/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "Marlin.h" #if ENABLED(AUTO_BED_LEVELING_UBL) #include "UBL.h" #include "planner.h" #include #include extern void set_current_to_destination(); extern bool G26_Debug_flag; void debug_current_and_destination(char *title); void wait_for_button_press(); void UBL_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) { int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi; int left_flag, down_flag; int current_xi, current_yi; int dxi, dyi, xi_cnt, yi_cnt; bool use_X_dist, inf_normalized_flag, inf_m_flag; float x_start, y_start; float x, y, z1, z2, z0 /*, z_optimized */; float next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1; float on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start; float dx, dy, adx, ady, m, c; // // Much of the nozzle movement will be within the same cell. So we will do as little computation // as possible to determine if this is the case. If this move is within the same cell, we will // just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave // x_start = current_position[X_AXIS]; y_start = current_position[Y_AXIS]; z_start = current_position[Z_AXIS]; e_start = current_position[E_AXIS]; cell_start_xi = blm.get_cell_index_x(x_start); cell_start_yi = blm.get_cell_index_y(y_start); cell_dest_xi = blm.get_cell_index_x(x_end); cell_dest_yi = blm.get_cell_index_y(y_end); if (G26_Debug_flag!=0) { SERIAL_ECHOPGM(" UBL_line_to_destination(xe="); SERIAL_ECHO(x_end); SERIAL_ECHOPGM(",ye="); SERIAL_ECHO(y_end); SERIAL_ECHOPGM(",ze="); SERIAL_ECHO(z_end); SERIAL_ECHOPGM(",ee="); SERIAL_ECHO(e_end); SERIAL_ECHOPGM(")\n"); debug_current_and_destination( (char *) "Start of UBL_line_to_destination()"); } if ((cell_start_xi == cell_dest_xi) && (cell_start_yi == cell_dest_yi)) { // if the whole move is within the same cell, // we don't need to break up the move // // If we are moving off the print bed, we are going to allow the move at this level. // But we detect it and isolate it. For now, we just pass along the request. // if (cell_dest_xi<0 || cell_dest_yi<0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) { // Note: There is no Z Correction in this case. We are off the grid and don't know what // a reasonable correction would be. planner.buffer_line(x_end, y_end, z_end + blm.state.z_offset, e_end, feed_rate, extruder); set_current_to_destination(); if (G26_Debug_flag!=0) { debug_current_and_destination( (char *) "out of bounds in UBL_line_to_destination()"); } return; } // we can optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to // generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function. // We are going to only calculate the amount we are from the first mesh line towards the second mesh line once. // We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And, // instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor // to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. FINAL_MOVE: a0ma1diva2ma1 = (x_end - mesh_index_to_X_location[cell_dest_xi]) * (float) (1.0 / MESH_X_DIST); z1 = z_values[cell_dest_xi][cell_dest_yi] + (z_values[cell_dest_xi + 1][cell_dest_yi] - z_values[cell_dest_xi][cell_dest_yi]) * a0ma1diva2ma1; z2 = z_values[cell_dest_xi][cell_dest_yi+1] + (z_values[cell_dest_xi+1][cell_dest_yi+1] - z_values[cell_dest_xi][cell_dest_yi+1]) * a0ma1diva2ma1; // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // are going to apply the Y-Distance into the cell to interpolate the final Z correction. a0ma1diva2ma1 = (y_end - mesh_index_to_Y_location[cell_dest_yi]) * (float) (1.0 / MESH_Y_DIST); z0 = z1 + (z2 - z1) * a0ma1diva2ma1; // debug code to use non-optimized get_z_correction() and to do a sanity check // that the correct value is being passed to planner.buffer_line() // /* z_optimized = z0; z0 = blm.get_z_correction( x_end, y_end); if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { debug_current_and_destination( (char *) "FINAL_MOVE: z_correction()"); if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); SERIAL_ECHOPAIR(" x_end=", x_end); SERIAL_ECHOPAIR(" y_end=", y_end); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0)); SERIAL_EOL; } */ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN z0 = 0.0; // in z_values[][] and propagate through the // calculations. If our correction is NAN, we throw it out // because part of the Mesh is undefined and we don't have the // information we need to complete the height correction. } planner.buffer_line(x_end, y_end, z_end + z0 + blm.state.z_offset, e_end, feed_rate, extruder); if (G26_Debug_flag!=0) { debug_current_and_destination( (char *) "FINAL_MOVE in UBL_line_to_destination()"); } set_current_to_destination(); return; } // // If we get here, we are processing a move that crosses at least one Mesh Line. We will check // for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details // of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less // computation and in fact most lines are of this nature. We will check for that in the following // blocks of code: left_flag = 0; down_flag = 0; inf_m_flag = false; inf_normalized_flag = false; dx = x_end - x_start; dy = y_end - y_start; if (dx<0.0) { // figure out which way we need to move to get to the next cell dxi = -1; adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative. } else { // We may as well generate the appropriate values for adx and ady right now dxi = 1; // to save setting up the abs() function call and actually doing the call. adx = dx; } if (dy<0.0) { dyi = -1; ady = -dy; // absolute value of dy } else { dyi = 1; ady = dy; } if (dx<0.0) left_flag = 1; if (dy<0.0) down_flag = 1; if (cell_start_xi == cell_dest_xi) dxi = 0; if (cell_start_yi == cell_dest_yi) dyi = 0; // // Compute the scaling factor for the extruder for each partial move. // We need to watch out for zero length moves because it will cause us to // have an infinate scaling factor. We are stuck doing a floating point // divide to get our scaling factor, but after that, we just multiply by this // number. We also pick our scaling factor based on whether the X or Y // component is larger. We use the biggest of the two to preserve precision. // if ( adx > ady ) { use_X_dist = true; on_axis_distance = x_end-x_start; } else { use_X_dist = false; on_axis_distance = y_end-y_start; } e_position = e_end - e_start; e_normalized_dist = e_position / on_axis_distance; z_position = z_end - z_start; z_normalized_dist = z_position / on_axis_distance; if (e_normalized_dist==INFINITY || e_normalized_dist==-INFINITY) { inf_normalized_flag = true; } current_xi = cell_start_xi; current_yi = cell_start_yi; m = dy / dx; c = y_start - m*x_start; if (m == INFINITY || m == -INFINITY) { inf_m_flag = true; } // // This block handles vertical lines. These are lines that stay within the same // X Cell column. They do not need to be perfectly vertical. They just can // not cross into another X Cell column. // if (dxi == 0) { // Check for a vertical line current_yi += down_flag; // Line is heading down, we just want to go to the bottom while (current_yi != cell_dest_yi + down_flag) { current_yi += dyi; next_mesh_line_y = mesh_index_to_Y_location[current_yi]; if (inf_m_flag) { x = x_start; // if the slope of the line is infinite, we won't do the calculations } // we know the next X is the same so we can recover and continue! else { x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line } z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi); // // debug code to use non-optimized get_z_correction() and to do a sanity check // that the correct value is being passed to planner.buffer_line() // /* z_optimized = z0; z0 = blm.get_z_correction( x, next_mesh_line_y); if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { debug_current_and_destination( (char *) "VERTICAL z_correction()"); if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); SERIAL_ECHOPAIR(" x=", x); SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHO("\n"); } */ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN z0 = 0.0; // in z_values[][] and propagate through the // calculations. If our correction is NAN, we throw it out // because part of the Mesh is undefined and we don't have the // information we need to complete the height correction. } y = mesh_index_to_Y_location[current_yi]; // Without this check, it is possible for the algorythm to generate a zero length move in the case // where the line is heading down and it is starting right on a Mesh Line boundary. For how often that // happens, it might be best to remove the check and always 'schedule' the move because // the planner.buffer_line() routine will filter it if that happens. if ( y!=y_start) { if ( inf_normalized_flag == false ) { on_axis_distance = y - y_start; // we don't need to check if the extruder position e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move z_position = z_start + on_axis_distance * z_normalized_dist; } else { e_position = e_start; z_position = z_start; } planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); } //else printf("FIRST MOVE PRUNED "); } // // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done. // if (G26_Debug_flag!=0) { debug_current_and_destination( (char *) "vertical move done in UBL_line_to_destination()"); } if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) { goto FINAL_MOVE; } set_current_to_destination(); return; } // // This block handles horizontal lines. These are lines that stay within the same // Y Cell row. They do not need to be perfectly horizontal. They just can // not cross into another Y Cell row. // if (dyi == 0) { // Check for a horiziontal line current_xi += left_flag; // Line is heading left, we just want to go to the left // edge of this cell for the first move. while (current_xi != cell_dest_xi + left_flag) { current_xi += dxi; next_mesh_line_x = mesh_index_to_X_location[current_xi]; y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); // // debug code to use non-optimized get_z_correction() and to do a sanity check // that the correct value is being passed to planner.buffer_line() // /* z_optimized = z0; z0 = blm.get_z_correction( next_mesh_line_x, y); if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { debug_current_and_destination( (char *) "HORIZONTAL z_correction()"); if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x); SERIAL_ECHOPAIR(" y=", y); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHO("\n"); } */ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN z0 = 0.0; // in z_values[][] and propagate through the // calculations. If our correction is NAN, we throw it out // because part of the Mesh is undefined and we don't have the // information we need to complete the height correction. } x = mesh_index_to_X_location[current_xi]; // Without this check, it is possible for the algorythm to generate a zero length move in the case // where the line is heading left and it is starting right on a Mesh Line boundary. For how often // that happens, it might be best to remove the check and always 'schedule' the move because // the planner.buffer_line() routine will filter it if that happens. if ( x!=x_start) { if ( inf_normalized_flag == false ) { on_axis_distance = x - x_start; // we don't need to check if the extruder position e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move z_position = z_start + on_axis_distance * z_normalized_dist; } else { e_position = e_start; z_position = z_start; } planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); } //else printf("FIRST MOVE PRUNED "); } if (G26_Debug_flag!=0) { debug_current_and_destination( (char *) "horizontal move done in UBL_line_to_destination()"); } if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) { goto FINAL_MOVE; } set_current_to_destination(); return; } // // // // // This block handles the generic case of a line crossing both X and Y // Mesh lines. // // // // xi_cnt = cell_start_xi - cell_dest_xi; if ( xi_cnt < 0 ) { xi_cnt = -xi_cnt; } yi_cnt = cell_start_yi - cell_dest_yi; if ( yi_cnt < 0 ) { yi_cnt = -yi_cnt; } current_xi += left_flag; current_yi += down_flag; while ( xi_cnt>0 || yi_cnt>0 ) { next_mesh_line_x = mesh_index_to_X_location[current_xi + dxi]; next_mesh_line_y = mesh_index_to_Y_location[current_yi + dyi]; y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line x = (next_mesh_line_y-c) / m; // Calculate X at the next Y mesh line (we don't have to worry // about m being equal to 0.0 If this was the case, we would have // detected this as a vertical line move up above and we wouldn't // be down here doing a generic type of move. if ((left_flag && (x>next_mesh_line_x)) || (!left_flag && (x .01 || isnan(z0) || isnan(z_optimized) ) { debug_current_and_destination( (char *) "General_1: z_correction()"); if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); { SERIAL_ECHOPAIR(" x=", x); } SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHO("\n"); } */ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN z0 = 0.0; // in z_values[][] and propagate through the // calculations. If our correction is NAN, we throw it out // because part of the Mesh is undefined and we don't have the // information we need to complete the height correction. } if ( inf_normalized_flag == false ) { if ( use_X_dist ) { on_axis_distance = x - x_start; } else { on_axis_distance = next_mesh_line_y - y_start; } e_position = e_start + on_axis_distance * e_normalized_dist; z_position = z_start + on_axis_distance * z_normalized_dist; } else { e_position = e_start; z_position = z_start; } planner.buffer_line(x, next_mesh_line_y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); current_yi += dyi; yi_cnt--; } else { // // Yes! Crossing a X Mesh Line next // z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi+dxi, current_yi-down_flag); // // debug code to use non-optimized get_z_correction() and to do a sanity check // that the correct value is being passed to planner.buffer_line() // /* z_optimized = z0; z0 = blm.get_z_correction( next_mesh_line_x, y); if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { debug_current_and_destination( (char *) "General_2: z_correction()"); if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x); SERIAL_ECHOPAIR(" y=", y); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHO("\n"); } */ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN z0 = 0.0; // in z_values[][] and propagate through the // calculations. If our correction is NAN, we throw it out // because part of the Mesh is undefined and we don't have the // information we need to complete the height correction. } if ( inf_normalized_flag == false ) { if ( use_X_dist ) { on_axis_distance = next_mesh_line_x - x_start; } else { on_axis_distance = y - y_start; } e_position = e_start + on_axis_distance * e_normalized_dist; z_position = z_start + on_axis_distance * z_normalized_dist; } else { e_position = e_start; z_position = z_start; } planner.buffer_line(next_mesh_line_x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); current_xi += dxi; xi_cnt--; } } if (G26_Debug_flag) { debug_current_and_destination( (char *) "generic move done in UBL_line_to_destination()"); } if (current_position[0] != x_end || current_position[1] != y_end) { goto FINAL_MOVE; } set_current_to_destination(); return; } void wait_for_button_press() { // if ( !been_to_2_6 ) //return; // bob - I think this should be commented out SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65 SET_OUTPUT(64); while (READ(66) & 0x01) idle(); delay(50); while (!(READ(66) & 0x01)) idle(); delay(50); } #endif