STEP_PIN false #define INVERT_Z_STEP_PIN false #define INVERT_E_STEP_PIN false // Default stepper release if idle. Set to 0 to deactivate. #define DEFAULT_STEPPER_DEACTIVE_TIME 60 #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINTRAVELFEEDRATE 0.0 // @section lcd #ifdef ULTIPANEL #define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel #define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder #endif // @section extras // minimum time in microseconds that a movement needs to take if the buffer is emptied. #define DEFAULT_MINSEGMENTTIME 20000 // If defined the movements slow down when the look ahead buffer is only half full #define SLOWDOWN // Frequency limit // See nophead's blog for more info // Not working O //#define XY_FREQUENCY_LIMIT 15 // Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end // of the buffer and all stops. This should not be much greater than zero and should only be changed // if unwanted behavior is observed on a user's machine when running at very slow speeds. #define MINIMUM_PLANNER_SPEED 0.05// (mm/sec) // Microstep setting (Only functional when stepper driver microstep pins are connected to MCU. #define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16] // Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards) #define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A) // uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro //#define DIGIPOT_I2C // Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8 #define DIGIPOT_I2C_NUM_CHANNELS 8 // actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} //=========================================================================== //=============================Additional Features=========================== //=========================================================================== #define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly #define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value #define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value //#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/ #define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again // @section lcd #ifdef SDSUPPORT // If you are using a RAMPS board or cheap E-bay purchased boards that do not detect when an SD card is inserted // You can get round this by connecting a push button or single throw switch to the pin defined as SDCARDCARDDETECT // in the pins.h file. When using a push button pulling the pin to ground this will need inverted. This setting should // be commented out otherwise #ifndef ELB_FULL_GRAPHIC_CONTROLLER #define SDCARDDETECTINVERTED #endif #define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers? #define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place. #define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order. // if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that. // using: //#define MENU_ADDAUTOSTART // Show a progress bar on HD44780 LCDs for SD printing //#define LCD_PROGRESS_BAR #ifdef LCD_PROGRESS_BAR // Amount of time (ms) to show the bar #define PROGRESS_BAR_BAR_TIME 2000 // Amount of time (ms) to show the status message #define PROGRESS_BAR_MSG_TIME 3000 // Amount of time (ms) to retain the status message (0=forever) #define PROGRESS_MSG_EXPIRE 0 // Enable this to show messages for MSG_TIME then hide them //#define PROGRESS_MSG_ONCE #endif // This allows hosts to request long names for files and folders with M33 //#define LONG_FILENAME_HOST_SUPPORT #endif // SDSUPPORT // for dogm lcd displays you can choose some additional fonts: #ifdef DOGLCD // save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT // we don't have a big font for Cyrillic, Kana //#define USE_BIG_EDIT_FONT // If you have spare 2300Byte of progmem and want to use a // smaller font on the Info-screen uncomment the next line. //#define USE_SMALL_INFOFONT #endif // DOGLCD // @section more // The hardware watchdog should reset the microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation. //#define USE_WATCHDOG #ifdef USE_WATCHDOG // If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on. // The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset. // However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled. //#define WATCHDOG_RESET_MANUAL #endif // Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled. //#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED // @section lcd // Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process // it can e.g. be used to change z-positions in the print startup phase in real-time // does not respect endstops! //#define BABYSTEPPING #ifdef BABYSTEPPING #define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions #define BABYSTEP_INVERT_Z false //true for inverse movements in Z #define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements #endif // @section extruder // extruder advance constant (s2/mm3) // // advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2 // // Hooke's law says: force = k * distance // Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant // so: v ^ 2 is proportional to number of steps we advance the extruder //#define ADVANCE #ifdef ADVANCE #define EXTRUDER_ADVANCE_K .0 #define D_FILAMENT 2.85 #define STEPS_MM_E 836 #endif // @section extras // Arc interpretation settings: #define MM_PER_ARC_SEGMENT 1 #define N_ARC_CORRECTION 25 const unsigned int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement // @section temperature // Control heater 0 and heater 1 in parallel. //#define HEATERS_PARALLEL //=========================================================================== //================================= Buffers ================================= //=========================================================================== // @section hidden // The number of linear motions that can be in the plan at any give time. // THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering. #ifdef SDSUPPORT #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #else #define BLOCK_BUFFER_SIZE 16 // maximize block buffer #endif // @section more //The ASCII buffer for receiving from the serial: #define MAX_CMD_SIZE 96 #define BUFSIZE 4 // Bad Serial-connections can miss a received command by sending an 'ok' // Therefore some clients abort after 30 seconds in a timeout. // Some other clients start sending commands while receiving a 'wait'. // This "wait" is only sent when the buffer is empty. 1 second is a good value here. //#define NO_TIMEOUTS 1000 // Milliseconds // Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary. //#define ADVANCED_OK // @section fwretract // Firmware based and LCD controlled retract // M207 and M208 can be used to define parameters for the retraction. // The retraction can be called by the slicer using G10 and G11 // until then, intended retractions can be detected by moves that only extrude and the direction. // the moves are than replaced by the firmware controlled ones. // #define FWRETRACT //ONLY PARTIALLY TESTED #ifdef FWRETRACT #define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt #define RETRACT_LENGTH 3 //default retract length (positive mm) #define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change #define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s) #define RETRACT_ZLIFT 0 //default retract Z-lift #define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering) #define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change) #define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s) #endif // Add support for experimental filament exchange support M600; requires display #ifdef ULTIPANEL //#define FILAMENTCHANGEENABLE #ifdef FILAMENTCHANGEENABLE #define FILAMENTCHANGE_XPOS 3 #define FILAMENTCHANGE_YPOS 3 #define FILAMENTCHANGE_ZADD 10 #define FILAMENTCHANGE_FIRSTRETRACT -2 #define FILAMENTCHANGE_FINALRETRACT -100 #define AUTO_FILAMENT_CHANGE //This extrude filament until you press the button on LCD #define AUTO_FILAMENT_CHANGE_LENGTH 0.04 //Extrusion length on automatic extrusion loop #define AUTO_FILAMENT_CHANGE_FEEDRATE 300 //Extrusion feedrate (mm/min) on automatic extrusion loop #endif #endif /******************************************************************************\ * enable this section if you have TMC26X motor drivers. * you need to import the TMC26XStepper library into the arduino IDE for this ******************************************************************************/ // @section tmc //#define HAVE_TMCDRIVER #ifdef HAVE_TMCDRIVER // #define X_IS_TMC #define X_MAX_CURRENT 1000 //in mA #define X_SENSE_RESISTOR 91 //in mOhms #define X_MICROSTEPS 16 //number of microsteps // #define X2_IS_TMC #define X2_MAX_CURRENT 1000 //in mA #define X2_SENSE_RESISTOR 91 //in mOhms #define X2_MICROSTEPS 16 //number of microsteps // #define Y_IS_TMC #define Y_MAX_CURRENT 1000 //in mA #define Y_SENSE_RESISTOR 91 //in mOhms #define Y_MICROSTEPS 16 //number of microsteps // #define Y2_IS_TMC #define Y2_MAX_CURRENT 1000 //in mA #define Y2_SENSE_RESISTOR 91 //in mOhms #define Y2_MICROSTEPS 16 //number of microsteps // #define Z_IS_TMC #define Z_MAX_CURRENT 1000 //in mA #define Z_SENSE_RESISTOR 91 //in mOhms #define Z_MICROSTEPS 16 //number of microsteps // #define Z2_IS_TMC #define Z2_MAX_CURRENT 1000 //in mA #define Z2_SENSE_RESISTOR 91 //in mOhms #define Z2_MICROSTEPS 16 //number of microsteps // #define E0_IS_TMC #define E0_MAX_CURRENT 1000 //in mA #define E0_SENSE_RESISTOR 91 //in mOhms #define E0_MICROSTEPS 16 //number of microsteps // #define E1_IS_TMC #define E1_MAX_CURRENT 1000 //in mA #define E1_SENSE_RESISTOR 91 //in mOhms #define E1_MICROSTEPS 16 //number of microsteps // #define E2_IS_TMC #define E2_MAX_CURRENT 1000 //in mA #define E2_SENSE_RESISTOR 91 //in mOhms #define E2_MICROSTEPS 16 //number of microsteps // #define E3_IS_TMC #define E3_MAX_CURRENT 1000 //in mA #define E3_SENSE_RESISTOR 91 //in mOhms #define E3_MICROSTEPS 16 //number of microsteps #endif /******************************************************************************\ * enable this section if you have L6470 motor drivers. * you need to import the L6470 library into the arduino IDE for this ******************************************************************************/ // @section l6470 //#define HAVE_L6470DRIVER #ifdef HAVE_L6470DRIVER // #define X_IS_L6470 #define X_MICROSTEPS 16 //number of microsteps #define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define X2_IS_L6470 #define X2_MICROSTEPS 16 //number of microsteps #define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define Y_IS_L6470 #define Y_MICROSTEPS 16 //number of microsteps #define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define Y2_IS_L6470 #define Y2_MICROSTEPS 16 //number of microsteps #define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define Z_IS_L6470 #define Z_MICROSTEPS 16 //number of microsteps #define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define Z2_IS_L6470 #define Z2_MICROSTEPS 16 //number of microsteps #define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define E0_IS_L6470 #define E0_MICROSTEPS 16 //number of microsteps #define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define E1_IS_L6470 #define E1_MICROSTEPS 16 //number of microsteps #define E1_MICROSTEPS 16 //number of microsteps #define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define E2_IS_L6470 #define E2_MICROSTEPS 16 //number of microsteps #define E2_MICROSTEPS 16 //number of microsteps #define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define E3_IS_L6470 #define E3_MICROSTEPS 16 //number of microsteps #define E3_MICROSTEPS 16 //number of microsteps #define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall #endif #include "Conditionals.h" #include "SanityCheck.h" #endif //CONFIGURATION_ADV_H