/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "Marlin.h" #if ENABLED(AUTO_BED_LEVELING_UBL) //#include "vector_3.h" //#include "qr_solve.h" #include "UBL.h" #include "hex_print_routines.h" #include "configuration_store.h" #include "planner.h" #include "ultralcd.h" #include void lcd_babystep_z(); void lcd_return_to_status(); bool lcd_clicked(); void lcd_implementation_clear(); void lcd_mesh_edit_setup(float inital); float lcd_mesh_edit(); void lcd_z_offset_edit_setup(float); float lcd_z_offset_edit(); extern float meshedit_done; extern long babysteps_done; extern float code_value_float(); extern bool code_value_bool(); extern bool code_has_value(); extern float probe_pt(float x, float y, bool, int); extern float zprobe_zoffset; extern bool set_probe_deployed(bool); #define DEPLOY_PROBE() set_probe_deployed(true) #define STOW_PROBE() set_probe_deployed(false) bool ProbeStay = true; float ubl_3_point_1_X = UBL_PROBE_PT_1_X; float ubl_3_point_1_Y = UBL_PROBE_PT_1_Y; float ubl_3_point_2_X = UBL_PROBE_PT_2_X; float ubl_3_point_2_Y = UBL_PROBE_PT_2_Y; float ubl_3_point_3_X = UBL_PROBE_PT_3_X; float ubl_3_point_3_Y = UBL_PROBE_PT_3_Y; #define SIZE_OF_LITTLE_RAISE 0 #define BIG_RAISE_NOT_NEEDED 0 extern void lcd_quick_feedback(); /** * G29: Unified Bed Leveling by Roxy */ // Transform required to compensate for bed level //extern matrix_3x3 plan_bed_level_matrix; /** * Get the position applying the bed level matrix */ //vector_3 plan_get_position(); // static void set_bed_level_equation_lsq(double* plane_equation_coefficients); // static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3); /** * G29: Mesh Based Compensation System * * Parameters understood by this leveling system: * * A Activate Activate the Unified Bed Leveling system. * * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card * as a shim that the nozzle will pinch as it is lowered. The idea is that you * can easily feel the nozzle getting to the same height by the amount of resistance * the business card exhibits to movement. You should try to achieve the same amount * of resistance on each probed point to facilitate accurate and repeatable measurements. * You should be very careful not to drive the nozzle into the bussiness card with a * lot of force as it is very possible to cause damage to your printer if your are * careless. If you use the B option with G29 P2 B you can leave the number parameter off * on its first use to enable measurement of the business card thickness. Subsequent usage * of the B parameter can have the number previously measured supplied to the command. * Incidently, you are much better off using something like a Spark Gap feeler gauge than * something that compresses like a Business Card. * * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to * further refine the behaviour of several other commands. Issuing a G29 P1 C will * continue the generation of a partially constructed Mesh without invalidating what has * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C * it indicates to use the current location instead of defaulting to the center of the print bed. * * D Disable Disable the Unified Bed Leveling system. * * E Stow_probe Stow the probe after each sampled point. * * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the specified height, * no correction is applied and natural printer kenimatics take over. If no number is specified * for the command, 10mm is assummed to be reasonable. * * G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on * a side. * * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The * default is 5mm. * * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless * the X and Y parameter are used. If no number is specified, only the closest Mesh * point to the location is invalidated. The M parameter is available as well to produce * a map after the operation. This command is useful to invalidate a portion of the * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When * attempting to invalidate an isolated bad point in the mesh, the M option will indicate * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on * the bed and use this feature to select the center of the area (or cell) you want to * invalidate. * * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This * command litterly performs a difference between two Mesh. * * L Load * Load Mesh from the previously activated location in the EEPROM. * * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated * for subsequent Load and Store operations. * * O Map * Display the Mesh Map Topology. * The parameter can be specified alone (ie. G29 O) or in combination with many of the * other commands. The Mesh Map option works with all of the Phase * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) * * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an * N option. In general, you should not do this. This can only be done safely with * commands that do not move the nozzle. * * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with * each additional Phase that processes it. * * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation * was turned on. Setting the entire Mesh to Zero is a special case that allows * a subsequent G or T leveling operation for backward compatability. * * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically * generated. This will be handled in Phase 2. If the Phase 1 command is given the * C (Continue) parameter it does not invalidate the Mesh prior to automatically * probing needed locations. This allows you to invalidate portions of the Mesh but still * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y * parameter can be given to prioritize where the command should be trying to measure points. * If the X and Y parameters are not specified the current probe position is used. Phase 1 * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state. * It will suspend generation of the Mesh if it sees the user request that. (This check is * only done between probe points. You will need to press and hold the switch until the * Phase 1 command can detect it.) * * P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H * parameter to control the height between Mesh points. The default height for movement * between Mesh points is 5mm. A smaller number can be used to make this part of the * calibration less time consuming. You will be running the nozzle down until it just barely * touches the glass. You should have the nozzle clean with no plastic obstructing your view. * Use caution and move slowly. It is possible to damage your printer if you are careless. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED. * * The H parameter can be set negative if your Mesh dips in a large area. You can press * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the * area you are manually probing. Note that the command tries to start you in a corner * of the bed where movement will be predictable. You can force the location to be used in * the distance calculations by using the X and Y parameters. You may find it is helpful to * print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where * the nozzle will need to move in order to complete the command. The C parameter is * available on the Phase 2 command also and indicates the search for points to measure should * be done based on the current location of the nozzle. * * A B parameter is also available for this command and described up above. It places the * manual probe subsystem into Business Card mode where the thickness of a business care is * measured and then used to accurately set the nozzle height in all manual probing for the * duration of the command. (S for Shim mode would be a better parameter name, but S is needed * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have * better results if you use a flexible Shim that does not compress very much. That makes it * easier for you to get the nozzle to press with similar amounts of force against the shim so you * can get accurate measurements. As you are starting to touch the nozzle against the shim try * to get it to grasp the shim with the same force as when you measured the thickness of the * shim at the start of the command. * * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression * of the Mesh being built. * * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is used to * specify the Constant value to fill all invalid areas of the Mesh. If no C parameter is * specified, a value of 0.0 is assumed. The R parameter can be given to specify the number * of points to set. If the R parameter is specified the current nozzle position is used to * find the closest points to alter unless the X and Y parameter are used to specify the fill * location. * * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel. * (More work and details on doing this later!) * The System will search for the closest Mesh Point to the nozzle. It will move the * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle * so it is just barely touching the bed. When the user clicks the control, the System * will lock in that height for that point in the Mesh Compensation System. * * Phase 4 has several additional parameters that the user may find helpful. Phase 4 * can be started at a specific location by specifying an X and Y parameter. Phase 4 * can be requested to continue the adjustment of Mesh Points by using the R(epeat) * parameter. If the Repetition count is not specified, it is assumed the user wishes * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited. * The command can be terminated early (or after the area of interest has been edited) by * pressing and holding the encoder wheel until the system recognizes the exit request. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position] * * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the * information left on the printer's bed from the G26 command it is very straight forward * and easy to fine tune the Mesh. One concept that is important to remember and that * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points. * If you have too little clearance and not much plastic was extruded in an area, you want to * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to * RAISE the Mesh Point at that location. * * * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically * execute a G29 P6 C . * * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally, * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring * 0.000 at the Z Home location. * * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This * command is not anticipated to be of much value to the typical user. It is intended * for developers to help them verify correct operation of the Unified Bed Leveling System. * * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the * current state of the Unified Bed Leveling system in the EEPROM. * * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location * for subsequent Load and Store operations. It will also store the current state of * the Unified Bed Leveling system in the EEPROM. * * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into * the system at a later date. The text generated can be saved and later sent by PronterFace or * Repetier Host to reconstruct the current mesh on another machine. * * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh * * W What? Display valuable data the Unified Bed Leveling System knows. * * X # * * Specify X Location for this line of commands * * Y # * * Specify Y Location for this line of commands * * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered * by just doing a G29 Z * * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference. * zprobe_zoffset is added to the calculation. * * * Release Notes: * You MUST do a M502 & M500 pair of commands to initialize the storage. Failure to do this * will cause all kinds of problems. Enabling EEPROM Storage is highly recommended. With * EEPROM Storage of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and * G29 P0 G respectively.) * * Z-Probe Sleds are not currently fully supported. There were too many complications caused * by them to support them in the Unified Bed Leveling code. Support for them will be handled * better in the upcoming Z-Probe Object that will happen during the Code Clean Up phase. (That * is what they really are: A special case of the Z-Probe.) When a Z-Probe Object appears, it * should slip in under the Unified Bed Leveling code without major trauma. * * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice * the Unified Bed Leveling probes points further and further away from the starting location. (The * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to * perform a small print and check out your settings quicker. You do not need to populate the * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair. * * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort * to get this Mesh data correct for a user's printer. We do not want this data destroyed as * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the * other data stored in the EEPROM. (For sure the developers are going to complain about this, but * this is going to be helpful to the users!) * * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions * we now have the functionality and features of all three systems combined. */ int Unified_Bed_Leveling_EEPROM_start = -1; int UBL_has_control_of_LCD_Panel = 0; volatile int G29_encoderDiff = 0; // This is volatile because it is getting changed at interrupt time. // We keep the simple parameter flags and values as 'static' because we break out the // parameter parsing into a support routine. static int G29_Verbose_Level = 0, Test_Value = 0, Phase_Value = -1, Repetition_Cnt = 1; static bool Repeat_Flag = UBL_OK, C_Flag = false, X_Flag = UBL_OK, Y_Flag = UBL_OK, Statistics_Flag = UBL_OK, Business_Card_Mode = false; static float X_Pos = 0.0, Y_Pos = 0.0, Height_Value = 5.0, measured_z, card_thickness = 0.0, Constant = 0.0; static int Storage_Slot = 0, Test_Pattern = 0; #if ENABLED(ULTRA_LCD) void lcd_setstatus(const char* message, bool persist); #endif void gcode_G29() { mesh_index_pair location; int i, j, k; float Z1, Z2, Z3; G29_Verbose_Level = 0; // These may change, but let's get some reasonable values into them. Repeat_Flag = UBL_OK; Repetition_Cnt = 1; C_Flag = false; SERIAL_PROTOCOLPGM("Unified_Bed_Leveling_EEPROM_start="); SERIAL_PROTOCOLLN(Unified_Bed_Leveling_EEPROM_start); if (Unified_Bed_Leveling_EEPROM_start < 0) { SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it "); SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n"); return; } if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first gcode_G28(); if (G29_Parameter_Parsing()) return; // abort if parsing the simple parameters causes a problem, // Invalidate Mesh Points. This command is a little bit asymetrical because // it directly specifies the repetition count and does not use the 'R' parameter. if (code_seen('I')) { Repetition_Cnt = code_has_value() ? code_value_int() : 1; while (Repetition_Cnt--) { location = find_closest_mesh_point_of_type(REAL, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position if (location.x_index < 0) { SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); break; // No more invalid Mesh Points to populate } z_values[location.x_index][location.y_index] = NAN; } SERIAL_PROTOCOLLNPGM("Locations invalidated.\n"); } if (code_seen('Q')) { if (code_has_value()) Test_Pattern = code_value_int(); if (Test_Pattern < 0 || Test_Pattern > 4) { SERIAL_PROTOCOLLNPGM("Invalid Test_Pattern value. (0-4)\n"); return; } SERIAL_PROTOCOLLNPGM("Loading Test_Pattern values.\n"); switch (Test_Pattern) { case 0: for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a bowl shape. This is for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { // similar to what a user would see with Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - i; // a poorly calibrated Delta. Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - j; z_values[i][j] += 2.0 * HYPOT(Z1, Z2); } } break; case 1: for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a diagonal line several Mesh z_values[i][i] += 9.999; // cells thick that is raised if (i < UBL_MESH_NUM_Y_POINTS - 1) z_values[i][i + 1] += 9.999; // We want the altered line several mesh points thick if (i > 0) z_values[i][i - 1] += 9.999; // We want the altered line several mesh points thick } break; case 2: // Allow the user to specify the height because 10mm is // a little bit extreme in some cases. for (i = (UBL_MESH_NUM_X_POINTS) / 3.0; i < 2 * ((UBL_MESH_NUM_X_POINTS) / 3.0); i++) // Create a rectangular raised area in for (j = (UBL_MESH_NUM_Y_POINTS) / 3.0; j < 2 * ((UBL_MESH_NUM_Y_POINTS) / 3.0); j++) // the center of the bed z_values[i][j] += code_seen('C') ? Constant : 9.99; break; case 3: break; } } if (code_seen('P')) { Phase_Value = code_value_int(); if (Phase_Value < 0 || Phase_Value > 7) { SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n"); return; } switch (Phase_Value) { // // Zero Mesh Data // case 0: blm.reset(); SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n"); break; // // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe // case 1: if (!code_seen('C') ) { blm.invalidate(); SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n"); } if (G29_Verbose_Level > 1) { SERIAL_ECHOPGM("Probing Mesh Points Closest to ("); SERIAL_ECHO(X_Pos); SERIAL_ECHOPAIR(",", Y_Pos); SERIAL_PROTOCOLLNPGM(")\n"); } probe_entire_mesh( X_Pos+X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER, code_seen('O') || code_seen('M'), code_seen('E')); break; // // Manually Probe Mesh in areas that can not be reached by the probe // case 2: SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); if (!X_Flag && !Y_Flag) { // use a good default location for the path X_Pos = X_MIN_POS; Y_Pos = Y_MIN_POS; if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is X_Pos = X_MAX_POS; // intentional. It should cause the probed points to follow a if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to Y_Pos = Y_MAX_POS; // have Delta printers default to the center of the bed. } // For now, until that is decided, it can be forced with the X // and Y parameters. if (code_seen('C')) { X_Pos = current_position[X_AXIS]; Y_Pos = current_position[Y_AXIS]; } Height_Value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES; if ((Business_Card_Mode = code_seen('B'))) { card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(Height_Value); if (fabs(card_thickness) > 1.5) { SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n"); return; } } manually_probe_remaining_mesh( X_Pos, Y_Pos, Height_Value, card_thickness, code_seen('O') || code_seen('M')); break; // // Populate invalid Mesh areas with a constant // case 3: Height_Value = 0.0; // Assume 0.0 until proven otherwise if (code_seen('C')) Height_Value = Constant; // If no repetition is specified, do the whole Mesh if (!Repeat_Flag) Repetition_Cnt = 9999; while (Repetition_Cnt--) { location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position if (location.x_index < 0) break; // No more invalid Mesh Points to populate z_values[location.x_index][location.y_index] = Height_Value; } break; // // Fine Tune (Or Edit) the Mesh // case 4: fine_tune_mesh(X_Pos, Y_Pos, Height_Value, code_seen('O') || code_seen('M')); break; case 5: Find_Mean_Mesh_Height(); break; case 6: Shift_Mesh_Height(); break; case 10: UBL_has_control_of_LCD_Panel++; // Debug code... Pay no attention to this stuff SERIAL_ECHO_START; // it can be removed soon. SERIAL_ECHOPGM("Checking G29 has control of LCD Panel:\n"); while(!G29_lcd_clicked()) { idle(); delay(250); SERIAL_PROTOCOL(G29_encoderDiff); G29_encoderDiff = 0; SERIAL_EOL; } while (G29_lcd_clicked()) idle(); UBL_has_control_of_LCD_Panel = 0;; SERIAL_ECHOPGM("G29 giving back control of LCD Panel.\n"); break; } } if (code_seen('T')) { Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset; Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset; Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset; // We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is) Z1 -= blm.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y); Z2 -= blm.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y); Z3 -= blm.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y); do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0); tilt_mesh_based_on_3pts(Z1, Z2, Z3); } // // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is // good to have the extra information. Soon... we prune this to just a few items // if (code_seen('W')) G29_What_Command(); // // When we are fully debugged, the EEPROM dump command will get deleted also. But // right now, it is good to have the extra information. Soon... we prune this. // if (code_seen('J')) G29_EEPROM_Dump(); // EEPROM Dump // // When we are fully debugged, this may go away. But there are some valid // use cases for the users. So we can wait and see what to do with it. // if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh G29_Kompare_Current_Mesh_to_Stored_Mesh(); // // Load a Mesh from the EEPROM // if (code_seen('L')) { // Load Current Mesh Data Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot; k = E2END - sizeof(blm.state); j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } blm.load_mesh(Storage_Slot); blm.state.EEPROM_storage_slot = Storage_Slot; if (Storage_Slot != blm.state.EEPROM_storage_slot) blm.store_state(); SERIAL_PROTOCOLLNPGM("Done.\n"); } // // Store a Mesh in the EEPROM // if (code_seen('S')) { // Store (or Save) Current Mesh Data Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot; if (Storage_Slot == -1) { // Special case, we are going to 'Export' the mesh to the SERIAL_ECHOPGM("G29 I 999\n"); // host in a form it can be reconstructed on a different machine for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { if (!isnan(z_values[i][j])) { SERIAL_ECHOPAIR("M421 I ", i); SERIAL_ECHOPAIR(" J ", j); SERIAL_ECHOPGM(" Z "); SERIAL_PROTOCOL_F(z_values[i][j], 6); SERIAL_EOL; } } } return; } int k = E2END - sizeof(blm.state), j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1); goto LEAVE; } blm.store_mesh(Storage_Slot); blm.state.EEPROM_storage_slot = Storage_Slot; // // if (Storage_Slot != blm.state.EEPROM_storage_slot) blm.store_state(); // Always save an updated copy of the UBL State info SERIAL_PROTOCOLLNPGM("Done.\n"); } if (code_seen('O') || code_seen('M')) { i = code_has_value() ? code_value_int() : 0; blm.display_map(i); } if (code_seen('Z')) { if (code_has_value()) { blm.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value } else { save_UBL_active_state_and_disable(); //measured_z = probe_pt(X_Pos + X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, G29_Verbose_Level); measured_z = 1.5; do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything // The user is not going to be locking in a new Z-Offset very often so // it won't be that painful to spin the Encoder Wheel for 1.5mm lcd_implementation_clear(); lcd_z_offset_edit_setup(measured_z); do { measured_z = lcd_z_offset_edit(); idle(); do_blocking_move_to_z(measured_z); } while (!G29_lcd_clicked()); UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( ) // or here. So, until we are done looking for a long Encoder Wheel Press, // we need to take control of the panel millis_t nxt = millis() + 1500UL; lcd_return_to_status(); while (G29_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_setstatus("Z-Offset Stopped", true); while (G29_lcd_clicked()) idle(); UBL_has_control_of_LCD_Panel = 0; restore_UBL_active_state_and_leave(); goto LEAVE; } } UBL_has_control_of_LCD_Panel = 0; delay(20); // We don't want any switch noise. blm.state.z_offset = measured_z; lcd_implementation_clear(); restore_UBL_active_state_and_leave(); } } LEAVE: #if ENABLED(ULTRA_LCD) lcd_setstatus(" ", true); lcd_quick_feedback(); #endif UBL_has_control_of_LCD_Panel = 0; } void Find_Mean_Mesh_Height() { int i, j, n; float sum, sum_of_diff_squared, sigma, difference, mean; sum = sum_of_diff_squared = 0.0; n = 0; for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { if (!isnan(z_values[i][j])) { sum += z_values[i][j]; n++; } } } mean = sum / n; // // Now do the sumation of the squares of difference from mean // for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { if (!isnan(z_values[i][j])) { difference = (z_values[i][j] - mean); sum_of_diff_squared += difference * difference; } } } SERIAL_ECHOLNPAIR("# of samples: ", n); SERIAL_ECHOPGM("Mean Mesh Height: "); SERIAL_PROTOCOL_F(mean, 6); SERIAL_EOL; sigma = sqrt( sum_of_diff_squared / (n + 1)); SERIAL_ECHOPGM("Standard Deviation: "); SERIAL_PROTOCOL_F(sigma, 6); SERIAL_EOL; if (C_Flag) for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) if (!isnan(z_values[i][j])) z_values[i][j] -= mean + Constant; } void Shift_Mesh_Height( ) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) if (!isnan(z_values[i][j])) z_values[i][j] += Constant; } // probe_entire_mesh(X_Pos, Y_Pos) probes all invalidated locations of the mesh that can be reached // by the probe. It attempts to fill in locations closest to the nozzle's start location first. void probe_entire_mesh(float X_Pos, float Y_Pos, bool do_UBL_MESH_Map, bool stow_probe) { mesh_index_pair location; float xProbe, yProbe, measured_z; UBL_has_control_of_LCD_Panel++; save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe DEPLOY_PROBE(); do { if (G29_lcd_clicked()) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated."); lcd_quick_feedback(); while (G29_lcd_clicked()) idle(); UBL_has_control_of_LCD_Panel = 0; STOW_PROBE(); restore_UBL_active_state_and_leave(); return; } location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 1, NULL); // the '1' says we want the location to be relative to the probe if (location.x_index>=0 && location.y_index>=0) { xProbe = blm.map_x_index_to_bed_location(location.x_index); yProbe = blm.map_y_index_to_bed_location(location.y_index); if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) { SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); UBL_has_control_of_LCD_Panel = 0; goto LEAVE; } measured_z = probe_pt(xProbe, yProbe, stow_probe, G29_Verbose_Level); z_values[location.x_index][location.y_index] = measured_z + Z_PROBE_OFFSET_FROM_EXTRUDER; } if (do_UBL_MESH_Map) blm.display_map(1); } while (location.x_index >= 0 && location.y_index >= 0); LEAVE: STOW_PROBE(); restore_UBL_active_state_and_leave(); X_Pos = constrain( X_Pos-X_PROBE_OFFSET_FROM_EXTRUDER, X_MIN_POS, X_MAX_POS); Y_Pos = constrain( Y_Pos-Y_PROBE_OFFSET_FROM_EXTRUDER, Y_MIN_POS, Y_MAX_POS); do_blocking_move_to_xy(X_Pos, Y_Pos); } struct vector tilt_mesh_based_on_3pts(float pt1, float pt2, float pt3) { struct vector v1, v2, normal; float c, d, t; int i, j; v1.dx = (ubl_3_point_1_X - ubl_3_point_2_X); v1.dy = (ubl_3_point_1_Y - ubl_3_point_2_Y); v1.dz = (pt1 - pt2); v2.dx = (ubl_3_point_3_X - ubl_3_point_2_X); v2.dy = (ubl_3_point_3_Y - ubl_3_point_2_Y); v2.dz = (pt3 - pt2); // do cross product normal.dx = v1.dy * v2.dz - v1.dz * v2.dy; normal.dy = v1.dz * v2.dx - v1.dx * v2.dz; normal.dz = v1.dx * v2.dy - v1.dy * v2.dx; // printf("[%f,%f,%f] ", normal.dx, normal.dy, normal.dz); normal.dx /= normal.dz; // This code does two things. This vector is normal to the tilted plane. normal.dy /= normal.dz; // However, we don't know its direction. We need it to point up. So if normal.dz /= normal.dz; // Z is negative, we need to invert the sign of all components of the vector // We also need Z to be unity because we are going to be treating this triangle // as the sin() and cos() of the bed's tilt // // All of 3 of these points should give us the same d constant // t = normal.dx * ubl_3_point_1_X + normal.dy * ubl_3_point_1_Y; d = t + normal.dz * pt1; c = d - t; SERIAL_ECHOPGM("d from 1st point: "); SERIAL_PROTOCOL_F(d, 6); SERIAL_ECHOPGM(" c: "); SERIAL_PROTOCOL_F(c, 6); SERIAL_EOL; t = normal.dx * ubl_3_point_2_X + normal.dy * ubl_3_point_2_Y; d = t + normal.dz * pt2; c = d - t; SERIAL_ECHOPGM("d from 2nd point: "); SERIAL_PROTOCOL_F(d, 6); SERIAL_ECHOPGM(" c: "); SERIAL_PROTOCOL_F(c, 6); SERIAL_EOL; t = normal.dx * ubl_3_point_3_X + normal.dy * ubl_3_point_3_Y; d = t + normal.dz * pt3; c = d - t; SERIAL_ECHOPGM("d from 3rd point: "); SERIAL_PROTOCOL_F(d, 6); SERIAL_ECHOPGM(" c: "); SERIAL_PROTOCOL_F(c, 6); SERIAL_EOL; for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { c = -((normal.dx * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.dy * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d); z_values[i][j] += c; } } return normal; } float use_encoder_wheel_to_measure_point() { UBL_has_control_of_LCD_Panel++; while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); if (G29_encoderDiff != 0) { float new_z; // We define a new variable so we can know ahead of time where we are trying to go. // The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move // is complete. (So the dial feels responsive to user) new_z = current_position[Z_AXIS] + 0.01 * float(G29_encoderDiff); G29_encoderDiff = 0; do_blocking_move_to_z(new_z); } } while (G29_lcd_clicked()) idle(); // debounce and wait UBL_has_control_of_LCD_Panel--; return current_position[Z_AXIS]; } float measure_business_card_thickness(float Height_Value) { float Z1, Z2; UBL_has_control_of_LCD_Panel++; save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); do_blocking_move_to_z(Height_Value); do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0); //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0); Z1 = use_encoder_wheel_to_measure_point(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); UBL_has_control_of_LCD_Panel = 0; SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); Z2 = use_encoder_wheel_to_measure_point(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); if (G29_Verbose_Level > 1) { SERIAL_ECHOPGM("Business Card is: "); SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6); SERIAL_PROTOCOLLNPGM("mm thick."); } restore_UBL_active_state_and_leave(); return abs(Z1 - Z2); } void manually_probe_remaining_mesh(float X_Pos, float Y_Pos, float z_clearance, float card_thickness, bool do_UBL_MESH_Map) { mesh_index_pair location; float last_x, last_y, dx, dy, xProbe, yProbe; unsigned long cnt; UBL_has_control_of_LCD_Panel++; last_x = last_y = -9999.99; save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe do_blocking_move_to_z(z_clearance); do_blocking_move_to_xy(X_Pos, Y_Pos); do { if (do_UBL_MESH_Map) blm.display_map(1); location = find_closest_mesh_point_of_type(INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position // It doesn't matter if the probe can not reach the // NAN location. This is a manual probe. if (location.x_index < 0 && location.y_index < 0) continue; xProbe = blm.map_x_index_to_bed_location(location.x_index); yProbe = blm.map_y_index_to_bed_location(location.y_index); if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) { SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); UBL_has_control_of_LCD_Panel = 0; goto LEAVE; } dx = xProbe - last_x; dy = yProbe - last_y; if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED) do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); else do_blocking_move_to_z(z_clearance); last_x = xProbe; last_y = yProbe; do_blocking_move_to_xy(xProbe, yProbe); while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); if (G29_encoderDiff) { float new_z; // We define a new variable so we can know ahead of time where we are trying to go. // The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move // is complete. (So the dial feels responsive to user) new_z = current_position[Z_AXIS] + float(G29_encoderDiff) / 100.0; G29_encoderDiff = 0; do_blocking_move_to_z(new_z); } } cnt = millis(); while (G29_lcd_clicked()) { // debounce and watch for abort idle(); if (millis() - cnt > 1500L) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_quick_feedback(); while (G29_lcd_clicked()) idle(); UBL_has_control_of_LCD_Panel = 0; restore_UBL_active_state_and_leave(); return; } } z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; if (G29_Verbose_Level > 2) { SERIAL_PROTOCOL("Mesh Point Measured at: "); SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); SERIAL_EOL; } } while (location.x_index >= 0 && location.y_index >= 0); if (do_UBL_MESH_Map) blm.display_map(1); LEAVE: restore_UBL_active_state_and_leave(); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(X_Pos, Y_Pos); } bool G29_Parameter_Parsing() { #if ENABLED(ULTRA_LCD) lcd_setstatus("Doing G29 UBL !", true); lcd_quick_feedback(); #endif X_Pos = current_position[X_AXIS]; Y_Pos = current_position[Y_AXIS]; X_Flag = Y_Flag = Repeat_Flag = UBL_OK; Constant = 0.0; Repetition_Cnt = 1; if ((X_Flag = code_seen('X'))) { X_Pos = code_value_float(); if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) { SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n"); return UBL_ERR; } } if ((Y_Flag = code_seen('Y'))) { Y_Pos = code_value_float(); if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) { SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); return UBL_ERR; } } if (X_Flag != Y_Flag) { SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n"); return UBL_ERR; } G29_Verbose_Level = 0; if (code_seen('V')) { G29_Verbose_Level = code_value_int(); if (G29_Verbose_Level < 0 || G29_Verbose_Level > 4) { SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n"); return UBL_ERR; } } if (code_seen('A')) { // Activate the Unified Bed Leveling System blm.state.active = 1; SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n"); blm.store_state(); } if ((C_Flag = code_seen('C')) && code_has_value()) Constant = code_value_float(); if (code_seen('D')) { // Disable the Unified Bed Leveling System blm.state.active = 0; SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n"); blm.store_state(); } if (code_seen('F')) { blm.state.G29_Correction_Fade_Height = 10.00; if (code_has_value()) { blm.state.G29_Correction_Fade_Height = code_value_float(); blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; } if (blm.state.G29_Correction_Fade_Height<0.0 || blm.state.G29_Correction_Fade_Height>100.0) { SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausable.\n"); blm.state.G29_Correction_Fade_Height = 10.00; blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; return UBL_ERR; } } if ((Repeat_Flag = code_seen('R'))) { Repetition_Cnt = code_has_value() ? code_value_int() : 9999; if (Repetition_Cnt < 1) { SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n"); return UBL_ERR; } } return UBL_OK; } /** * This function goes away after G29 debug is complete. But for right now, it is a handy * routine to dump binary data structures. */ void dump(char *str, float f) { char *ptr; SERIAL_PROTOCOL(str); SERIAL_PROTOCOL_F(f, 8); SERIAL_PROTOCOL(" "); ptr = (char *)&f; for (uint8_t i = 0; i < 4; i++) { SERIAL_PROTOCOL(" "); prt_hex_byte(*ptr++); } SERIAL_PROTOCOL(" isnan()="); SERIAL_PROTOCOL(isnan(f)); SERIAL_PROTOCOL(" isinf()="); SERIAL_PROTOCOL(isinf(f)); constexpr float g = INFINITY; if (f == -g) SERIAL_PROTOCOL(" Minus Infinity detected."); SERIAL_EOL; } static int UBL_state_at_invokation = 0, UBL_state_recursion_chk = 0; void save_UBL_active_state_and_disable() { UBL_state_recursion_chk++; if (UBL_state_recursion_chk != 1) { SERIAL_ECHOLNPGM("save_UBL_active_state_and_disabled() called multiple times in a row."); lcd_setstatus("save_UBL_active() error", true); lcd_quick_feedback(); return; } UBL_state_at_invokation = blm.state.active; blm.state.active = 0; return; } void restore_UBL_active_state_and_leave() { if (--UBL_state_recursion_chk) { SERIAL_ECHOLNPGM("restore_UBL_active_state_and_leave() called too many times."); lcd_setstatus("restore_UBL_active() error", true); lcd_quick_feedback(); return; } blm.state.active = UBL_state_at_invokation; } /** * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is * good to have the extra information. Soon... we prune this to just a few items */ void G29_What_Command() { int k, i; k = E2END - Unified_Bed_Leveling_EEPROM_start; Statistics_Flag++; SERIAL_PROTOCOLPGM("Version #4: 10/30/2016 branch \n"); SERIAL_PROTOCOLPGM("Unified Bed Leveling System "); if (blm.state.active) SERIAL_PROTOCOLPGM("Active."); else SERIAL_PROTOCOLPGM("Inactive."); SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me if (blm.state.EEPROM_storage_slot == 0xFFFF) { SERIAL_PROTOCOLPGM("No Mesh Loaded."); SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me // find this info buried in the clutter } else { SERIAL_PROTOCOLPGM("Mesh: "); prt_hex_word(blm.state.EEPROM_storage_slot); SERIAL_PROTOCOLPGM(" Loaded. "); SERIAL_PROTOCOLLNPGM(" -------------------------------------------------------- <----<<<"); // These arrows are just to help me // find this info buried in the clutter } SERIAL_ECHOPAIR("\nG29_Correction_Fade_Height : ", blm.state.G29_Correction_Fade_Height ); SERIAL_PROTOCOLPGM(" ------------------------------------- <----<<< \n"); // These arrows are just to help me // find this info buried in the clutter idle(); SERIAL_ECHOPGM("z_offset: "); SERIAL_PROTOCOL_F(blm.state.z_offset, 6); SERIAL_PROTOCOLLNPGM(" ------------------------------------------------------------ <----<<<"); SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { SERIAL_PROTOCOL_F( blm.map_x_index_to_bed_location(i), 1); SERIAL_PROTOCOLPGM(" "); } SERIAL_EOL; SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); for (i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { SERIAL_PROTOCOL_F( blm.map_y_index_to_bed_location(i), 1); SERIAL_PROTOCOLPGM(" "); } SERIAL_EOL; #if HAS_KILL SERIAL_ECHOPAIR("Kill pin on :", KILL_PIN); SERIAL_ECHOLNPAIR(" state:", READ(KILL_PIN)); #endif SERIAL_ECHOLNPAIR("UBL_state_at_invokation :", UBL_state_at_invokation); SERIAL_ECHOLNPAIR("UBL_state_recursion_chk :", UBL_state_recursion_chk); SERIAL_EOL; SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x"); prt_hex_word(Unified_Bed_Leveling_EEPROM_start); SERIAL_EOL; idle(); SERIAL_PROTOCOLPGM("end of EEPROM : "); prt_hex_word(E2END); SERIAL_EOL; idle(); SERIAL_PROTOCOLLNPAIR("sizeof(blm) : ", (int)sizeof(blm)); SERIAL_EOL; SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); SERIAL_EOL; SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x"); prt_hex_word(k); SERIAL_EOL; idle(); SERIAL_PROTOCOLPGM("EEPROM can hold 0x"); prt_hex_word(k / sizeof(z_values)); SERIAL_PROTOCOLPGM(" meshes. \n"); SERIAL_PROTOCOLPGM("sizeof(stat) :"); prt_hex_word(sizeof(blm.state)); SERIAL_EOL; idle(); SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS); SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS); SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X); SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y); SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X); SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y); SERIAL_ECHOPGM("\nMESH_X_DIST "); SERIAL_PROTOCOL_F(MESH_X_DIST, 6); SERIAL_ECHOPGM("\nMESH_Y_DIST "); SERIAL_PROTOCOL_F(MESH_Y_DIST, 6); SERIAL_EOL; idle(); SERIAL_ECHOPAIR("\nsizeof(block_t): ", (int)sizeof(block_t)); SERIAL_ECHOPAIR("\nsizeof(planner.block_buffer): ", (int)sizeof(planner.block_buffer)); SERIAL_ECHOPAIR("\nsizeof(char): ", (int)sizeof(char)); SERIAL_ECHOPAIR(" sizeof(unsigned char): ", (int)sizeof(unsigned char)); SERIAL_ECHOPAIR("\nsizeof(int): ", (int)sizeof(int)); SERIAL_ECHOPAIR(" sizeof(unsigned int): ", (int)sizeof(unsigned int)); SERIAL_ECHOPAIR("\nsizeof(long): ", (int)sizeof(long)); SERIAL_ECHOPAIR(" sizeof(unsigned long int): ", (int)sizeof(unsigned long int)); SERIAL_ECHOPAIR("\nsizeof(float): ", (int)sizeof(float)); SERIAL_ECHOPAIR(" sizeof(double): ", (int)sizeof(double)); SERIAL_ECHOPAIR("\nsizeof(void *): ", (int)sizeof(void *)); struct pf { void *p_f(); } ptr_func; SERIAL_ECHOPAIR(" sizeof(struct pf): ", (int)sizeof(pf)); SERIAL_ECHOPAIR(" sizeof(void *()): ", (int)sizeof(ptr_func)); SERIAL_EOL; idle(); if (!blm.sanity_check()) SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed."); } /** * When we are fully debugged, the EEPROM dump command will get deleted also. But * right now, it is good to have the extra information. Soon... we prune this. */ void G29_EEPROM_Dump() { unsigned char cccc; int i, j, kkkk; SERIAL_ECHO_START; SERIAL_ECHOPGM("EEPROM Dump:\n"); for (i = 0; i < E2END + 1; i += 16) { if (i & 0x3 == 0) idle(); prt_hex_word(i); SERIAL_ECHOPGM(": "); for (j = 0; j < 16; j++) { kkkk = i + j; eeprom_read_block(&cccc, (void *)kkkk, 1); prt_hex_byte(cccc); SERIAL_ECHO(' '); } SERIAL_EOL; } SERIAL_EOL; return; } /** * When we are fully debugged, this may go away. But there are some valid * use cases for the users. So we can wait and see what to do with it. */ void G29_Kompare_Current_Mesh_to_Stored_Mesh() { float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; int i, j, k; if (!code_has_value()) { SERIAL_PROTOCOLLNPGM("?Mesh # required.\n"); return; } Storage_Slot = code_value_int(); k = E2END - sizeof(blm.state); j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(tmp_z_values); if (Storage_Slot < 0 || Storage_Slot > j || Unified_Bed_Leveling_EEPROM_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } j = k - (Storage_Slot + 1) * sizeof(tmp_z_values); eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); SERIAL_ECHOPAIR("Subtracting Mesh ", Storage_Slot); SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing prt_hex_word(j); // the address in the EEPROM where the Mesh is stored. SERIAL_EOL; for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) z_values[i][j] = z_values[i][j] - tmp_z_values[i][j]; } mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type type, float X, float Y, bool probe_as_reference, unsigned int bits[16]) { int i, j; float f, px, py, mx, my, dx, dy, closest = 99999.99; float current_x, current_y, distance; mesh_index_pair return_val; return_val.x_index = return_val.y_index = -1; current_x = current_position[X_AXIS]; current_y = current_position[Y_AXIS]; px = X; // Get our reference position. Either the nozzle or py = Y; // the probe location. if (probe_as_reference) { px -= X_PROBE_OFFSET_FROM_EXTRUDER; py -= Y_PROBE_OFFSET_FROM_EXTRUDER; } for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing || (type == REAL && !isnan(z_values[i][j])) || (type == SET_IN_BITMAP && is_bit_set(bits, i, j)) ) { // We only get here if we found a Mesh Point of the specified type mx = blm.map_x_index_to_bed_location(i); // Check if we can probe this mesh location my = blm.map_y_index_to_bed_location(j); // If we are using the probe as the reference there are some locations we can't get to. // We prune these out of the list and ignore them until the next Phase where we do the // manual nozzle probing. if (probe_as_reference && ( mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y) ) ) continue; dx = px - mx; // We can get to it. Let's see if it is the dy = py - my; // closest location to the nozzle. distance = HYPOT(dx, dy); dx = current_x - mx; // We are going to add in a weighting factor that considers dy = current_y - my; // the current location of the nozzle. If two locations are equal distance += HYPOT(dx, dy) * 0.01; // distance from the measurement location, we are going to give if (distance < closest) { closest = distance; // We found a closer location with return_val.x_index = i; // the specified type of mesh value. return_val.y_index = j; return_val.distance = closest; } } } } return return_val; } void fine_tune_mesh(float X_Pos, float Y_Pos, float Height_Value, bool do_UBL_MESH_Map) { mesh_index_pair location; float xProbe, yProbe, new_z; uint16_t i, not_done[16]; long round_off; save_UBL_active_state_and_disable(); memset(not_done, 0xFF, sizeof(not_done)); #if ENABLED(ULTRA_LCD) lcd_setstatus("Fine Tuning Mesh.", true); #endif do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(X_Pos, Y_Pos); do { if (do_UBL_MESH_Map) blm.display_map(1); location = find_closest_mesh_point_of_type( SET_IN_BITMAP, X_Pos, Y_Pos, 0, not_done); // The '0' says we want to use the nozzle's position // It doesn't matter if the probe can not reach this // location. This is a manual edit of the Mesh Point. if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a // different location the next time through the loop xProbe = blm.map_x_index_to_bed_location(location.x_index); yProbe = blm.map_y_index_to_bed_location(location.y_index); if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check. SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now, UBL_has_control_of_LCD_Panel = 0; // Let's do the check. goto FINE_TUNE_EXIT; } do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit do_blocking_move_to_xy(xProbe, yProbe); new_z = z_values[location.x_index][location.y_index] + 0.001; round_off = (int32_t)(new_z * 1000.0 + 2.5); // we chop off the last digits just to be clean. We are rounding to the round_off -= (round_off % 5L); // closest 0 or 5 at the 3rd decimal place. new_z = ((float)(round_off)) / 1000.0; //SERIAL_ECHOPGM("Mesh Point Currently At: "); //SERIAL_PROTOCOL_F(new_z, 6); //SERIAL_EOL; lcd_implementation_clear(); lcd_mesh_edit_setup(new_z); UBL_has_control_of_LCD_Panel++; do { new_z = lcd_mesh_edit(); idle(); } while (!G29_lcd_clicked()); UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( ) // or here. millis_t nxt = millis() + 1500UL; lcd_return_to_status(); while (G29_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { lcd_return_to_status(); SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_setstatus("Mesh Editing Stopped", true); while (G29_lcd_clicked()) idle(); UBL_has_control_of_LCD_Panel = 0; goto FINE_TUNE_EXIT; } } //UBL_has_control_of_LCD_Panel = 0; delay(20); // We don't want any switch noise. z_values[location.x_index][location.y_index] = new_z; lcd_implementation_clear(); } while (location.x_index >= 0 && location.y_index >= 0 && --Repetition_Cnt); FINE_TUNE_EXIT: if (do_UBL_MESH_Map) blm.display_map(1); restore_UBL_active_state_and_leave(); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(X_Pos, Y_Pos); UBL_has_control_of_LCD_Panel = 0; #if ENABLED(ULTRA_LCD) lcd_setstatus("Done Editing Mesh", true); #endif SERIAL_ECHOLNPGM("Done Editing Mesh."); } #endif // AUTO_BED_LEVELING_UBL