/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * motion.h * * High-level motion commands to feed the planner * Some of these methods may migrate to the planner class. */ #pragma once #include "../inc/MarlinConfig.h" #if IS_SCARA #include "scara.h" #endif // Axis homed and known-position states extern uint8_t axis_homed, axis_known_position; constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS); FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; } FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; } FORCE_INLINE void set_all_unhomed() { axis_homed = 0; } FORCE_INLINE void set_all_unknown() { axis_known_position = 0; } FORCE_INLINE bool homing_needed() { return !( #if ENABLED(HOME_AFTER_DEACTIVATE) all_axes_known() #else all_axes_homed() #endif ); } // Error margin to work around float imprecision constexpr float slop = 0.0001; extern bool relative_mode; extern float current_position[XYZE], // High-level current tool position destination[XYZE]; // Destination for a move // Scratch space for a cartesian result extern float cartes[XYZ]; // Until kinematics.cpp is created, declare this here #if IS_KINEMATIC extern float delta[ABC]; #endif #if HAS_ABL_NOT_UBL extern float xy_probe_feedrate_mm_s; #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s #elif defined(XY_PROBE_SPEED) #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) #else #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE() #endif /** * Feed rates are often configured with mm/m * but the planner and stepper like mm/s units. */ extern const float homing_feedrate_mm_s[XYZ]; FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); } float get_homing_bump_feedrate(const AxisEnum axis); extern float feedrate_mm_s; /** * Feedrate scaling and conversion */ extern int16_t feedrate_percentage; #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01f) // The active extruder (tool). Set with T command. #if EXTRUDERS > 1 extern uint8_t active_extruder; #else constexpr uint8_t active_extruder = 0; #endif FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float(p); } FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte(p); } #define XYZ_DEFS(type, array, CONFIG) \ extern const type array##_P[XYZ]; \ FORCE_INLINE type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \ typedef void __void_##CONFIG##__ XYZ_DEFS(float, base_min_pos, MIN_POS); XYZ_DEFS(float, base_max_pos, MAX_POS); XYZ_DEFS(float, base_home_pos, HOME_POS); XYZ_DEFS(float, max_length, MAX_LENGTH); XYZ_DEFS(float, home_bump_mm, HOME_BUMP_MM); XYZ_DEFS(signed char, home_dir, HOME_DIR); #if HAS_WORKSPACE_OFFSET void update_workspace_offset(const AxisEnum axis); #else #define update_workspace_offset(x) NOOP #endif #if HAS_HOTEND_OFFSET extern float hotend_offset[XYZ][HOTENDS]; void reset_hotend_offsets(); #else constexpr float hotend_offset[XYZ][HOTENDS] = { { 0 }, { 0 }, { 0 } }; #endif typedef struct { float min, max; } axis_limits_t; #if HAS_SOFTWARE_ENDSTOPS extern bool soft_endstops_enabled; extern axis_limits_t soft_endstop[XYZ]; void apply_motion_limits(float target[XYZ]); void update_software_endstops(const AxisEnum axis #if HAS_HOTEND_OFFSET , const uint8_t old_tool_index=0, const uint8_t new_tool_index=0 #endif ); #else constexpr bool soft_endstops_enabled = false; //constexpr axis_limits_t soft_endstop[XYZ] = { { X_MIN_POS, X_MAX_POS }, { Y_MIN_POS, Y_MAX_POS }, { Z_MIN_POS, Z_MAX_POS } }; #define apply_motion_limits(V) NOOP #define update_software_endstops(...) NOOP #endif void report_current_position(); inline void set_current_from_destination() { COPY(current_position, destination); } inline void set_destination_from_current() { COPY(destination, current_position); } void get_cartesian_from_steppers(); void set_current_from_steppers_for_axis(const AxisEnum axis); /** * sync_plan_position * * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position(); void sync_plan_position_e(); /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ void line_to_current_position(const float &fr_mm_s=feedrate_mm_s); /** * Move the planner to the position stored in the destination array, which is * used by G0/G1/G2/G3/G5 and many other functions to set a destination. */ void buffer_line_to_destination(const float fr_mm_s); #if IS_KINEMATIC void prepare_uninterpolated_move_to_destination(const float &fr_mm_s=0); #endif void prepare_move_to_destination(); /** * Blocking movement and shorthand functions */ void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0); void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0); void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0); void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0); FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZ], const float &fr_mm_s=0) { do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s); } FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZE], const float &fr_mm_s=0) { do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s); } void setup_for_endstop_or_probe_move(); void clean_up_after_endstop_or_probe_move(); // // Homing // bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true); #if ENABLED(NO_MOTION_BEFORE_HOMING) #define MOTION_CONDITIONS (IsRunning() && !axis_unhomed_error()) #else #define MOTION_CONDITIONS IsRunning() #endif void set_axis_is_at_home(const AxisEnum axis); void set_axis_is_not_at_home(const AxisEnum axis); void homeaxis(const AxisEnum axis); /** * Workspace offsets */ #if HAS_HOME_OFFSET || HAS_POSITION_SHIFT #if HAS_HOME_OFFSET extern float home_offset[XYZ]; #endif #if HAS_POSITION_SHIFT extern float position_shift[XYZ]; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT extern float workspace_offset[XYZ]; #define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS] #elif HAS_HOME_OFFSET #define WORKSPACE_OFFSET(AXIS) home_offset[AXIS] #else #define WORKSPACE_OFFSET(AXIS) position_shift[AXIS] #endif #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS)) #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS)) #else #define NATIVE_TO_LOGICAL(POS, AXIS) (POS) #define LOGICAL_TO_NATIVE(POS, AXIS) (POS) #endif #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS) #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS) #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS) #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS) #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS) #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS) /** * position_is_reachable family of functions */ #if IS_KINEMATIC // (DELTA or SCARA) #if IS_SCARA extern const float L1, L2; #endif #if HAS_SCARA_OFFSET extern float scara_home_offset[ABC]; // A and B angular offsets, Z mm offset #endif // Return true if the given point is within the printable area inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) { #if ENABLED(DELTA) return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset); #elif IS_SCARA const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y); return ( R2 <= sq(L1 + L2) - inset #if MIDDLE_DEAD_ZONE_R > 0 && R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) #endif ); #endif } #if HAS_BED_PROBE // Return true if the both nozzle and the probe can reach the given point. // Note: This won't work on SCARA since the probe offset rotates with the arm. inline bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER)) && position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE)); } #endif #else // CARTESIAN // Return true if the given position is within the machine bounds. inline bool position_is_reachable(const float &rx, const float &ry) { if (!WITHIN(ry, Y_MIN_POS - slop, Y_MAX_POS + slop)) return false; #if ENABLED(DUAL_X_CARRIAGE) if (active_extruder) return WITHIN(rx, X2_MIN_POS - slop, X2_MAX_POS + slop); else return WITHIN(rx, X1_MIN_POS - slop, X1_MAX_POS + slop); #else return WITHIN(rx, X_MIN_POS - slop, X_MAX_POS + slop); #endif } #if HAS_BED_PROBE /** * Return whether the given position is within the bed, and whether the nozzle * can reach the position required to put the probe at the given position. * * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the * nozzle must be be able to reach +10,-10. */ inline bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER)) && WITHIN(rx, MIN_PROBE_X - slop, MAX_PROBE_X + slop) && WITHIN(ry, MIN_PROBE_Y - slop, MAX_PROBE_Y + slop); } #endif #endif // CARTESIAN #if !HAS_BED_PROBE FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); } #endif /** * Duplication mode */ #if HAS_DUPLICATION_MODE extern bool extruder_duplication_enabled, // Used in Dual X mode 2 mirrored_duplication_mode; // Used in Dual X mode 3 #if ENABLED(MULTI_NOZZLE_DUPLICATION) extern uint8_t duplication_e_mask; #endif #endif /** * Dual X Carriage */ #if ENABLED(DUAL_X_CARRIAGE) enum DualXMode : char { DXC_FULL_CONTROL_MODE, DXC_AUTO_PARK_MODE, DXC_DUPLICATION_MODE, DXC_MIRRORED_MODE }; extern DualXMode dual_x_carriage_mode; extern float inactive_extruder_x_pos, // Used in mode 0 & 1 raised_parked_position[XYZE], // Used in mode 1 duplicate_extruder_x_offset; // Used in mode 2 & 3 extern bool active_extruder_parked; // Used in mode 1, 2 & 3 extern millis_t delayed_move_time; // Used in mode 1 extern int16_t duplicate_extruder_temp_offset; // Used in mode 2 & 3 FORCE_INLINE bool dxc_is_duplicating() { return dual_x_carriage_mode >= DXC_DUPLICATION_MODE; } float x_home_pos(const int extruder); FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; } #elif ENABLED(MULTI_NOZZLE_DUPLICATION) enum DualXMode : char { DXC_DUPLICATION_MODE = 2 }; #endif #if HAS_M206_COMMAND void set_home_offset(const AxisEnum axis, const float v); #endif